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Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes
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A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible
polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is
presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an elec-
trostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an
induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation
and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for
treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density
is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to
adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff
because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force
is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic
function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with
coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When
doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical
characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
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I. INTRODUCTION

The persistence length lp of double-stranded deoxyribonu-
cleic acid (dsDNA), that is, the length below which DNA
can be seen as a rod and above which it is a coil [1], has a
value of 50 nm. dsDNA has two charges per base pair, which
amounts to a high linear charge density of v = −6 charges
per nm contour length. Obviously, the double helix gives the
DNA its intrinsic stiffness, but because of its charge there is
an ionic strength-dependent contribution as well. The intrinsic
rigidity, measured at high ionic strengths, may be as low as
30 nm [2]. The charge on the DNA sets up a diffuse layer
of co- and counterions. Such an electric double layer resists
bending and hence contributes to the rigidity by an amount
known as electrostatic stiffening. The electrostatic stiffening of
semiflexible polyelectrolytes has been analyzed theoretically
by Fixman et al. [3,4] and according to these authors grows
quadratically with the linear charge density and decreases
linearly with ionic strength ϕs (i.e., growth is quadratic with
the Debye length). Hence, the apparent persistence length of
50 nm should be understood as being composed of a bare and
an electrostatic stiffening effect.

Recently, we have reported on the complexation of a
bioengineered protein polymer C4K12 with DNA [5]. This
C4K12 is an extremely well-defined protein polymer that
consists of 12 positively charged lysines (K12) and a 400-amino
acids (aa), randomly coiled, collagen-like block (C4) which
forms a water-soluble coil that lacks a clear secondary or
tertiary structure (and is basically neutral). Opposite charges
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attract [6], and therefore the lysine block binds to the DNA
chain by electrostatic interactions [5,7]. The C4 block points
away from the DNA and builds up an extended corona around
the DNA. This kind of a topology is referred to as a bottlebrush.
Our case, more precisely, is a coassembled protein-DNA
bottlebrush.

It was found that coassembled DNA bottlebrushes can
have a sufficiently high aspect ratio lp/D (D is the cross-
sectional dimension of the chain) that allows them to reach
an ordered state; i.e., they form liquid crystalline phases at
sufficiently high DNA bottlebrush concentrations [5]. That
attaching side chains to a backbone can lead to stiffening and
potentially to liquid crystalline behavior was first elaborated by
Fredrickson [8]. He argued that it should be possible to stiffen
the flexible main chain sufficiently to make lyotropic phases.
The backbone of our assembled objects, DNA, is by itself
already semiflexible and hence able to form liquid-crystalline
phases [9]. From this perspective, it may not be too much of a
surprise that we were able to also observe liquid crystallinity
for the coassembled bottlebrushes. However, from the many
failed experiments in our laboratory to form coassembled
DNA bottlebrushes with lyotropic properties, we know that
our recent result [5] is far from trivial.

Much experimental and theoretical work on bottlebrushes
is motivated by the potential lyotropic properties. However,
there are only a few reports in the literature. Wintermantel et al.
[10], Tsukahara et al. [11], Nakamura et al. [12], and Li et al.
[13] showed that bottlebrushes with relative short polystyrene
grafts on a flexible methyl methacrylate main chain make
ordered phases at high concentrations. The lack of comparable
examples brings up many questions about the origin of the
lyotropicity in this system. Neurofilaments are a prominent
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example in nature [14–17] which feature liquid crystallinity.
In this case, there is a rigid core from which a triplet of
polyampholytic polypeptide chains emerge. As neurofilaments
have a very stiff core, the contributions of the grafted chains
are possibly only a perturbation (at least at physiological
conditions). In order to know, e.g., how our coassembled DNA
bottlebrush relates to the neurofilament case, it is timely to
consider the tunable contributions to the persistence length
of (charged) molecular bottlebrushes. Our calculations are
targeted to unravel and understand stiffening issues for our
coassembled DNA bottlebrushes. We haste to mention that our
results are applicable and relevant for semiflexible polyelec-
trolytes and bottlebrushes in general even though parameters
are chosen to mimic our experimental system.

Upon coassembly of the C4K12 chains and DNA, bottle-
brushes are formed and the linear charge density along the
DNA backbone is reduced. As the charge density of naked
DNA is above the Manning condensation limit [18], the
reduction of linear charge density is not very important for low
C4K12 coverages (an effect not covered by the Fixman-Odijk
law [3,4]), but near stoichiometric binding the decline of the
charge density is significant and the electrostatic stiffening
effect is largely suppressed. However, the bottlebrush itself
also resists bending, and this contribution is known as the
induced persistence length [19,20]. At low coverages, when
the grafts are far apart, there is little stiffening effect; however,
as soon as the side chains overlap laterally and stretch away
from the DNA, the rigidity increases. According to the scaling
analysis for brushes, the induced persistence length increases
quadratically with the grafting density of the side chains (1/h)
and also increases quadratically with the length N of the side
chains [19,21]. To quantify the contribution of the induced per-
sistence length to the stiffening, it is necessary to also know the
proportionality constant. Numerical self-consistent field (SCF)
results of Feuz et al. [19] proved that the numerical prefactor
is unusually small, i.e., of order 10−3. Recently, it has been
suggested that this low prefactor can be attributed to the possi-
bility of side chains translocating from the compressed convex
to the expanded concave side of the curved backbone [21].

When, for bottlebrushes, translocation effects are important
to quantify the chain stiffening, it also becomes relevant to
account for the finite volume of the backbone. To see this,
we can imagine a short side chain permanently grafted to a
point on the curved backbone; let that chain be compressed
during the backbone deformation. As the chain is short, it
cannot reach the uncompressed regions. Very long chains, on
the other hand, will be able to “travel around” the backbone and
then the excluded volume of the backbone is less important.
The effect of the finite size of the backbone is expected to be
relevant in our DNA bottlebrush system because the chains
that physisorb onto the DNA backbone are not extraordinary
large: The unperturbed coil size of our C4K12 molecules is only
about twice the cross-sectional diameter of the DNA chain [5].
Therefore, we will explicitly introduce a finite volume of the
backbone in our SCF model calculations.

Andreev and Victorov have analyzed the electrostatic stiff-
ening in a model that goes beyond the phantom main-chain ap-
proximation [22]. They considered the case that the backbone
has a finite diameter, e.g., relevant for stiffness of wormlike
micelles [23] composed of charged surfactants. They fixed the

charge on the wormlike micelle such that half the charge is
in the compressed convex side and the other half is in the
expanded concave side of the curved cylinder. They reported
large deviations from the Fixman-Odijk predictions, especially
when the ionic strength is relatively high. Only in the limit of
very low ionic strength did they recover the 1/ϕs dependence
for the chain rigidity [22].

We expect that models that allow for an annealed charge
distribution have a lower persistence length than systems for
which the charge is quenched. The same applies to the brush.
When, upon bending, the chains can rearrange, we expect a low
induced persistence length compared to the quenched situation.
Below, we will introduce models wherein the grafting or charge
distribution is regulated in various ways. For coassembly, there
is the equilibration of brush-forming chains with the bulk. In
such a case, the concentration of freely dispersed polymers
becomes another tuning parameter for the apparent bending
rigidity of coassembled molecular bottlebrushes.

It is largely unknown how the above effects (that contribute
to the stiffening of the charge-driven coassembled DNA bot-
tlebrush) compete with each other, for example, which effect
dominates in which regime and how the various contributions
relate to one another quantitatively. We do not know of com-
puter simulations that have addressed all these issues in a single
model. Such comparison is possible using SCF theory for mod-
els which disregard the flexibility of the backbone. It should be
noted that our results are therefore relevant for the understand-
ing of large length-scale bending. This is more appropriate for
semiflexible backbone systems (i.e., for the DNA case) than
for very flexible backbones. The purpose of this paper is to
use the SCF theory to elaborate on tunable contributions to the
persistence length. We will first present how this follows from
the analysis of the free energy of the system. We will then elab-
orate on the SCF theory [24], mention the main characteristics
and prerequisites, and present the molecular models that are
used. The results are split up in three subsections. The first one
deals with the electrostatic stiffening and how the classical
results are modified when more detailed molecular models
are introduced. In the second part, we discuss the induced
persistence length and focus once again on the influence of
the finite size of the backbone on the induced rigidity. In the
third part, we will discuss the self-assembled bottlebrushes and
analyze the difference between two models for adsorption and
pay attention to the effects in the plateau of the isotherm, where
the polymer concentrations increase to semidilute values. In the
discussion, we will consider the results in the context of our
coassembled DNA-bottlebrush experiments.

II. THE SELF-CONSISTENT FIELD THEORY
FOR TUNABLE PARTS OF THE PERSISTENCE

LENGTH OF SEMIFLEXIBLE CHAINS

Below we will elaborate on the self-consistent field (SCF)
theory, which is used to evaluate the induced persistence length
and the electrostatic stiffening. This can be implemented in
a discrete two-gradient cylindrical coordinate system (r,z),
which is illustrated in Fig. 1. In this graph, the black line is the
homogeneously curved (main) chain with radius of curvature
R. The mean field averaging is performed over sites with
the same (z,r) value, i.e., over the angular direction. This
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FIG. 1. Illustration of the two-gradient cylindrical coordinate
system used in the SCF calculations. The z and r coordinates are
indicated as well as the radius of curvature R of the chain, which is
drawn as a thick black line. Below we will use a lattice model (here
not indicated) where the z and the r coordinates have discrete values.
The cross-sectional grit (z,r) is shown in Fig. 2.

approximation is not very good when the side chains are far
apart, but it becomes better when the grafted chains are near
each other.

We employ models where excluded-volume effects of the
main chain are introduced in various ways (cf. Fig. 2). In
particular, our target is to predict the stiffness of a co-assembled
bottlebrush that is formed by electrostatic interaction of an
ionic copolymer with an oppositely charged backbone, mim-
icking our experimental DNA-bottlebrush system. Before we
focus on the details of the calculations, we need to clearly
identify the key characteristics from which these persistence
length issues emerge. Therefore, we will first briefly visit
the thermodynamic background of electrostatic stiffening and
induced persistence length calculations.

A. The bending modulus and persistence length
of worm-like chains

One of the key characteristics of a polymer chain is its
persistence length [1,25]. By definition, the persistence length
is the length along the backbone below which the direction of
the chain is preserved and above which the directions becomes
random due to thermal fluctuations. One way to estimate the
persistence length in model calculations is to compute the free
energy per unit (contour) length that is needed to take a chain
and curve it homogeneously with radius of curvature R, and
hence impose a curvature J = 1/R. When the curvature is a
small parameter, we can use a Taylor series expansion of the
free energy f per unit length, similar to what Helfrich has done
for bilayers [26]:

f (J ) = f (0) + ∂f

∂J
J + 1

2

∂2f

∂J 2
J 2 + · · · . (1)

In this equation, the sign of J should not matter and therefore
the odd terms must be zero. Therefore, we can write

f (J ) = f (0) + 1
2kcJ

2 + · · · O(J 4), (2)

where we introduced the rigidity kc ≡ ∂2f

∂J 2 which has the units
kBT × l (i.e., energy times length). The rigidity is a direct
measure for the persistence length:

lp = kc

kBT
, (3)

because if we curve a piece of the chain with length 2lp with a
homogeneous curvature of J = 1/lp, the free energy changes
by [f (1/lp) − f (0)]2lp = kBT , which is the thermal energy.
After bending such a chain part, the tangent of the chain has
changed directions by 360/(2π ) ≈ 60◦.

(a) (c)

(d)

(e)

(f)

(g)

(h)(b)

FIG. 2. Illustration of models for the cross section of the main-chain (backbone) (cf. Fig. 1). The cylindrical two-gradient coordinate system
(z,r) as well as the radius of curvature R of the main chain are indicated only in panel A (cf. Fig. 1) [(a), (b)] Phantom chains. [(c)–(h)] Backbone
chain with finite size (here a = 5 sites), and segment type S. (a) No constraints; grafts (not shown) emanate from the gray site. (b) Spatial
constraints: half of the chains grafted at the gray site have to stay in the red region and the other half of the chains are fixed to the green half-space
(regions overlap at r = R). (c) Chain with fixed size (black): annealed grafting in gray sites. (d) Chain with fixed size: quenched grafting; equal
number of chains grafted on green and red sites. (e) Chain with fixed size; homogeneous adsorption energy χS < 0 for K stickers. (f) Main
chain with fixed size and fixed charge density (blue sites have fixed valency). (g) Chain with fixed size: annealed charges in gray zones (total
charge is fixed). (h) Chain with fixed size: quenched charge distribution. Equal amount of charge in red and green regions. More details are in
the text. See also Table I for extra info and how the models are being used.
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We note that lp, as introduced above, is relevant for suffi-
ciently stiff semiflexible main chains, or in other words, it is the
stiffness in the weak curvature limit. We know from multiple
computer simulation studies that a flexible main chain can be
rather flexible on the monomer scale and only show its ther-
modynamic stiffness on larger length scales. In other words,
bottlebrushes feature a length-scale-dependent stiffening [27–
30]. Coassembled DNA bottlebrushes have an intrinsically
semiflexible backbone and therefore we expect that for this sys-
tem the large length scale stiffening is the most relevant limit.

In passing, we should also mention that the Fixman-Odijk
predictions [3,4] and in particular the quadratic scaling of the
persistence length with the Debye length have been subject
to experimental, theoretical, and simulation studies (see, e.g.,
Ref. [31] for an overview). As the early predictions are made
in the Debye-Hückel limit, it is clear that these do not capture
ion condensation effects. Any complication such as the finite
thickness of the chain as well as discrete versus smeared
charges along the chain introduces a small length scale which
must be overcome by the Debye length before the Fixman-
Odijk predictions are expected to hold. Also, intrinsically
flexible chains pose a problem. For example, Barrat and Joanny
[32] argued that the intrinsic persistence length l0 of the chain
must exceed the value l0 > 1/(LBv2), with LB the Bjerrum
length (approximately 0.7 nm for water) and v the linear charge
density, before the Fixman-Odijk trend can be expected. It is
unknown how charge regulation should enter this picture.

As explained above, our focus here is in the mean field free
energy per unit length f (J ) which contains the contributions
due to the electric double layers (very much in the spirit of
Odijk and Fixman) and polymer side chains, the so-called
tunable contributions. The intrinsic contribution l0 is delib-
erately not accounted for. We will assume that the backbone is
sufficiently rigid so that small length-scale fluctuations of the
backbone are of minor importance. In other words, we focus on
the large length scale stiffening only. As the free energy cost of
the two-backbone bending is relatively independent from the
cost of bending double layers or bending the bottle brush, we
expect that a superposition rule will apply, that is, that the total
persistence length is given by the sum of intrinsic one and the
tunable contributions.

B. SCF machinery and the molecular models

From the above, it is clear that we need to evaluate
a free energy of the system focusing on electrostatic and
polymer brush contributions (the tunable contributions). We
will evaluate this free energy using the self-consistent field
framework of Scheutjens and Fleer (SF-SCF) [24]. We refer
to the literature for details and here will only highlight the
essential features. These authors suggested to use a lattice to
discretize space and use the freely jointed chain model wherein
chain molecules are composed of segments that fit the lattice
site. Hence, such SF-SCF calculations use only one length scale
(here and below we will choose a length close to the Bjerrum
length [33], b = 5×10−10m) to reduce all linear lengths to
dimensionless ones; e.g., the chain length is reduced to the
number of segments N (each with size b). We will reduce all
energy units by the thermal energy kBT = 4×10−21 J so that
the bending modulus kc is directly interpreted as lp.

From the above, it is clear that the target of the calculations is
a free energy per unit length f (J ) as a function of the imposed
curvature of a polymer chain J = 1/R. Unless specified
otherwise, the cross section of the backbone, illustrated in
Figs. 2(c)–2(h), is a square of 5×5 lattice sites of segment
type S, roughly matching the size of a DNA chain. Segments
on the surface of this cross section may have a fixed charge,
quantified by the valency v [Fig. 2(f)]. In the phantom chain
models [Figs. 2(a) and 2(b)], the volume of the backbone is
ignored in the case of the bottlebrush or strongly reduced so
that the cross section is just one segment S with valency v (for
models with a line charge).

It will be clear that the exact type of free energy that
needs to be used in the Taylor series expansion of Eq. (1)
should depend on details of the calculations. When we fix
the chemical potential of the molecular species involved, e.g.,
free polymer or ions, we need to focus on the grand potential
� = F − ∑

i μini , where F is the Helmholtz energy, μ is
the chemical potential, and n is the number of molecules
and i is an index which runs over all molecular species.
For chemically grafted molecular bottlebrushes, however, we
need to fix the number of chains per unit length and then
the characteristic function is a Helmholtz energy. When we
have both permanently grafted chains and freely dispersed ions
(for example), it is clear that we have a semi-grand-canonical
ensemble, or partial open canonical ensemble, and we will refer
to the free energy as free energy partial open [34]. In general,
the relevant free energy per unit length f is given by

f = F ′

L
= 1

L

⎛
⎝F −

′∑
j

μjnj

⎞
⎠ = 1

L

(
� +

′′∑
k

μknk

)
, (4)

where F ′ is the characteristic free energy of the system and
L is the length of the backbone. From Eq. (4), it is clear
that we can compute the characteristic function in two ways:
either starting from the Helmholtz energy and subtracting the
chemical contribution terms for all molecules that are mobile
and for which the chemical potential is imposed (indicated by
the prime on the sum sign), or starting from the grand potential
� and adding the chemical contribution of all molecular
species for which the number of molecules is fixed, e.g., for the
grafted chains (indicated by the double prime on the sum sign).
It turns out that these thermodynamic quantities are accurately
available when the relevant self-consistent field equations have
been solved [24].

Besides thermodynamic information, our interest might be
on the distribution of molecular species around the backbone
chain. In the case of the charged backbone, it is the distribution
of the ions expressed in dimensionless concentration distribu-
tions (also called volume fractions ϕi(r), where the value of i

may refer to a molecular species). In the field of colloid science,
the distribution is referred to as the diffuse part of the electric
double layer [35]. In the analytical theory, the results are
obtained in the framework of the Debye-Hückel approximation
[3,4,22,35]. We will solve the Poisson Boltzmann equations
(on the level of lattice approximations). Here and below we
have a 1:1 electrolyte named Na (i = 1, valency +1) and Cl
(i = 2, valency −1) for simplicity reasons. Besides the fact that
the ions have a fixed monomer volume b3, we will assume these

032501-4



ELECTROSTATIC STIFFENING AND INDUCED … PHYSICAL REVIEW E 97, 032501 (2018)

ions to be ideal, having athermal interactions with a monomeric
solvent W (i = 0) and all other molecular components (no
specific adsorption energies). In the case of the chemically
grafted bottlebrush, we consider chains (i = 4) with segment
ranking numbers s = 1, 2 . . . , N , for which the first segment
is constrained to be on a specified coordinate r = r∗ (phantom
model), or a set of coordinates r∗ ∈ {r∗

1, r∗
2, . . . } (cross section

as specified in Fig. 2). The distance between the side chains
is given by h (in lattice units, a value of h = 2 corresponds to
1 nm distance between side chains). We will assume that the
solvent quality is good, that is, all Flory-Huggins interaction
parameters of the segments with the solvent are set to the
athermal value χ = 0 [24,34,36]. Alternatively, the polymer
chains may be freely dispersed in solution and adsorb onto the
backbone.

We follow the experimental system closely, which im-
plies that the adsorbing polymers have exactly 12 adsorbing
segments (K12) connected to 400 nonadsorbing ones, the
so-called C4 block, specified as C4K12. Again, the solvent
quality is strictly kept athermal: χWK = χWC = 0, and also
we ignore possible nonzero mixing contributions; i.e., we use
χKC = 0 (and similarly for the interactions with the ions). We
consider two models: (i) the fixed adsorption energy case and
(ii) electrostatic binding. Let S denote the unit which specifies
the backbone (cf. Fig. 1). In the context of (i), we realize
that adsorption is an exchange process; a solvent molecule is
exchanged by a K segment. Hence, the effective adsorption
energy is given by χs = χSK − χSW. As we set χSW = 0,
the adsorption strength is fully specified by χSK. Typically,
the value of this parameter is negative for adsorption and
one needs to divide by 6 to obtain the adsorption energy
in units of kBT (the value of 6 is related to the fact that
a cubic lattice is used). In the context of (ii), we consider
electrostatic binding energy. Now the backbone surface has
a negative charge density, specified by the valency of the S
group v < 0. This value is fixed, where it is understood that
fractional charges are allowed: e.g., a value of v = −1/2 means
that every other surface group carries a negative charge. The
valency of the K segment is vK = +1. We stress that in the case
of electrostatically driven adsorption no specific adsorption
energy is included. The bulk concentration of polymer is a free
(input) parameter.

Summarizing the above, we typically consider segment type
X distributions ϕX(r) where X = W, Na, Cl, C, K, S (only the
distribution of S is fixed during the calculations). In the SCF
approach, we have for each segment type X a conjugate,
so-called segment potential uX(r) distribution. The mean field
free energy is a functional of both types of fields F = F (ϕ,u).
The electric double layer is typically solved for ions being
point charges. In the lattice approach, we will go beyond
this level of approximation and allow ions also to occupy
lattice sites. In such a case, the optimization of the free energy
requires a compressibility relation. Typically, we will assume
that the system is (even locally) incompressible; that is, for each
coordinate r we require that the sum of the volume fractions
equals unity, i.e.,

∑
X

ϕX(r) = 1, (5)

and the free energy functional as used in the SF-SCF approach
reads

F = − ln Q({u}) − uϕ + F int({ϕ}) + α

(∑
X

ϕX − 1

)
, (6)

where we omitted spatial coordinates for simplicity and
employed the notation uϕ = ∑

r

∑
X uX(r)ϕX(r). Q is the

partition function of the system which in the mean-field
approximation [34] can be decomposed as Q = �iq

ni

i /n! with
single chain (molecular) mean-field partition functions q =
q({u}), which can be computed when all segment potentials
uX(r) are known. The free energy of interaction F int should
contain all interactions that are experienced by the molecules.
In the current calculations, just two contributions are accounted
for: (i) The adsorption energy for the segments of type K for
the surface (in the case of the adsorption of C4K12). Only
when the distance between a segment K and a surface site
S (from the backbone) is exactly unity (lattice unit b) is the
adsorption energy active and the energy of the system changes
proportional to the Flory-Huggins parameter χSK. In fact, as
we take the reference for adsorption χSW = 0, we can interpret
χSK/6 as the adsorption energy in units kBT when a segment
K sits next to the surface S and by doing so displaced a
solvent W. The factor 1/6 comes from using a cubic lattice.
(ii) When there are charges in the system, we have the usual
electrostatic contribution 1

2ε
∑

r E2(r), with E = −∇ψ being
the electric field strength for which it is necessary to evaluate
the electrostatic potential ψ . Probably the best electrostatic
potentials for the system are found when these are computed
using the Poisson equation [37]:

∇2ψ = −σ

ε
, (7)

where the exact form depends on the geometry (specified be-
low). This form of the Poisson equation is appropriate because
we will not allow for gradients in dielectric permittivity ε.
The charge density distribution is easily obtained from the
distribution of the ionic species in the system:

σ (r) = e
∑
X

ϕX(r)vX (8)

with e being the elementary charge. The final term in the mean-
field free energy functional, Eq. (6), is a Lagrange multiplier for
each coordinate α(r) which is coupled to the incompressibility
relation.

From the extremization of the free energy (a minimum with
respect to the volume fractions and a maximum with respect
to the potentials), it follows that it is possible to compute the
volume fractions as soon as the segment potentials are available
and when the segment volume fractions are available we can
compute the segment potentials [24]. The fixed point of these
equations is found routinely in an iterative manner, wherein the
potentials are systematically tuned until the volume fractions
are found which both follow from the potentials and determine
the same potentials, while they obey to the incompressibility
relations. Routinely we obtain seven significant digits in order
100 iteration steps [38]. This fixed point is referred to as
the self-consistent field solution. For such SCF solution, we
can compute the free energy using Eq. (6). Other relevant
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thermodynamic quantities can be computed straightforwardly
as the chemical potentials of the mobile components follow
from the Flory-Huggins theory [36]:

μi ≡ μi

kBT
= ln ϕb

i + ln Nj + 1 − Ni

∑
j

ϕb
j

Nj

, (9)

wherein the interaction terms were omitted because in all calcu-
lations discussed below the Flory-Huggins (FH) χ parameters
were taken to have the athermal value. When, in the bulk, there
are only monomeric species, the dimensionless FH chemical
potential reduces to μi = ln ϕb

i .

III. THE GEOMETRY

The spatial coordinates r have not yet been specified. The
above notation suggests a Cartesian coordinate system r =
(x,y,z), but calculations for such a system are CPU intensive
and very time-consuming. Making use of symmetry allows us
to reduce the number of gradient directions and to implement
a mean-field approximation in the other direction(s) [24]. The
focus here is on a main chain which is homogeneously curved
in one direction. This can be captured in a cylindrical coordi-
nate system with gradients in a radial direction (indicated by
the radial layer number r) and a direction along the axis of the
cylinder (indicated by a z coordinate) [19]. More specifically
(cf. Fig. 2 where a small part of the coordinate system is
presented), we implement r = (z,r), wherein r is a radial
coordinate r = 1, 2, . . . , rM , and z is a direction along the
long axis of the cylinder z = 1, 2, . . . ,zM . At all system bound-
aries, we have implemented reflecting (mirror-like) boundary
conditions, which means that for all end-point distributions
and also for the volume fractions and electrostatic potential
profiles it is implemented that the gradients at the system
boundaries are zero. For example, for the electrostatic potential
ψ(zM + 1,r) = ψ(zM,r) for all r values and ψ(z,rM + 1) =
ψ(z,rM ) for all z values. Typical values for rM and zM are 400.

In the case of electrostatic binding of the polymers, our
interest is in the number of “grafted” chains per unit length
along the backbone, which can be computed from the radial
volume fraction profile of the polymer (recall that the polymer
has the index i = 4):

n4 = 1

N4

∑
z

∑
r

L(r)ϕ4(z,r). (10)

This number of chains is straightforwardly converted to the
distance h between the grafts, h = 2πR/n4.

The length of the torus is found from the central position
of the DNA chain in this cylindrical coordinate system. As
indicated in Fig. 2, the center is at (z′,R), the length of
the backbone chain (curved in a ring or torus) is given by
L= π (2R − 1), and the curvature is given by J = 1/R.

Lattice noise

We have used Eq. (2) to evaluate kc and thus lp. We note
that

lp = kc

kBT
= [f (J ) − f (0)]

2

J 2
. (11)

So when the reference value for the appropriate free energy
per unit length of the chain in the straight configuration f (0) is
available, we can evaluate lp = 2[f (J ) − f (0)]R2. It must be
understood that the use of a lattice is not completely without
consequences. It turns out that the evaluation of f (J ) as well
as f (0) typically include (very small) erroneous contributions
due to the lattice (so-called lattice artifacts), implying that any
lp value [as used by Eq. (11)] depends slightly on the radius
R used in the calculations [39]. That is why the radius of the
torus is varied over a significant range and lp is computed by
averaging over these results. In this procedure, we found that
it is not necessary to compute f (0) explicitly, but we keep
f (0) as a “fitting” parameter: The best f (0) is taken so that lp
estimates are not a function of the explicit range of torus radii
used. It was checked that the fitted value of f (0) is indeed
consistent with the free energy per unit length of the chain in
the straight configuration.

IV. RESULTS AND DISCUSSION

Our results will be presented in the following order: (i)
electrostatic stiffening of negatively charged backbone chains,
which will be compared to the phantom chain predictions
of Fixman and Odijk [3,4] and for backbone chains with
volume to Andreev [22]; (ii) the induced persistence length
of chemically fixed bottlebrushes, which will be compared to
results of Feuz [19]; and (iii) coassembled bottlebrushes for
which the predictions are relevant for our coassembled DNA
bottlebrushes.

A. Electrostatic stiffening

In Fig. 3, we present our numerical SCF results for electro-
static stiffening. In Fig. 3(a), the electrostatic persistence length
is given as a function of the ionic strength in double logarithmic
coordinates for a linear charge density of v = −1.5 charges
per lattice site (which amount to three charges per nm, e.g.,
relevant for ssDNA). In Fig. 3(b), the electrostatic persistence
length is given as a function of the charge density v along the
chain for a salt volume fraction of ϕs = 10−3, which is close
to the experimentally relevant concentration of 10 mM salt [5],
again in double logarithmic coordinates. The labels on these
figures refer to the different models that are used, which are
pictorially illustrated in Fig. 2 and more specifically addressed
in Table I. The lines with slope −1 and 2 for Figs. 3(a) and 3(b),
respectively, are the theoretical Fixman-Odijk predictions.

Our SF-SCF attempt to mimic the Fixman-Odijk predic-
tions is labeled by Ph. As mentioned in Table I, this case
comes closest to the phantom chain: In SF-SCF, the backbone
occupies just one ring of lattice sites. Concerning the ionic
strength dependence, for low salt concentrations our phantom
(Ph) chain is exactly behaving according to the Odijk and
Fixman predictions. For high salt, we see that our phantom
chain is slightly deviating from the −1 slope in Fig. 3(a). We
attribute this deviation to the fact that in SF-SCF there is a
finite size of the backbone which brings in a small length scale
that is seen as soon as the Debye length becomes sufficiently
small (that is, at high salt concentrations). With respect to
the dependence on the charge density [Fig. 3(b)], we observe
the expected scaling value of 2 at low charge density. The
leveling off at high charge density is due to the onset of
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FIG. 3. (a) The electrostatic stiffening, lp in units of lattice sites, as a function of the salt concentration ϕs , for a polymer chain with linear
charge density v = −1.5 charges per lattice site in log-log coordinates. (b) The electrostatic stiffening lp in units of lattice sites as a function
of the linear charge density for a given volume fraction of salt ϕs = 0.001 in log-log coordinates. Q is quenched charge density, A is annealed
charge density, Ph is the main chain that has minimum volume of one lattice site (phantom main chain), and S is the fixed surface charge density
around the DNA chain. 1:1 electrolyte. All interaction parameters are taken to be athermal. The indicated slopes give the prediction of Fixman
and Odijk [3,4]. See Fig. 2 and Table I for details of the models used.

ion condensation. This is to be expected since we solve the
full Poisson-Boltzmann equation, which correctly accounts
for ion condensation while this effect is ignored when the
Debye-Hückel approximation is used.

The other two models, labeled A and S, implement different
ways to regulate the charge upon bending. In the annealed (A)
case, we fix the overall charge per unit length of the chain
and allow the charge to be on the inner and outer faces of the
backbone core [gray regions in Fig. 2(g)], but upon bending the
charge can locally adjust. In the fixed surface charge density

(S), there is a “hidden” regulation, as a curved backbone has
more surface area in the concave part than in the convex parts,
and hence the charge is distributed accordingly. In both cases,
there is a finite size backbone, but little of that is found back
in the ionic strength dependencies. The annealed case follows
the Fixman-Odijk prediction in the full range of ionic strengths
used. The fixed surface charge (S) case gives a result which
is only marginally larger than for the phantom chain (Ph).
With respect to the dependence on the linear charge density
[Fig. 3(b)], the annealed predictions tend to be a bit lower than

TABLE I. The link between the schematic models given in Fig. 2 and the labels used to refer to the models in Figs. 3, 4, 6, and 7. In this
table, there is also a brief description of the models used. Volume of the black regions in Fig. 2 are inaccessible for the molecules in the solution.

Fig. Label Fig. 2 Model description used in SF-SCF calculations

3 Ph A “Phantom” chain: The backbone is at the
gray site on spot (zM/2,R).

In Refs. [3,4], the main chain is volumeless.

3 S F Even charge distribution around backbone.

3 Q H Quenched charge: equal charge density on (green)
convex and (red) concave sides.

3 A G Charge on backbone sits on gray sites.
The charge is “annealed.”

4 Ph A “Phantom” chain: Brush grafted at (zM/2,R).
Backbone is volumeless.

4 Q D Quenched grafting. Equal number of chains
on (green) convex and (red) concave sides.

4 A C Chains grafted on gray sites: annealed grafting;
i.e., chains can flip from convex to concave side.

4 H B Half the chains are grafted on backbone at the (green)
convex and other half from (red) concave side.

Chains cannot escape the half-space indicated by
the colored regions which overlap by 1 site.

6 Solid F Even charge distribution around backbone.

6 Dashed E Homogeneous χS around backbone.

7 F Even charge distribution around backbone.
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the phantom chain results, especially at low charge densities,
whereas the fixed surface charge results are a bit higher than
the phantom chain results, especially at high charge densities.
We can rationalize these results by realizing that a low
charge density benefits more from charge regulation than a high
charge density (for curve A), while the case with fixed surface
charge density can possibly postpone the ion condensation
effect by distributing the charge over a larger surface area.

The main message coming from Fig. 3(a) is that assigning
a finite volume to the backbone chain does not necessarily
affect the electrostatic stiffening behavior of the polymer. The
Fixman-Odijk prediction is remarkably robust with respect
to the volume of the backbone as soon as some charge
regulation is possible. The quenched case is somewhat artificial
and the strong deviations are therefore not that important.
When we consider the model of DNA (S), we see that the
finite size of the double helix with a fixed charge density
behaves close to the Fixman-Odijk predictions, even though
the linear charge density along the chain is slightly beyond
the Manning condensation limit. The deviations due to this are
hardly noticed from the ionic strength dependence and make
only a marginal correction to the charge density dependence.
When we study the coassembly mechanism, below, we will
implement the homogeneous charge density (S) model.

A numerical estimate for the electrostatic stiffening of DNA
at approximately 10 mM salt is only about 10 (lattice units),
which translates to 5 nm. This value is small compared to an
estimate of the intrinsic persistence length of 30 nm. At 1 mM
salt, however, the electrostatic contribution has increased to
approximately 40 lattice units, or equivalently to 20 nm, and the
overall persistence length is then predicted to be 50 nm, rather
close to the value often cited in the literature. Experiments be-
low 1mM salt might produce an effective persistence length for
DNA which is even larger (e.g., 80–100 nm), provided that the
double stranded nature is conserved at such low ionic strengths.

B. Induced persistence length

Numerical SCF results for the induced persistence length of
chemically grafted bottlebrushes are collected in Fig. 4. Here,
the induced persistence length is given as a function of the chain
length of the grafts in double logarithmic coordinates for a dis-
tance between grafts of 1 nm, that is, for h = 2. In Fig. 4(b), the
induced persistence length as a function of the grafting distance
h (in lattice units) in double logarithmic coordinates is given
for N = 400. The different models are illustrated in Fig. 2 and
elaborated on in Table I. Both the phantom chain model Ph and
the H model ignore the backbone volume: The first segment of
the grafted chains is put at (zM/2,R). The other models take a
finite volume of the backbone into account. To our knowledge,
such models have not been used in the literature yet.

The numerical result for the phantom chain approximation,
that is, a bottlebrush for which the backbone volume is
completely ignored, labeled by Ph, is very well known and
documented [19]. The fitting at sufficiently large N and small
h reveals an approximate scaling of lp = 0.002(N/h)1.9. The
deviation from the power-law coefficient of 2 is larger when
the short chain data are included and less when only the longer
chain lengths are used in the fitting. It is remarkable that
the numerical coefficient deviates strongly from the expected

value of unity. It must be noted that the scaling relations do
not account for the translocation of segments, whereas in the
numerical SCF results these translocations are allowed and
accounted for.

The results labeled by H are computed using a model intro-
duced by Mikhailov et al. [21] to explain why the numerical
coefficient for the phantom chain model is dramatically low.
In this model, half the chains exit from the phantom backbone
on the convex and the other half on the concave side of the
backbone. In addition, the remainder of the chain segments
have to stay at the respective half space; that is, the convex
chains must have all their segments in the space with radial
coordinates r � R, whereas the other chains must remain in
the region r � R. This rather artificial model does not destroy
the scaling. In fact, it gives results much closer to the analytical
scaling predictions. Fitting of the H curve of these results
gives lp = 0.012(N/h)1.99. Still, the coefficient is much less
than unity, but already six times higher than for the phantom
chain case. Moreover, the power law coefficient is closer to
the expected value of 2. In effect, the difference between
persistence lengths of the predictions Ph and H is a factor of
10 over the whole range of N and h values used.

The H model is a rather artificial one. Introducing a finite
size of the backbone is a more realistic alternative to put
constraints on the ability to translocate segments upon bending
from convex to concave parts. In the model Q, we present
a backbone with fixed volume, and now half the chains are
grafted on the convex part and the other half are grafted on the
concave side of the backbone. The grafting is quenched, which
means that the chains cannot move their grafting coordinate
from the convex to the concave sides, but unlike in the H model,
chain conformations are allowed to cross the r = R coordinate.
From Fig. 4(a), we see that lp(N ) deviates strongly from the
power law dependence. The reason for this is clear. The finite
size of the backbone introduces a new length scale and as long
as the thickness of the corona is not large compared to this
size we effectively have eliminated the possibility to cross the
r = R coordinate. For very short chains, the lp approaches
the results of H. Indeed the stiffness can even exceed the H
value for very short chains. This effect must be attributed to
the volume of the backbone, which is excluded for the Q case
and not present in the H model. As the chains are longer, they
notice the backbone less, and therefore the induced persistence
length lp goes to the phantom chain value for large values
of N . In Fig. 4(b), results for N = 400 are given for which
the importance of the backbone is still reasonably large. Also,
the scaling with respect to h is destroyed by the volume of the
backbone. As the size of the corona increases, the volume of
the backbone is less important, and therefore we see that the
lp(h) approaches the phantom chain limit when h is small and
the deviations are largest for large values of h.

The model A where the grafting is annealed is the last one to
be discussed. This model has features similar to the quenched
case. However, upon bending, the chains can choose to appear
on the concave or convex side of the backbone with fixed
volume. As can be seen from the results presented in Fig. 4,
the persistence length is extremely close to the phantom chain
values. This is not too surprising, because the finite volume of
the backbone is sufficiently small so that a shift of the grafting
point is only a small perturbation, especially when the chains
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FIG. 4. (a) The induced persistence length, lp, in units of lattice sites, as a function of the degree of polymerization of the side chains for
a given distance between the grafts h = 2 lattice sites in log-log coordinates. (b) The induced persistence length lp, in units of lattice sites
as a function of the distance between the side chains for a given length of the side chains N = 400 in double logarithmic coordinates. Q is
quenched mobility of side chains, A is annealed mobility. Ph, the volume of the main chain, is ignored: First segment of the side chains is fixed
to (Mz/2,R) (phantom chain). H is the model in which chains cannot translocate with any of the segments from the convex to the concave side.
See Fig. 2 and Table I for details of the models used. The theoretically expected slopes 2 in panel (a) and −2 in panel (b) are indicated.

can avoid the compressed region when necessary. We can also
see the backbone as a small increase of the side chain length
by a few (about 3) segments. This is a minor perturbation
compared to the original system.

The topic of induced persistence length associated with
the grafted chains on a backbone is less developed than the
electrostatic stiffening. The finite volume of the backbone is of
little importance as soon as there is some annealed character of
the grafting. In principle, this is good news for the coassembled
bottlebrushes, which will be discussed next. Below, we are
interested in the formation of a bottlebrush by physisorption.
In this case, the chains are in equilibrium with chains in the
bulk and this provides an annealing mechanism. Hence, we
should expect that the phantom chain case is the relevant one
to compare with.

C. Self-assembled bottlebrushes

Results in this section are selected to match the experimental
situation we have for the DNA coassembled bottlebrushes.
Experimentally, we used C4K12 protein polymers which we
model here by K12A400, where A is an athermal uncharged
segment and K is a segment which adsorbs onto the core, either
with an adsorption energy χS or by electrostatic attraction:
Then each segment K has a valency of +1. In the electrostatic
binding case, we consider DNA with v = −3, which translates
to six negative charges per nm DNA contour length. This
means that binding up to charge stoichiometry amounts to 0.5
chain per nm, or 0.25 chains per lattice unit. Below, we report
adsorbed amounts computed in the two-gradient cylindrical
coordinate system by

θσ =
∑

z

∑
r

L(r)(ϕ(z,r) − ϕb). (12)

When we divide this by the chain length N , we obtain the ex-
cess number of chains per unit length. Note that, by definition,
the value θσ will go to zero in the limit of ϕb → 1. Hence,
adsorption isotherms in these units therefore typically have
two regimes of behavior. As long as the bulk volume fraction

is below the overlap, the adsorbed amount increases with
bulk volume fraction, whereas above the overlap concentration
the excess adsorption has the tendency to decrease. Charge
stoichiometry occurs at θσ ≈ 100. Experimentally, data for the
binding of C4K12 onto DNA are available [5]: The maximum
binding goes to approximately 70% coverage at 10 mM salt,
and it drops to ≈60% for 60 mM salt and to about 30% for
160 mM salt.

In Fig. 5, we show the result of SCF calculations for the
adsorbed amount, θσ , of C4K12 protein polymer as a function
of the volume fraction of C4K12 in the bulk. The figure is in
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FIG. 5. The adsorbed amount of C4K12 copolymers in number of
segments per unit length of the DNA chain as a function of the volume
fraction of copolymer in solution in lin-log coordinates. The solid
lines are for the electrostatically driven adsorption [Fig. 2(f), v = −3].
The ionic strengths ϕs = 1×10−4; 1×10−3; 5×10−3 are indicated.
The dashed lines are for the classical case with fixed adsorption
energy [Fig. 2(e)]. The adsorption energy χS = −18, −15, −12 are
indicated. Crossing point of the isotherms are numbered 1–6 and
these points represent conditions for which the bending rigidity of
the self-assembled bottlebrush are computed, which are presented
in Fig. 6.
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lin-log coordinates in the regime for which the bulk volume
fraction remains below overlap. In this figure, we see two sets
of adsorption isotherms. The solid lines are for the electrostatic
adsorption mechanism. The dashed curves are for the fixed
adsorption energy case.

For all isotherms that lack cooperativity, it is true that the
slope ∂θσ /∂ϕb decreases with increasing coverage. Interest-
ingly, for the electrostatic adsorption mechanism even the
slope ∂θσ /∂ log ϕb decreases with coverage. This reduction in
affinity is due to the adsorption mechanism. In the case of low
coverage, there are many free charges around the backbone and
the electrostatic potential around the DNA is high and hence the
driving force for adsorption is strong. For a high coverage, there
are not many “free” charges left around the DNA backbone.
The electrostatic potential becomes low, and hence the driving
force for adsorption reduces. The plateau of the isotherm is
found at relatively low bulk volume fractions, and the plateau
is below charge stoichiometry. As the ionic strength is lower,
the isotherms approach charge stoichiometry more closely. The
isotherms are truncated just before the bulk volume fraction of
the polymer reaches the overlap concentration ϕb ≈ 0.0025.
The maximum coverage in terms of percentage of charge
stoichiometry is 0.9 for ϕs = 10−4 (1 mM), 0.7 for 10 mM salt,
and 0.5 for 50 mM salt. These numbers are in good agreement
with the experimental data mentioned above.

The set of adsorption isotherms which correspond to a
fixed adsorption energy are dramatically different in shape.
As each chain has only a few adsorbing segments, the ad-
sorption energy starts at a rather high bulk volume fraction.
After the Henri regime [an initial linear increase of θσ (ϕb)],
the isotherm becomes straight in lin-log coordinates, which
implies logarithmic growth. The adsorbed amount grows with
increasing adsorption energy at a given bulk volume fraction.
It is found that θσ can exceed 100. At this coverage, the
adsorbing fragment K12 occupies all adsorbing sites when
all the segments would be adsorbed in the so-called train
conformation. However, at such high coverages the adsorbed
layer also develops small loops and therefore θσ can exceed
the monolayer coverage for the adsorbing block.

As the two sets of isotherms are dramatically different in
shape, they cross each other. We have labeled in Fig. 5 these
crossing points for reference purposes: The numbers reappear
in Fig. 6.

Figure 6 shows the persistence length of the DNA bottle-
brushes as a function of the amount of bound C4K12 protein
polymer, both for the electrostatic driving force as well as for
the systems that have a fixed adsorption energy (dashed line),
in double logarithmic coordinates. In the latter systems, there
is only a contribution of the adsorbed protein polymers. The
persistence length data follow a power-law scaling with a slope
of 1.8, which is very close to the corresponding results for
chemically grafted brushes in the phantom chain limit. The
value is a bit below the scaling prediction for brushes of 2. The
deviation from 2 arguably is due to the fact that the chain length
used, N = 400, for the stabilizing block is still rather short.
The symbols on the curve correspond to the crossing points of
the isotherms in Fig. 5. Note that these points are taken from
isotherms that differ with respect to adsorption energy value.
We conclude that for the persistence length only the coverage
is important while both the bulk volume fraction of protein
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FIG. 6. The bending rigidity of the self-assembled bottlebrush in
lattice units as a function of the amount of C4K12 copolymers that
are physisorbed per unit length (lattice units) onto the DNA chain
in log-log coordinates. Solid lines are for the charged case. Three
curves are given for ionic strengths ϕs = 10−4, 10−3, and 5×10−3,
as indicated. The dashed line is for the fixed adsorption energy
case. The symbols with numbers correspond to the crossings of the
isotherms in Fig. 5. The slope of the dashed line is 1.8. The dotted line
(with same slope) is to guide the eye.

polymers and the adsorption energies (of course necessary to
reach a particular coverage) are irrelevant for the stiffness.

The tunable contributions of the persistence length for
the electrostatically driven bottlebrushes is more complex. In
all cases, the persistence length is above the value for fixed
adsorption energy cases. The reason for this is clear. Apart from
the brush, there is a contribution due to the (residual) electric
double layer. We present three curves for lp(θσ ), for different
values of the ionic strength. Indeed at low polymer coverage
(θσ 
 50), the tunable contribution to the persistence length
is dominated by the electrostatic stiffening effect. The limiting
values for vanishing coverages of the protein polymer of lp
decrease sharply with increasing ionic strength: Its stiffening
is well below 10 (lattice units) for ϕs = 5×10−3, about 15
for ϕs = 10−3, and about 70 for ϕs = 10−4. These limiting
values do not exactly follow the Fixman-Odijk prediction
[3,4] because the charge density on the DNA is above the
Manning condensation limit. At high coverages, the induced
persistence length dominates the tunable contributions. This is
illustrated by the dotted line, which is drawn with a slope of
1.8. All three curves approach the same brush-dominated trend
asymptotically (dotted line).

From the above, we know that electrostatic stiffening
roughly scales quadratically with linear charge density on the
brush. We also know that there is a roughly quadratic scaling of
the persistence length with grafting density (adsorbed amount).
This means that we should expect an interpolation curve
between the electrostatic stiffening limit and the brush limit
without local minima or maxima. When the two limiting
values are close, such as in the low ionic strength case
(ϕs = 10−4), there is a simple interpolation and the curve
is close to horizontal. When the limiting values are further
apart, we see that with decreasing adsorbed amount, the brush
contribution first reduces according to the power-law scaling
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lp ∝ (θσ )1.8 from which it starts to level off as soon as the
induced persistence length becomes of the same order as the
electrostatic stiffening limit.

As mentioned already, the symbols on the curves correspond
to the crossings of the isotherms shown in Fig. 5. Labels 1 and
2 correspond to the ϕs = 10−4 system, 3 and 4 to ϕs = 10−3,
while 5 and 6 to ϕs = 5×10−3. The persistence lengths for
all points on the electrostatically driven brush formation are
higher than their corresponding points on the curve for the
fixed adsorption energies. One may argue that the difference is
simply the contribution of the electric double layer. However,
close inspection shows that this cannot be the case. Based on
the value of lp ≈ 8 (lattice units) for the electrostatic stiffening
at ϕs = 5×10−3 and θσ = 10, we expect for θσ ≈ 40 a 16×
lower value (surface charge is reduced by a factor 4) of the
electrostatic stiffening. Hence, for point 5, the contribution of
the electrostatic stiffening must be below unity. Nevertheless,
the difference in stiffening of the two points labeled 5 is
still approximately 10 (lattice units). The same applies to the
difference of the persistence length for the two points labeled
with 4: The observed difference for lp is about 13 (lattice
units), whereas the electrostatic stiffening is again expected
to be less than unity. The low coverage limit at θσ = 10 equals
lp ≈ 16, and at θσ ≈ 56 the electrostatic contribution should
have dropped by a factor of about 25, i.e., to 0.4. The same
applies for the systems with label numbered 3. The observed
difference in persistence length between the charged and the
uncharged systems is too large to be simply related to the
electrostatic persistence length contribution, even when we
account for the Manning condensation effect.

We have discussed at length that systems that can regulate
the grafting position have a very low persistence length,
compared to the systems for which the mobility of the grafts
is impaired. We therefore attribute the rather high persistence
length for electrostatically driven adsorption to the fact that
the chains accumulate preferentially at places where the elec-
trostatic potential is highest. When the charged DNA chain
is curved, the electrostatic potential is highest in the confined
convex part of the chain and lowest at the expanded concave
part. Hence, there may be a small preference for the C4K12

protein polymer to be attached to the confined part of the curved
DNA chain. Even when this effect is small, there may be a big
effect on the persistence length. Indeed, the differences in lp of
10 to 15 (lattice units) are significant.

The results for the tunable contributions of the persistence
length of Fig. 6 are for the regime where the protein-polymer
concentration is in the dilute regime. In Fig. 7, we show how
the persistence length changes with polymer concentration for
the coassembled DNA bottlebrush system under intermediate
ionic strength conditions, i.e., ϕs = 10−3 (10 mM salt). Simi-
larly, as in Fig. 6, the charge density on the DNA is v = −3.
We select the regime for which the tunable contributions
of the persistence length is dominated by the bottlebrush
contribution. Inspection of Fig. 7 reveals that below the overlap
concentration the induced persistence length increases with
polymer concentration, whereas above the overlap the induced
persistence length drops sharply. This result is comparable
to our earlier prediction for chemically grafted bottlebrushes
[40]. To explain this drop in induced persistence length, we
must realize that in the bottlebrush corona the local polymer
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FIG. 7. The tunable contribution to the persistence length lp in
lattice units for coassembled DNA bottlebrushes as a function of the
bulk volume fraction of C4K12 for ϕs = 0.001 in lin-log coordinates.
The charge v = −3 around the DNA chain is homogeneously dis-
tributed [cf. Fig. 2(f)]. The focus is on the behavior near the overlap
concentration.

density is also in the overlap regime. As soon as the free
polymer concentration becomes comparable to the polymer
concentration in the corona, the free polymers impose an
osmotic pressure such that the stretching of the corona chains
diminishes: The typical shape of the corona chains relaxes back
to Gaussian conformations. When the stretching of the chains
diminishes, there is no information in the corona on the exact
direction of the main chain. Hence, there is less stiffening.

V. DISCUSSION

We have discussed various models for molecular bot-
tlebrushes and focused on the tunable contributions to the
persistence length. In particular, we introduced a number of
models wherein the backbone volume was accounted for. We
found that the backbone volume does not play a very important
role, especially in cases wherein the charge along the backbone
and/or the grafting density of the side chains have a degree of
freedom to adjust to the imposed curvature stress. The so-called
annealed cases gave persistence lengths similar to the ideal
phantom chain models. Only when rather odd models were
used in which the charge or the grafting density was quenched
did we see noticeable differences. We have seen that the
electrostatic driving force for coassembly leads to surprisingly
large persistence lengths for the bottlebrushes. This result was
traced to the reduced tendency of electrostatically bound chains
to translocate from the compressed convex to the expanded
concave sides of the curved DNA chain. The increased rigidity
of the bottlebrush may translate to an increase in the persistence
length of perhaps 10 nm, which is significant compared to the
bare persistence length of DNA of about 30 nm, and tunable
values which can be of the same order of magnitude.

Our main target was to understand the behavior of our exper-
imental system which is a bottlebrush formed by coassembly
of negatively charged double-stranded DNA with a chemically
well-defined protein polymer, C4K12, which has 12 positively
charged lysines connected to 400-aa-long coil-like chain.
Our coassembled bottlebrush was found to show lyotropic
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behavior, which is in fact a rare case for bottlebrush systems
[5]. One might argue that naked DNA by itself forms liq-
uid crystalline phases at sufficiently high concentration and
that it therefore is not too surprising that the corresponding
bottlebrushes do the same. However, we have many failed
attempts that use DNA as a backbone to make supramolecular
bottlebrushes, but that have different side chains than the
C4K12 protein polymer. Our numerical SCF analysis now gives
us more insights why it is not so easy to find coassembled
bottlebrushes with lyotropic properties.

For liquid-crystalline behavior, the lp/D ratio must be
significantly larger than unity. We have shown elsewhere that
our bottlebrushes have a diameter in the order of 20 to 30 nm,
which is about 10 times larger than the naked DNA. Clearly,
the coassembled bottlebrushes did not increase the persistence
length by the same factor of 10 compared to the naked DNA
(including electrostatic stiffening). The above shows that at
low ionic strength the induced persistence length of the brush
simply replaces the electrostatic stiffening. At higher ionic
strength, the induced persistence length is larger than the
electrostatic stiffening and thus lp can be increased. Including
the bare persistence length, we might have increased the overall
persistence length from about 50 nm to perhaps 80 nm, but that
is all. Apparently the lp/D remained just large enough that
lyotropic behavior was kept.

We have seen in our experiments that overdosing the system
with C4K12 such that the free polymer concentration is above
overlap reduces the tendency to form lyotropic phases [5].
The results shown in Fig. 7 explain this observation: to have
lyotropic coassembled bottlebrushes one should avoid having
a high polymer concentration in the bulk.

We may now speculate why, in nature, bottlebrushes are
used in lubrication applications. For lubrication applications, it
appears necessary to prevent pressure induced crystallization.
In other words, with increased compression forces, e.g., by
freely dispersed polymers in solution, the system should re-
main liquid and isotropic. Bottlebrushes become more flexible
when compressed and therefore are more likely to mix into
an isotropic polymer melt rather than a separated oriented
liquid-crystalline phase when embedded in a semidilute or
concentrated polymer solution.

We have seen that freely dispersed polymers above the
overlap concentration have a negative effect on the bottlebrush
stiffness. We expect the reduced stiffening of the bottle-
brushes to also occur upon compressing bottlebrushes, e.g., by
increasing the bottlebrush concentration. Hence, solutions
of bottlebrushes above the overlap concentration may have
compressed coronas and reduced rigidity. We expect that
this is a general effect and does not only apply to coassem-
bled bottlebrushes. For example, classical chemically grafted
bottlebrushes will experience similar compression induced
flexibilization, and may fail to produce anisotropic phases
upon increasing the concentration. This might very well be
the reason why it is so difficult for bottlebrush systems to
become liquid crystalline. A similar conclusion may already
be found in the early bottlebrush literature [41] and there is

also some recent experimental evidence for this phenomenon
[42,43]. Bottlebrush systems in nature often do not become
liquid crystalline and this might very well be because their
architecture is actually preventing this [44].

VI. CONCLUSION

We have used a numerical self-consistent field theory to
analyze the electrostatic stiffening as well as the bottlebrush-
induced stiffening in molecularly realistic models for macro-
molecular bottlebrush systems in the dilute regime. We found
that the finite volume of the backbone is unimportant as long as
the charge density or the brush grafting density is annealed, i.e.,
can adjust itself to relax the bending stresses. Our focus was
to model coassembled DNA bottlebrushes, which are formed
by binding a well-defined protein polymer (C4K12) to dsDNA
by electrostatic driving forces. We distinguish three terms to
the overall persistence length: (i) the bare or intrinsic value,
(ii) an induced persistence length caused by the bottlebrush
side chains, and (iii) an electrostatic contribution from the
electric double layer around the DNA. In general, we found that
when the side chains are bound to the DNA, the electrostatic
stiffening is approximately replaced by the induced persistence
length contribution. In other words, both terms are of the
same order of magnitude. Interestingly, for electrostatically
driven coassembled DNA bottlebrushes, a remarkably high
persistence length is found because the side chains have a
low tendency to redistribute upon bending. This is because the
chains bind best to the places where the electrostatic potential
is highest, i.e., on the compressed convex side, rather than on
the expanded concave side. This might be one of the reasons
why our coassembled DNA-bottlebrush system shows liquid-
crystalline behavior. The calculations have furthermore shown
that freely dispersed polymers above the overlap concentration
can reduce the persistence length of bottlebrushes: They screen
the excluded volume interactions in the corona. We speculated
that the crowding of bottlebrushes will induce a reduction of
the stiffness as well, because both the presence of free polymers
and confinement cause a reduction of the stretching in the side
chains. The loss of stretching leads to a flexibilization of the
chain as a whole. This flexibilization mechanism may yet be
another reason why there are so few reports on bottlebrushes
in the literature that feature lyotropic behavior. The best
conditions to form lyotropic coassembled DNA bottlebrushes
as predicted by the numerical SCF modeling are (i) polymer
concentrations around the overlap concentration, (ii) low ionic
strength condition (when the ionic strength is very low the
stiffening can be both due to the electrostatic double layer or to
the brush), (iii) long side chains with short anchor groups, and
(iv) polymers with a positive virial coefficient which endows
stretching of the side chains.
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