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How directional mobility affects coexistence in rock-paper-scissors models
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This work deals with a system of three distinct species that changes in time under the presence of mobility,
selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the
modification of the mobility rule to the case of directional mobility, in which the species move following the
direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood.
Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute
to reduce the probability of coexistence.
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I. INTRODUCTION

It is a known fact in the study of population dynamics
that mobility affects species coexistence. As pointed out by
several authors [1–8], mobility may contribute to the extinction
of some species in systems of several species that interact
cyclically. In particular, in the recent work [8] the authors
review several aspects of the cyclic dominance in evolutionary
games, including pattern formation and the impact of mobility
that motivates the current study.

In the tritrophic systems modeled by the rock-paper-scissors
game, coexistence is reached only if all species persist. This
model is widely applied to describe biological systems com-
posed of three cyclic, non-hierarchical interacting species, like
strains of colicinogenic Escherichia coli [9].

Mobility plays a crucial role in promoting or destroying
coexistence of species in rock-paper-scissors games [1]. The
movement of individuals can be motivated by the geographic
distribution of competitors, leading to directional dispersal of
individuals on the grid. For example, in Refs. [10–12], the
authors have studied particles moving in the average direction
of the particles in their neighborhood. Furthermore, individuals
can move following the fluid in which the species are dispersed
[13,14].

In recent works [15–18], we have studied dynamical,
geometrical, and topological properties of competing networks
that depend crucially on the mobility, reproduction, and com-
petition interactions, assuming a standard mobility. In the
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current work, we focus on how directional mobility modifies
the dynamics of the system, with a particular focus on its impact
on species coexistence. The motivation is to make mobility
more realistic, by introducing taxis, which allows individuals to
walk towards a specific direction defined by an external (local)
stimulus [19]. This behavioral response is a characteristic of
various species, e.g., rotifers are sensitive to predation risk,
and move towards conspecifics and thus diffuse less at higher
densities [20–22]. Here, we aim to allow individuals to choose
the direction to move, based on the spatial distribution of
selection targets in the neighborhood.

To make the investigation easier to follow, we consider
the system described by three distinct species, A, B, and
C, and in Sec. II we describe how the stochastic rules are
implemented in our spatial system defined in a square lattice,
and we also explain how the directional mobility is modeled.
In Sec. III, we deal with the time evolution of the system,
first reproducing the typical spiral patterns that appear in
the standard situation and then studying the modifications
associated with the introduction of directional mobility. We
then investigate temporal features of the system and the related
spatial behavior in the square lattice used to implement the
stochastic simulations. In Sec. IV we investigate the impact of
directional mobility on species coexistence. We end the work
in Sec. V, with our comments and conclusions.

II. THE MODEL

In this work, we implement stochastic network simulations
in a system composed of three species that change in time in
a square lattice having N sites, obeying periodic boundary
conditions. The initial state is formed by a lattice where each
site contains a single species or is empty. Species and empty
sites are initially distributed randomly, in such a way that, in
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FIG. 1. The arrows illustrate how selection works in the case of
three species that we consider in this paper.

the initial state, there are N /4 sites associated to each one of
the three species and the empty sites.

At each time step, an individual is randomly chosen on
the grid. This individual can interact with one of its eight
immediate neighbors (we are using the Moore vicinity). An
interaction can be summarized as follows: select the individual,
pick up the neighbor, choose the rule, and implement it in
the lattice. The unit of time � t = 1 is defined as the time
necessary for N interactions to occur—one generation time.
All simulations are done for 15 000 generations, with the first
5000 generations discarded, allowing that all the investigation
be implemented after the pattern formation.

The stochastic model is characterized by mobility, selection,
and reproduction. In the current work, these interactions
happen with probabilities m = 0.60, r = 0.20, and p = 0.20,
respectively (probabilities are same for all species). Repro-
duction only happens if a neighbor grid point is empty. If
selection is sorted a random neighbor selection target (if it
exists) is substituted by an empty site—it follows the rock-
paper-scissors game, as illustrated in Fig. 1.

Directional mobility is implemented as follows: when
mobility is sorted, a region of radius rc around the chosen
individual is delimited. In this region, one vectorially identifies
the possible selection targets. The direction of maximum
likelihood of finding a the possible selection targets is denoted
by �r . The individual will move in the closest direction to
�r . In other words, the individual switches position with its
neighbor, in the closest direction to �r . This is illustrated in
Fig. 2 for the case rc = 4, with a = 1. Given the cyclicity of
the rock-paper-scissors game, directional mobility implies that
individuals always prefer running away from hostile regions,
by choosing to move towards areas where they dominate.

FIG. 2. As an illustration of the directional mobility, the left panel
identifies the possible selection targets of the central individual inside
the euclidean circle of radius rc. The total distance is shown in the
middle panel, and the central individual moves in this direction, as it
appears in the right panel.

TABLE I. The cutoff radius rc for each value of a.

a = 1 2 4 8 16 32 64

rc =4 5 6 8 10 14 19

We calculate the vector �r as

�r =
k∑

i=1

d(ri)�ri, (1)

where �ri is the distance between the competitors, and k stands
for the number of possible selection targets inside the circle of
radius rc. Moreover, in this paper we choose the function d(ri)
to be defined by

d(ri) = exp

(−(ri − 1)2

a

)
, (2)

where a is a parameter that controls the maximum reach
of the directional mobility. In our simulations, we assume
a = 2l , where l = 0,1, . . . ,6, and cutoff radius rc = rc(a) so
that d(r � rc) = 0. Table I shows the cutoff radius and the
respective values of rc, used in our simulations. In the case of
r � rc, we consider d(r) = 0 for d(r) < 1 × 10−2.

Throughout the paper we will compare the numerical results
obtained by assuming directional mobility and the standard
case, where individuals move randomly. In the case of standard
mobility, individuals are not able to figure out the best direction
to move. Therefore, the standard random movement cannot be
recovered even if one assumes a small radius of interaction in
the directional mobility case.

III. RESULTS

Up to here, we defined the system and showed how the rules
have to be implemented to drive its time evolution and spatial
behavior. From now on, we pay closer attention to some of its
main features, which we describe below.

A. Pattern formation

We first consider the long-time evolution of the system, with
standard and directional mobility, controlled by several distinct
values of a.

Figure 3 displays snapshots of the patterns obtained for
a square lattice of size 10002 after 20 000 generations, for
the standard mobility, and for various values of a. The figure
shows that the increase of a changes the spiral patterns, with
the formation of clusters of groups of empty sites. This happens
because individuals enter domains dominated by possible
selection targets, moving perpendicular to the interface of
empty spaces separating the spiral arms—they move into the
direction with a higher density of possible selection targets.
As a consequence, islands of empty sites grow along the
boundaries between the spiral arms.

Broadly speaking, the larger rc the further individuals can
move. This means that the increase of the cutoff radius causes
the enlargement of the average areas occupied by the domains.
If the area of the domains is the same order (or larger) of
the grid size, the probability of extinction of the species
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FIG. 3. Spatial patterns taken from 10002 lattices after 20 000
generations. (a) represents the simulation with standard mobility
whereas (b)–(h) are snapshots of spatial patterns in simulations with
directional mobility for a = 1, a = 2, a = 4, a = 8, a = 16, a = 32,
a = 64, respectively. Finally, (i) is a zoom of the islands of empty
sites present in the selected region of the snapshot of the simulation
for a = 32.

increases drastically. As a result, only one species survive
since the directional mobility diminishes the chances of species
coexistence.

The results displayed in Fig. 3 show that the inclusion of
the directional behavior changes the way the species organize
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FIG. 4. Abundance of species A as a function of the time for
directional mobility considering various values of a. The fluctuation
in the size of the population increases as one increases the value of a.

themselves in space. They suggest that we investigate both the
temporal and the spatial evolution of the species. Hence, below
we start focusing on some temporal features of the systems.

B. Temporal behavior

Let us now investigate some features of the system time
evolution. Toward this goal, let us first consider how the
abundance of a given species changes in time. As all species
play a similar role, we will focus on the number density of
species A which we denote by ρA(t).

Figure 4 shows how the abundance of species A changes
over time. The data were collected starting counting the time
after 10 000 generations. The set of abundances of all species
is shown in the ternary diagram in Fig. 5 for several values of a.
The results depicted by Figs. 4 and 5 show that the fluctuation
in the size of the population increases as one increases the value
of a (or, equivalently, rc). However, no species dies out since
the average domain size (that increases with a) is smaller than
the lattice size. For larger interaction radius, fluctuations may
lead to the extinction of species.
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FIG. 5. This ternary diagram illustrates the evolution of the
competition network with three species. The trajectories were taken
for a single realization. Although the fluctuations of the population
sizes increase with a, the species coexist because the average size of
the domains is smaller than the grid size.
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FIG. 6. The spectral density defined in Eq. (3) is depicted in terms
of the frequency, for several distinct mobilities. The spectral density
defined in Eq. (3) is depicted in terms of the frequency, for several
distinct mobilities. The arrows show how a grows and which curve
represents the result provided by simulations with standard mobility.

In order to further investigate the time evolution of the
species, we make a Fourier analysis of ρ(t). Following closely
Refs. [3,4,23,24], we introduce the discrete Fourier transform
to get

ρ(f ) = 1

N

NG−1∑
t=0

ρ(t) · e−2πif t , (3)

where f = n/NG with n = [0,NG − 1] and NG = 10 000 gen-
erations. Figure 6 shows the spectral density for the abundance
corresponding to species A, with the results depicted for an av-
erage over 100 simulations with different initial conditions. For
increasing values of a, the amplitude at maximum frequency
fmax increases, although fmax itself decreases.

Another related study concerns the temporal correlation
length, τ , which is extracted from the autocorrelation function
as C(t = τ ) = 1/2, that is the time for the autocorrelation to
decrease to half of its value at the initial time. Following closely
Refs. [2,3,25,26], we introduce the autocorrelation function in
the form

CAA(t ′) = 1

CAA(0)

NG−t ′∑
t=0

(ρA(t)−〈ρA〉)(ρA(t + t ′)−〈ρA〉), (4)

where 〈ρA〉 is the average of the abundance ρA(t), for the
species A. We use Eq. (4) to calculate the autocorrelation
displayed in Fig. 7 in the case of standard mobility and for
several values of a. Also, the inset in Fig. 7 shows how the
correlation time varies as a function of the parameter a. It
shows that the correlation time increases as a increases.

C. Spatial behavior

We now turn attention to the spatial behavior of the system.
In order to quantify this behavior we introduce the quantity

C(r ′) =
∑

|�r ′|=x+y

C(�r ′)
min(2N − (x + y + 1),x + y + 1)

, (5)
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FIG. 7. Temporal autocorrelation function for various interaction
radius. The inset shows the correlation length as a function of a.

where C(�r ′) is the spatial autocorrelation function, calculated
from the Fourier transform of the spectral density as

C(�r ′) = F−1{S(�k)}
C(0)

. (6)

The spectral density S(�k) is given by

S(�k) =
∑
kx ,ky

ϕ(�k)ϕ∗(�k) , (7)

where ϕ(�k) = F{φ(�r) − 〈φ〉} and φ(�r) represents the species
in the position �r in the lattice; here, we are using 0 for the empty
sites, and 1,2, and 3 for species A,B, and C, respectively.

Figure 8 displays C(r ′) for the directional mobility for
various choices of a. The inset shows the characteristic length
l which we define as C(r ′ = l) = 0.15. The results show that
the length l increases as one increases the value of a. This fact
appears clearly in Fig. 3 since there one notes the enlargement
of the colored regions which identify the distinct species in the
system, as a increases. Figure 9 shows that both the spatial and
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FIG. 8. Temporal autocorrelation function for various interaction
radius. The inset shows the correlation length as a function of a. The
arrow shows the order of the curves that represent simulations from
the standard mobility to directional mobility with a = 32.
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the temporal correlation functions do not change significantly
on the lattice size if N /a is sufficiently large.

IV. MOBILITY VERSUS COEXISTENCE

In the previous sections, we have studied how the systems
changes in time and modify their spatial features when one
increases the parameter a which controls the directional mo-
bility. Now we will explore further the impact of directional
mobility on species coexistence. To this purpose, we run a large
number of numerical simulations with 1002 and 2002 sites, for
a = 1,2,4,8, and 32.

We introduce some auxiliary parameters p′, r ′, and m′
and rewrite the probabilities of selection, reproduction, and
mobility as p′/(p′ + r ′ + m′), r ′/(p′ + r ′ + m′), andm′/(p′ +
r ′ + m′), respectively. By setting p′ = r ′ = 1, the Mobility
parameter can be written as M = m′/2N2, that is proportional
to the typical area explored by an individual, per unit time [1].

Hence we study the extinction probability, that is, the
probability of extinction of two species as a function of M .
The results are shown in Fig. 10. The vertical lines shows
the critical mobilities, Mc = (5.5 ± 0.5) 10−4 in the case of
standard mobility, and Mc = (2.5 ± 0.5) 10−4 for a = 1. The
result for the standard mobility is in good accordance with
results obtained in Refs. [1,5,6], whereas the result for a = 1
shows that the critical mobility decreases when directional
mobility is assumed.

The data of Fig. 10 were taken from the average over 20 000
simulations for lattices with 1002 sites, and from the average

0

0.2

0.4

0.6

0.8

1

10−5 10−4 10−3

E
xt

in
ct

io
n

pr
ob

ab
ili

ty

Mobility, M

1002 - std.
1002 - a = 1

2002 - std.
2002 - a = 1

FIG. 10. The extinction probability as a function of the mobility
M , in the cases of standard mobility and directional mobility with
a = 1, for the lattices with 1002 and 2002 sites.

over 1000 simulations for grids with 2002 sites. The results
displayed in Fig. 10 show that for a = 1 species go extinct at
a smaller value of the critical mobility when compared with
the standard case. This happens because the average size of
the domains is larger in the case of directional movement, for
same mobility probability.

The results for the lattice with 2002 sites, shown in Fig. 11,
confirm those presented in Fig. 10: directional mobility re-
duces the probability of coexistence. Moreover, the larger the
interaction radius, the more likely the species go extinct.

V. COMMENTS AND CONCLUSIONS

In this work, we studied a system of three distinct species
that changes in time in cyclic dominance interactions, follow-
ing the rules of the rock-paper-scissors game. We consider that
the movement of the individuals on the grid depends on the spa-
tial distribution of each species. This introduces a directional
mobility, that means that individuals move in the direction with
a larger number of possible selection targets. As a result, both
the time evolution and the spatial organization of the species
change significantly. The results show that directional mobility
reduces the probability of coexistence. This effect is stronger
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for larger interaction radius of individuals because the further
the individual mobility reaches, the larger are the average size
of the domains are. As long as the average size of the domains is
smaller than the grid size, the species coexist, but the increase
of the mobility to larger and larger values contributes to the
extinction of the species.

The results of the work are of current interest, because
directional mobility may contribute to change both the time
evolution and the spatial behavior of the system. In particular,
one can use directional mobility to model species whose
interactions are dependent on space, adding effects due to
spatial inhomogeneities in the lattice. These issues open new
routes of applications in problems of current interest in several
areas of research, including agriculture, ecology, and other
related areas of nonlinear science. We hope to report on these
and in other related issues in the near future.

Finally, we point out that there are alternative theories
of biodiversity that consider restrictions for the mobility of
individuals. For example, in the neutral theory of biodiversity,
restricted immigration of organisms from local communities

is assumed [27–31]. In this case, a modified version of our
stochastic model (constraining how far each individual can
reach), can be used to study the effects on the spatial patterns
and the population dynamics. We hope to address this issue in
future works.
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