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Encounter times of chromatin loci influenced by polymer decondensation
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The time for a DNA sequence to find its homologous counterpart depends on a long random search inside
the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two
sites located on two different polymer chains and confined locally by potential wells. We find that reducing
tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer
model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We
derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the
present modeling approach that the fast search for homology is mediated by a local chromatin decondensation
due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous
recombination pathway for double-stranded DNA repair is controlled by its random search step.
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Repairing DNA double-strand breaks (DSBs) is a key step
for cell survival. However, the underlying physical mechanism
remains difficult to describe, mostly because it involves mul-
tiple molecular steps involving small (nanometer) and large
(micrometer) scales. During the homologous recombination
(HR) pathway, broken strands perform inside a large portion
of the cell nucleus a random search for a homologous DNA
template. Once this template is found, it will be used to
copy the missing base pairs before repair [1]. As revealed
by single-particle trajectories of chromatin [2,3], following a
DSB, the broken locus dynamics is modified so that it can scan
a larger area of the nucleus. This modification was attributed in
part to chromatin decondensation and the release of tethering
forces acting locally on the chromatin [4]. These changes could
have consequences on the search for a homologous template.
We present here polymer modeling and analytical tools to
further characterize this search step.

We recall that search processes involving two loci located
on the same polymers have been investigated in the context of
polymer looping [5–8]. However, much less is known about
the mean time for two monomers belonging to two different
polymers. The multiple relaxation times associated with the
polymer dynamics [9] shows that computing the looping time
cannot be obtained by the classical activation escape from a
potential well (representing the end-to-end distance energy)
[10]. For a long polymer, the mean encounter time is influenced
by the slowest internal relaxation times of the polymer [9].
However, it is not clear how these times contribute to the mean
encounter time for two monomers located on two different
polymers. In addition, in a confined environment, the probabil-
ity distribution function of monomers varies along the polymer
chain [11,12], which again can influence the search time.

To account for chromatin reorganization following DSB [4],
we study here the random search of two monomers that belongs
to two different monomers using the Rouse model [13] and the
β-polymer [12]. Other polymer models of chromatin could be
used for stochastic simulations, but deriving asymptotic laws

remains difficult for them [4,14–16] because they account for
many physical forces. However, the two polymer models we
will use here capture enough of the chromatin dynamics to be
relevant. We focus on the local search time for homologous
sequences located on two different polymers and restricted by
external interactions, that we model as local potential wells. In
that case, we derive asymptotic formulas for the encounter time
of monomers located on two different polymers. To explore
the range of validity of our analytical formulas, we compared
them with stochastic simulations. These formulas show how
the search time depends on the main physical parameters.
Although this search step is far from covering the entire HR
mechanism, it sheds some new lights on HR and shows how
polymer condensation and physical constrains modulate the
search time.

I. RESULTS

A. Search for Rouse polymer confined in a potential well

We recall that a Rouse polymer is a collection of monomers
with positions [R1,R2, . . . ,RN ]T , connected sequentially by
harmonic springs [13]. We consider here two chains with
same length N , where monomers are positioned at Ri,n (n =
1,2, . . . ,N , i = a,b), driven by Brownian motions and coupled
to spring forces originating from the nearest neighbors. There
are no direct forces between the two chains. The potential
energy of the chains is the sum

φ2ch = φa
Rouse(Ra,1, . . . ,Ra,N ) + φb

Rouse(Rb,1, . . . ,Rb,N ), (1)

where

φa
Rouse(Ra,1, . . . ,Ra,N ) = κ

2

N∑
n=1

(Ra,n − Ra,n−1)2,

φb
Rouse(Rb,1, . . . ,Rb,N ) = κ

2

N∑
n=1

(Rb,n − Rb,n−1)2, (2)
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and the spring constant κ = 3kBT /b2 is related to the standard
deviation b of the distance between adjacent monomers [13],
with kB the Boltzmann coefficient and T the temperature. In
units of kBT , we have κ = 3/b2 and D = 1/γ , where γ is
the friction coefficient. In the Smoluchowski’s limit of the
Langevin equation [17], the dynamics of monomer Ri,n is

d Ri,n

dt
= −D∇Ri,nφ

i
Rouse +

√
2D

dw i,n

dt
, (3)

where i = a,b, φi
Rouse are given in Eq. (2), n = 1, . . . ,N ,

and wi,n are independent three-dimensional white noises with
mean zero and variance 1. We focus here on two monomers
located on two different Rouse polymers a and b.

B. The MFET in a harmonic potential

The first result concerns the search time 〈τe〉 between two
monomers na,nb to first enter into a ball of radius ε < b defined
as the mean of

τe = inf{t > 0 such that |Ra,na
(t) − Rb,nb

(t)| � ε}. (4)

The two chains are restricted by a harmonic potential
1
2ρ

∑N
n=1(R2

a,n + R2
b,n) and the energy of the system is

φ(Ra,1, . . . ,Ra,N ,Rb,1, . . . ,Rb,N )

= φ2ch + ρ

2

N∑
n=1

(
R2

a,n + R2
b,n

)

= 1

2

N−1∑
p=0

(κp + ρ)
(
u2

a,p + u2
b,p

)
, (5)

where φ2ch is defined in Eq. (1), ua,p and ub,p are the
eigenvectors of the Rouse polymers a and b (see Appendix
below), and the eigenvalues are

κp = 4κ sin(pπ/2N )2. (6)

We derived (see Appendix below) the asymptotic formula in
three dimensions for the MFET of the two middle monomers
located on polymers a and b,

〈
τmid,mid
ε

〉 = π2

Dε

[
1√
κρ

− ρ

N
(
8κ2 + 2κρ

)]3/2

+ C(ε,N ),

(7)

while for the end ones

〈
τ end,end
ε

〉 = π2

Dε

[
2√
κρ

− 1

κ

(
1 + 1

N

)]3/2

+ C(ε,N ). (8)

These expressions are valid when the size of the confining
potential ρ−1/2 is larger than the characteristic length of a bond
b, leading to the condition κ/ρ > 1

4 . When the potential wells
approximate the confinement effect of a ball of radius A, this
condition can be transformed using the calibration condition
ρ = 12/(A4/b2 + A2) [18] into A/b >

√
0.5(

√
5 − 1). Note

that the constant C(ε,N ) is aO(1) correction. For the encounter
of any two monomers, there is no closed analytical solution
[Appendix formula (A41)]. To further explore the range of
validity of these formulas, we use Brownian simulations of two
polymers confined in a harmonic well [Fig. 1(a)]. As predicted
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FIG. 1. MFET for two monomers in a harmonic potential. (a)
Illustration of two Rouse polymers in a harmonic potential. In the
model monomers na and nb interact when they enter the ball of
radius ε. (b) MFET for two monomers na and nb belonging to two
different polymers (length N = 33) in a harmonic well of strength
ρ = 0.01b−2, with ε = 0.01b. The interacting monomer is nb (x
axis) and the different curves are computed for na = 1 (blue), na =
5 (green), na = 9 (red), na = 13 (cyan), na = 17 (magenta). The
theoretical curves (dashed lines) agree with the simulation results and
are computed from Eq. (42) with ρ = 0.01b−2 and C = 190b2/D.

by Eqs. (7) and (8), the MFET depends on the local position
of the interacting monomers na and nb that can be inside or at
the end of the polymer chains.

We compared the numerical simulations with formula (A42)
and fitted the constant term C(ε,N ) to numerical simulation
results [Fig. 1(b)]: for parameters ε = 0.01b,N = 33, we
found C = 190b2/D. The analytical (dashed) and the numer-
ical (points) results are compared in Fig. 1(b). The value of
C(ε,N ) contains higher order terms in the expansion of λε

0
[see Appendix, Eq. (A15)].

We conclude that the MFET is minimal for the two middle
monomers. The middle monomers are localized in a confining
region and their positions have a smaller standard deviation
compared to the other monomers [11]. Finally, the MFET
increases with the polymer length until it reaches an asymptotic
value.

C. Following polymer decompaction, the local search time
decays by two orders

We now explore the consequences of chromatin reorganiza-
tion after DSB induction, where the dynamics of a chromatin
locus in the proximity of the break is modified [19]. The
changes are revealed by the subdiffusion behavior. Indeed,
the mean-square displacement (MSD) behaves for short time
increment �t � 1 as 〈|X(t + δt) − X(t)|〉 ∼ tα with α <

1. Following break induction, the anomalous exponent α

increases [4], reflecting also an increase in mobility and a
local chromatin decondensation. These modifications can be
accounted for by using the β model [12], which is a coarse-
grained polymer model of chromatin that takes into account far
away chromatin interactions. Long-range interactions could be
mediated by protein-protein interactions, such as cohesin and
condensin. We model the interaction using an energy between
monomers given by

Uβ(R1, . . . ,RN,β) = 1

2

∑
l,m

Alm Rl Rm, (9)
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with coefficients

Al,m =
N−1∑
p=1

κ̃pαl
pαm

p , (10)

where αm
p are the Rouse coefficients [see Appendix, Eq. (A8)],

and

κ̃p = 4κ sinβ

(
pπ

2N

)
for p = 0, . . . ,N − 1. (11)

The strength of interaction Al,m between monomers l and m

decays with the distance |l − m| along the chain. By definition,
1 < β � 2 [12] and the Rouse polymer is recovered for β = 2,
for which only nearest neighbors are connected. The model
also relates the structure parameter β to the subdiffusive
dynamics of a tagged monomer by the relation α = 1 − 1/β.
Thus, in a condensed polymer, the anomalous exponent of
a monomer is lower than one belonging to a decondensed
structure.

We reported recently that following break induction, the
value of α increases from 0.3 to 0.48 [4]. Using the β-polymer
model, we interpreted this change as a local decondensation of
chromatin, confirmed in super-resolution microscopy [4,20].
For a polymer length of N = 33, the gyration radius (mean
distance of the monomers to the center of mass) decreases
from 〈Rg〉 = 2.34b for β = 2 to 〈Rg〉 = 1.4b for β = 1.7 and
〈Rg〉 = 1.21b for β = 1.5. We thus tested how the polymer de-
condensation influences the MFET for two middle monomers
located on two different polymers with same length, when
each is trapped by a potential well, separated by a distance
r0 [distance between the extremities where each polymer is
anchored, Fig. 2(a)]. This scenario emulates a local homology
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FIG. 2. Consequences of polymer condensation on search time.
(a) Schematic representation of two polymers with anchored extrem-
ities separated by a distance r0. (b)–(c) Distribution of the middle
monomers belonging to two different β polymers (red asterisk and
blue circles) of length N = 33 in the XY plane. (b) β = 2 (Rouse)
and (c) β = 1.5. (d) MFET for the two middle monomers plotted with
respect to the parameter β and the distance r0. The radius is ε = 0.1b

(y-axis units in b2/D, where D is the diffusion coefficient).

search. We first plotted the distribution of the middle monomers
while decreasing the parameter β. We find that as β increases,
the overlap of the two distributions decreases, as shown by
the steady-state distributions of each monomer [Figs. 2(b) and
2(c)], obtained for various values of β.

Next, we estimated the MFET of the middle monomers of
each chain for monomers na = nb = 17. We find that increas-
ing β from 1.3 to 2, leading to a decondensed polymer, de-
creases the MFET by two orders of magnitude [Fig. 2(d), thick
black line]. This situation corresponds to a decondensation,
where the polymer spring constant is fixed at ≈0.36kBT /b2

between the middle monomer and its two neighbors. Finally,
changing the anchoring distance r0 affects the MFET by even
larger orders of magnitude [Fig. 2(b)].

Interestingly, as the parameter β increases, the MFET does
not always decrease. For a small anchoring distances r0 = 2b,
a condensed polymer is obtained by decreasing the value of β,
thus leading to a reduced MFET [Fig. 2(d)]. We conclude that
the encounter rate between two homologous sequences can be
regulated by the average distance between monomers.

Possibly, after DSB induction, characterized by an increase
in β [4], the spatial distribution of the broken loci is modified
as described in Figs. 2(b) and 2(c), in a manner that depends
on the tethering distance between polymers. This effect could
be supported experimentally by considering the S phase and
G2, where cohesin molecules maintain the sister chromatids
together [21]. Due to their close proximity, sister chromatids
could be used as templates for repair [22]. In general, the distri-
bution of distances between two homologous loci is difficult to
estimate. The median distance between cohesin binding sites is
of the order of 16.5 kb for chromosome II of budding yeast [23].
A length b = 30 nm represents a monomer of size 3 kb [18],
and 16.5 kb is a chain containing six monomers. The present
result suggests that chromatin decondensation can significantly
facilitate the encounter between monomers, and we predicted
here a decay of the search by 2 orders of magnitude.

D. Removing the tethering forces applied on a polymer
facilitates the local search

Chromatin strands are well localized [24] in the nucleus due
to local interactions [25] imposed by the binding molecules
such as Lamin A [26]. In this last section, we study the
influence of local tethering forces on the search time. External
forces acting on a tagged locus are characterized by a resulting
tethering force with an effective spring constant kc [Fig. 3(a)].
The consequence of this resulting force is to confine the locus
motion [25].

We simulated the motion of several monomers, restricted by
potential wells [Fig. 3(b)], where the energy for an interacting
of monomer i is

Ui(Ri) = 1
2k(Ri − μi)

2, (12)

where μi is the center of the interacting well and k is the
strength of the interaction. The total energy of an interacting
Rouse polymer is

Ut = φ2ch +
∑

i interacting

Ui, (13)
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FIG. 3. Loss of local tethering interactions alters the MFET. (a)
Two homologous polymers where a fraction of monomers (green)
are interacting, modeled by fixed harmonic potential wells (purple).
Following a DSB, these interactions are removed. (b) Scenario of
two polymers (length N = 33), where the two middle monomers
(blue and red) meet: only one extremity n = 1 belonging to one
polymer is interacting with a potential well; for the other one, several
monomers (green) are trapped (n = 5,9,13) at a well located at a
fixed distance. The total number of interacting monomer is NInt . (c)
Estimation of the effective spring kc for different monomers along
the chain (c = 1..33) using formula (A43) for a Rouse polymer. One
extremity interacts with a well (dashed-dotted line). We increase the
number of interacting monomers NInt , located at n = 5 (full line),
n = 9 (dashed line), and n = 13 (dotted line). (d) MFET between the
middle monomers for two β polymers and an increasing number of
interacting sites.

where φ2ch is defined in Eq. (1). We prerun the simulations to
start with a polymer configuration that has reached a steady-
state with respect to the energy Ut .

We study now how the additional interactions∑
i interacting Ui influence the dynamics of any monomers

along the chain. Since in live-cell imaging one or two loci
can be followed after being tagged, we follow the monomer
of index c, and our goal is to recover the interactions of the
polymer. We recall that the resulting force on a tracked locus
[red bead in Fig. 3(a) is computed [25] by the formula

lim
�t→0

E

{
Rc(t + �t) − Rc(t)

�t

∣∣∣∣Rc(t) = x
}

= −Dkcnx, (14)

where E{·|Rc = x} is the average over all polymer config-
urations under the condition that the tagged monomer is at
position Rc = x. When only one monomer n is interacting
with a potential [Eq. (12)], kcn = kκ

κ+(c−n)k .

To investigate the consequences of removing punctual inter-
actions, we simulated the search of two monomers belonging
to two different polymers with the same length N = 33. The
distance between the first monomers of each polymer is r0 =
6b. In these simulations, we allow an increasing number of
monomers of the polymers to interact at the origin [Fig. 3(b)],
thus restricting the motion of the observed locus. We then
estimated the parameter kc from the simulated trajectories
[Appendix, formula (A43)] [Fig. 3(c)] for differentβ polymers.
When four monomers (at positions n = 1,5,9,13) interact, we
found [Fig. 3(c)] that k

NInt=4
c=15 = 1.08kBT /b2 for β = 2 and

k
NInt=4
c=15 = 1.73 for β = 1.5. If only two monomers interact

at positions n = 1,5, the overall resulting interaction de-
cays, characterized by k

NInt=2
c=15 = 0.29kBT/b2 (resp. k

NInt=4
c=15 =

0.72kBT/b2) for β = 2 (resp. β = 1.5).
To evaluate the influence of the number NInt of inter-

acting monomers on the MFET, we run Brownian simula-
tions to compute the MFET between two middle monomers
(na = nb = 17) belonging to two different polymers of length
N = 33. We find that the MFET increases with NInt when
the two polymer extremities are separated by a distance r0

[Fig. 3(b)]. Interestingly, this increase depends on the polymer
compaction, characterized by the parameter β: when β = 1.5,
an increase of interacting monomers from NInt = 1 to NInt = 4
resulted in a 4.4-fold increase of the MFET [Fig. 3(d)]. We
conclude that decreasing the tethering constant kc, which
represents the number of interactions of the DNA around the
DSB (characterized by NInt), results in a drastic reduction of
the encounter time between two searching homologous sites.

Following DSB induction, experimental data confirmed that
kc is significantly decreased [4]. Thus, changes in the anchoring
forces modify the locus dynamics that reflects the chromatin
organization [25] [Fig. 3(a)].

II. CONCLUSION

To conclude, we derived here MFET formulas (7) and
(8) for the search time between two monomers belonging to
two polymer confined in harmonic wells. The MFET depends
on the position of the monomers, chromatin condensation
(parameter β and the anomalous exponent α), and tethering
forces that represent binding forces, mediated by molecules
such as CTCF or cohesin or other protein-protein interactions.
The combination of polymer decondensation and releasing
tethering forces can modulate and accelerate drastically the
search time in a local environment (modeled here by potential
wells). Polymer decondensation (increase in β) leads to a re-
duced MFET. Loss of local connectivities between monomers
may arise from histone acetylation and local nucleosome
eviction, as reported for DSBs in yeast [27]. This is likely to
change the chromatin condensation and could accelerate the
local search for homology.
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APPENDIX

In this Appendix, we present the derivation of the mean first
encounter time (MFET) between two monomers that belongs
to two different Rouse chains with same length N [formulas
(2) and (3)], constrained in the same potential well of strength
ρ. The MFET between the two middle monomers is given by

〈
τmid,mid
ε

〉 ≈ π2

Dε

[
2

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}

+ 2

N (4κ + ρ)

]3/2

, (A1)

while for the end ones〈
τ end,end
ε

〉

= π2

Dε

[
4

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}
− 1

κ

]3/2

.

(A2)

In general, the MFET depends on the position of the searching
monomers along the chain. The minimal MFET is achieved
for the middle monomers of the chains when ρ � 1 (large
domain).

Derivations of formulas (2) and (3)

To study the search process between two monomers na,nb

(located at a physical positions Rna
,Rnb

) that belong to
different polymers (a and b), we shall estimate the MFET 〈τe〉
for these monomers to come into a distance ε < b, defined by
the constraint ∣∣Rna

− Rnb

∣∣ � ε, (A3)

while the polymers evolve inside a confined ball, which
is replaced here by a confined potential [18]. Indeed, the
asymptotic computation for the time 〈τe〉 is based on replacing
the boundary on the polymer dynamics by a field of force (Fig. 1
of main text). Using this approximation, the polymer dynamics
is modeled as a collection of monomers positioned at Ri,n (n =
1,2, . . . ,N , i = a,b), driven by Brownian motions and coupled
to a spring forces of nearest neighbors. In Smoluchowski’s limit
of the Langevin equation [17], the dynamics of monomer Ri,n

is

d Ri,n

dt
= −D∇Ri,nφ(Ra,1, . . . ,Ra,N ) +

√
2D

dwi,n

dt
(A4)

for n = 1, . . . ,N and i = a,b, and wi,n are independent three-
dimensional white noises with mean zero and variance 1.

The final potential well is the sum of the Rouse and confined
potentials for the two chains:

φ(Ra,1, . . . ,Ra,N ) = φRouse(Ra,1, . . . ,Ra,N ,Rb,1, . . . ,Rb,N )

+ ρ

2

N∑
n=1

(R2
a,n + R2

b,n)

= 1

2

N−1∑
p=0

(κp + ρ)
(
u2

a,p + u2
b,p

)
, (A5)

where

φRouse(Ra,1, . . . ,Ra,N ,Rb,1, . . . ,Rb,N )

= φa
Rouse(Ra,1, . . . ,Ra,N ) + φb

Rouse(Rb,1, . . . ,Rb,N )

= κ

2

N∑
n=1

(
Ra,n− Ra,n−1

)2+ κ

2

N∑
n=1

(Rb,n− Rb,n−1)2. (A6)

The strength of the confined potential ρ can be adjusted so that
the second moment properties match the ones obtained in a
confinement ball (see [18]). The spring constant κ = 3kBT /b2

is related to the standard deviation b of the distance between
adjacent monomers [13], kB is the Boltzmann coefficient, and
T the temperature. We recall that κp = 4κ sin2 ( pπ

2N
), and up

are the coordinates that diagonalize the quadratic potential well
φi

Rouse [8],

ui,p =
N∑

n=1

Ri,nα
n
p, (A7)

where

αn
p =

⎧⎪⎨
⎪⎩
√

1
N

, p = 0,√
2
N

cos
[
(n − 1/2)pπ

N

]
otherwise.

(A8)

Asymptotic formula of the encounter time for two polymers
in the same harmonic well

To compute the encounter time between two monomers,
we extend the method we developed for a free polymer [8]. To
derive the asymptotic formula for the MFET, we start with the
stochastic dynamics of polymers in a confined domain:

dui, p

dt
= −Dp(κp + ρ)ui,p + √

2Dp

dwi, p

dt
, (A9)

Dp =
{
D/N, p = 0,

D otherwise
(A10)

for p = 0, . . . ,N − 1 and i = a,b, and wi,p are independent
three-dimensional white noises with mean zero and variance
1. The Fokker-Planck operator associated with the stochastic
equation (A9) is

Lp = D

N

∑
i=a,b

�ui,0p(u) + ∇ui,0 (p(u)∇ui,0φ)

+D
∑
i=a,b

N−1∑
k=1

�ui,k
p(u) + ∇ui,k

(p(u)∇ui,k
φ), (A11)

where u = (ua,0, . . . ,ua,N−1,ub,0, . . . ,ub,N−1) ∈ � = R6N .
The absorbing boundary condition is p(u) = 0 for u ∈ ∂Sε ,
where

Sε =
⎧⎨
⎩u ∈ � s.t.

∣∣∣∣∣∣
N−1∑
p=0

(ua,pαna

p − ub,pαnb

p )

∣∣∣∣∣∣ � ε

2

⎫⎬
⎭. (A12)

The relation between the MFET 〈τe〉 and the first eigenvalue
λε

0 is [18,28]

〈τe〉 ≈ 1

Dλε
0

. (A13)
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To compute the first eigenvalue, we expand the perturbation
formula [8,29]

λε
0 = λ0

0 + 4πε

∫
S

w2
λ0

0
dVx + O(ε2), (A14)

where wλ0
0
= |R6N |−1/2

φ is the eigenfunction associated with
the zero eigenvalue λ0

0 = 0, the volume element is dVx =
e−φhdxg , and dxg is the Euclidean measure over S [obtained
by taking ε = 0 in Eq. (A12)].

Following the derivation steps of [18], we obtain the
following formula:

λε
0 = 4πεN3/2

21/2(2π )3

[
S(na,N,ρ) + S(nb,N,ρ)− 1

ρ

]−3/2

+ O(ε2),

(A15)

where

S(n,N,ρ) =
N−1∑
p=0

cos
[(

n − 1
2

)
pπ

N

]2

κp + ρ
. (A16)

The leading order term in (A15) was derived in [18], thus
the novelty here concerns the approximation of the series
S(n,N,ρ), that we will describe below for n = 1 and n = N/2.
First,

S(1,N,ρ) =
N−1∑
p=0

cos
(

pπ

2N

)2

κp + ρ
. (A17)

To evaluate the series S(1,N,ρ), we use the Euler-Maclaurin
(EM) expansion formula:

F (f,a,b) =
b∑

m=a

f (m,N,ρ) ≈
∫ b

a

f (m,N,ρ)dm

+ f (a,N,ρ) + f (b,N,ρ)

2

+ 1

12
[f ′(b,N,ρ) − f ′(a,N,ρ)], (A18)

where

f (m,N ) = cos2
(

pπ

2N

)
1 + x sin2

(
pπ

2N

) , (A19)

with x = 4κ/ρ. Thus S(1,N,ρ) = ρ−1 ∑(N−1)
p=1 f (p,N ). The

integral term is computed as follows:

I =
∫ N−1

0

cos2
(

yπ

2N

)
1 + x sin2

(
yπ

2N

)dy

= 2N

π

∫ (N−1)π/2N

0

cos2 t

1 + x sin2 t
dt

= 2N

π

[
− t

x
+

√
1 + x

x
tan−1

(√
1 + x tan t

)](N−1)π/2N

0

= 1 − N

x
+ 2N

√
1 + x

xπ

(
gx,

π

2
− π

2N

)
, (A20)

where

(gx,t) = tan−1[
√

1 + x tan(t)]. (A21)

The derivative of function f is

f ′(p,N ) = − (1 + x)π sin
(

pπ

N

)
2N

[
1 + x sin2

(
pπ

2N

)]2

= − 2(1 + x)π sin
(

pπ

N

)
[
N2 + x + x cos

(
pπ

N

)]2 (A22)

Substituting I from Eq. (A20) into the Maclaurin approxima-
tion (A18) with a = 0 and b = N − 1, we get

S(1,N,ρ) ≈ 1 − N

xρ
+ 2N

√
1 + x

xρπ

(
gx,

π

2
− π

2N

)
+ 1

2ρ

+ 1

2ρ

sin2
(

π
2N

)
1 + x cos2

(
π

2N

)
− (1 + x)π sin

(
π
N

)
6ρ

[
N2 + x − x cos

(
π
N

)]2 , (A23)

which can be approximated for N � 1:

S(1,N,ρ) ≈ −N

xρ
+ 2N

√
1 + x

xρπ

(
gx,

π

2
− π

2N

)
+ 1

2ρ
.

(A24)

To estimate S(N/2,N,ρ), we approximate

S(N/2,N,ρ) =
N−1∑
p=0

cos
[
(N − 1) pπ

2N

]2

κp + ρ

=
N−1∑
p=0

1
2

{
1 + cos

[
(N − 1)pπ

N

]}
κp + ρ

= 1

2

N−1∑
p=0

1 + (−1)p cos
(

pπ

N

)
κp + ρ

= s1 + s2, (A25)

where

s1(N,ρ) = 1

2

N−1∑
p=0

1

κp + ρ
, (A26)

and

s2(N,ρ) = 1

2

N−1∑
p=0

(−1)p cos
(

pπ

N

)
κp + ρ

. (A27)

We now evaluate the first series s1 using the EM formula: s1 =
ρ−1F (f1,0,N − 1), with

f1(p,N,ρ) = 1

2

1

x sin
(

pπ

2N

)2 + 1
. (A28)

The integral term is given by

I1 = 1

2

∫ N−1

p=0

dp

x sin
(

pπ

2N

)2 + 1

= N

π

∫ (N−1)π/2N

0

dt

x sin(t)2 + 1

= N

π
√

1 + x

(
gx,

π

2
− π

2N

)
, (A29)
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while

f ′
1(p,N,ρ) = − πx sin( pπ

N
)

4N
[
1 + x sin( pπ

2N
)2
]2 . (A30)

Thus

F (f1,0,N − 1) = I1 + 1

2

[
1

2
+ 1

2

1

x sin
( (N−1)π

2N

)2 + 1

]

− πx sin
( (N−1)π

N

)
48N

[
1 + x sin

( (N−1)π
2N

)2
]2

= I1 + 1

4
+ 1

4

1

x cos
(

π
2N

)2 + 1

− πx sin( π
N

)

48N
(
1 + x cos( π

2N
)2
)2 . (A31)

We now evaluate the series s2 using the EM formula: s2 =
ρ−1F (f2,0,N − 1), with

f2(p,N,ρ) = 1

2

(−1)p cos
(

pπ

N

)
x sin

(
pπ

2N

)2 + 1
. (A32)

The integral term goes to zero because f2 oscillates around
zero with the index p. The boundary terms are

f2(0,N,ρ) = 1

2
,

f2(N − 1,N,ρ) = −1

2

cos
(

π
N

)
x cos

(
pπ

2N

)2 + 1
for N odd,

f ′
2(0,N,ρ) = 0,

f ′
2(N − 1,N,ρ) = O(1/N2). (A33)

Thus

F (f2,0,N − 1) = 1

4
+ 1

4(x + 1)
+ O

(
1

N2

)
. (A34)

Introducing (A31) and (A34) in (A25), and using that N � 1,
we get

S(N/2,N,ρ) = N

πρ
√

1 + x

(
gx,

π

2
− π

2N

)

+ 1

2ρ
+ 1

2ρ

1

x + 1
. (A35)

Substituting x = 4κ/ρ into Eqs. (A24) and (A35), we find that

S(1,N,ρ) ≈ −N

4κ
+ N

π
√

κρ
tan−1

[
2
√

κ

ρ
tan

(
π

2
− π

2N

)]

+ 1

2ρ
, (A36)

S(N/2,N,ρ) ≈ N

2π
√

κρ
tan−1

[
2
√

κ

ρ
tan

(
π

2
− π

2N

)]

+ 1

2ρ
+ 1

8κ + 2ρ
. (A37)

Using formula (A15) for the eigenvalue, related to the en-
counter of the two middle monomers (na = N/2, nb = N/2),
we get

λε
0,mid,mid

= 4πεN3/2

21/2(2π )3

[
N

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}

+ 1

4κ + ρ

]−3/2

+ O(ε2). (A38)

The reciprocal of the first eigenvalue equation (A13) is the
MFET:

〈
τmid,mid
ε

〉 ≈ π2

Dε

[
2

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}

+ 2

N (4κ + ρ)

]3/2

. (A39)

The eigenvalue for the encounter of the two end monomers
(na = 1, nb = 1) is

λε
0,end,end = 4πεN3/2

21/2(2π )3

[
2N

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}

− N

2κ

]−3/2

+ O(ε2), (A40)

and the MFET (A13) is

〈
τ end,end
ε

〉 ≈ π2

Dε

[
4

π
√

κρ
tan−1

{
2
√

κ

ρ
tan

(
π

2
− π

2N

)}

− 1

κ

]3/2

. (A41)

In general, there are no close formulas for the MFET between
any two monomers, but the reciprocal of the first eigenvalue
[Eq. (A15)] can be used to obtain an estimation that could be
compared to simulations:

〈τna,nb

ε 〉 = 1

λε
0,na,nb

. (A42)

In summary, the MFET depends on the position of the search-
ing monomers along the chain. The minimal MFET is achieved
when the monomers are located at the middle of the chain when
ρ � 1 (large domain). Finally, the MFET increases with the
polymer length before reaching an asymptotic limit.

Empirical estimation of the tethering constant kc

The effective spring constant kc is estimated from
trajectories of a tagged monomer at position Rc(t) using
the empirical estimator

kc = 1

Dc�t2T

d∑
i=1

T −1∑
k=1

Ri
c((k + 1)�t) − Ri

c(k�t)

Ri
c(k�t) − 〈Ri

c〉
, (A43)

where d is the dimension, T is the number of points, �t is the
time step, and D the diffusion coefficient of the monomer.
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