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Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties
has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been
demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction.
These stresses, termed “prestresses” in this study, closely affect the capsid’s mechanical behavior. Three
methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been
proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we
theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically
investigate how prestresses affect the capsid’s mechanical properties. We consolidate all the results and propose
that by using these techniques collectively, it is possible to accurately determine both the mechanical properties
and prestresses in capsids.
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I. INTRODUCTION

The protein coat that protects the genome in viruses,
called the capsid, has fascinated biologists, physicists, and
mechanicians alike. Its varying mechanical properties during
assembly and maturation indicate the importance of having the
appropriate mechanical conditions for the virus lifecycle. Thus,
a better understanding of capsid mechanics could provide new
therapeutic targets and advance their use in nanotechnology
[1,2].

Virus capsids are assembled from tens to hundreds of similar
proteins. Continuum theory is an attractive choice for modeling
them because, unlike molecular models, it can be used to
simulate them over longer timescales. Interestingly, isotropic
continuum elasticity has been successful in describing the
mechanical behavior of virus capsids [3–6], and multiple
studies modeled capsid as a shell surface [7–10].

There are several overarching questions about the validity
of continuum theory at the scale of virus capsids and appro-
priateness of isotropic versus anisotropic and homogeneous
versus heterogeneous treatment. In our recent study, we tried
to answer some of these questions [11]. We showed that for
continuum theory to be applicable, the molecular level stresses
need to be averaged to zero, which also makes the shell
continuum description more appropriate than 3D continuum
description [11].

The continuum models come with unknown elastic con-
stants. For example, in shell theory, the capsid has an in-plane
stiffness Y and Poisson’s ratio ν and a bending stiffness κ .
In this study, we look at the practical question of determining
these elastic stiffnesses, so that the mechanical behavior of
capsids can be accurately described. Many previous studies
have proposed several different methods to this end. Here,
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we focus on three methods: using the capsid shape [12],
indentation using atomic force microscopy (AFM) [5,6,13–
15], and molecular dynamics [9]. All of these methods are
limited to isotropic and homogeneous models, which will
remain the remit of this study as well.

In addition to the elastic constants, continuum models also
make an inherent assumption about the “stress-free” reference
state, with respect to which stresses are calculated. In virus
capsids, because of their construction, their equilibrium state
is not a stress-free state due to the preexisting stresses called
“prestresses.” The effect of prestresses on the capsid shape
has been studied [7,10,12,16]. However, their effect on the
mechanical behavior is not fully understood.

In this study, we aim to reconcile the above three approaches
into a consistent framework that can accurately determine the
mechanical properties of virus capsids, as well as identify the
prestresses originating from two different sources. We hypoth-
esize that to achieve this, results from the three techniques
need to be analyzed simultaneously. Therefore, we theoreti-
cally and computationally study the three techniques without
focusing on determining the stiffness parameters of a specific
capsid.

In the next section, we describe our mechanical model,
the cases considered, and the numerical discretization used
to solve the equations. Then, we present a section on each
of the three methods with a background and our analysis.
First, we briefly review the relation between capsid shape
and elastic parameters and prestresses. Then, we present the
results of numerically simulated AFM indentation for varying
elastic parameters and prestresses. Third, we describe the
relation between molecular dynamics fluctuations and elastic
parameters of a shell in a general case. For a spherical shell
without prestresses, we derive this relation analytically and
verify numerically. For cases with prestresses, we present the
numerical results. Finally, we discuss consolidation of all of
the results and insights obtained from this study.
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II. MODEL AND DISCRETIZATION

To calculate the mechanical response of a virus capsid, we
first present the details of its mechanical model based on thin
shell continuum theory.

A. Definition and kinematics

We model the capsid as a closed elastic surface S ∈ R3

parameterized by curvilinear coordinates (s1,s2), which map
onto the surface. We consider three configurations for the
mapping (Fig. 1): the stress-free configuration sα → X̄(sα),
the equilibrium configuration sα → X(sα), and the deformed
configuration sα → x(sα). Following the standard definitions
in differential geometry, the covariant basis vectors are

Āα = ∂ X̄
∂sα

, Aα = ∂ X
∂sα

, and aα = ∂x
∂sα

, (1)

in the stress-free, equilibrium, and deformed configurations,
respectively. Contravariant basis vectors are defined by rela-
tions aα · aβ = δβ

α , and metric tensor has covariant components
aαβ = aα · aβ , etc. In the deformed configuration, the surface
normal is calculated as

n = a1 × a2

‖a1 × a2‖ , (2)

and the curvature tensor is [17]

b =
(

− ∂n
∂sα

· aβ

)
aα ⊗ aβ =

(
n · ∂aβ

∂sα

)
aα ⊗ aβ. (3)

From the curvature tensor, mean and Gaussian curvatures
are obtained using relations H = 1

2 tr (b) = 1
2b

γ
γ and K =

det(b) = |bβ
α |, respectively.

The deformation gradient from stress-free to deformed
configuration is F = ∂x/∂ X̄ , which is calculated as F = aα ⊗
Āα

—a rank-2 tensor. The right Cauchy-Green deformation
tensor is C = F�F.

B. Elastic energy

In the deformed configuration, the elastic energy of the shell
is split into bending and in-plane stretching components and
is written as an integral of the strain energy density:

	(x) = 	b + 	s =
∫
S

WdS. (4)

FIG. 1. Definition of the deformation gradient and strain ten-
sors between “stress-free” (X̄), equilibrium (X), and deformed (x)
configurations.

We follow the commonly used assumption that the bending
energy vanishes in the flat configuration [7,12] and, therefore,
is only dependent on the curvature tensor after deformation:

	b(b) =
∫
S

[
1

2
κ(2H )2 + κGK

]
dS. (5)

Furthermore, we only study closed shells, which have the
same topology, and by Gauss-Bonnet theorem, the integral of
Gaussian curvature remains constant. Thus, for constant κG,
the second term in the above energy term remains constant
under any deformation. Hence, effectively, the bending energy
depends only on the mean curvature and bending stiffness
κ . It is easy to see that for a closed shell of a given surface
area, the bending energy by itself [Eq. (5)] is minimized for a
spherical configuration. For the in-plane stretching energy, we
use a compressible neo-Hookean model [7,10,18],

	s(C) =
∫
S

[
λ + μ

2
(J − 1)2 + μ

2

(
tr(C)

J
− 2

)]
dS, (6a)

where

J 2 = 1
2 {[tr(C)]2 − tr(C2)}. (6b)

The Lamé parameters λ and μ are related to the 2D Young’s
modulus Y and Poisson’s ratio ν via relations

λ = Yν

1 − ν2
and (7a)

μ = Y

2(1 + ν)
. (7b)

Once linearized for the small displacement case, the neo-
Hookean model [Eq. (6)] is equivalent to the St. Venant
Kirchhoff’s strain energy density function used in the literature
[19]. By definition, the equilibrium configuration is the one that
minimizes the elastic energy of the shell, i.e.,

X = arg min
x

	(x). (8)

C. Cases studied

We study the following three cases for the stress-free
configuration X̄ :

(1) A perfect sphere of radius R is the stress-free configu-
ration [Fig. 2(a)].

(2) A flat hexagonal lattice is the stress-free configuration
[Fig. 2(b)], which, following the Caspar-Klug (CK) construc-
tion [20], closes into an icosahedron.

(3) The stress-free configuration is obtained after applying
a deformation gradient Fc (called conformational strain) to
the flat hexagonal sheet [Fig. 2(c)]. We use a specific form of
Fc observed in several immature capsids [21–25], which is a
piecewise constant. That is, Fc = 1 + ηu1 ⊗ u2 for hexamers
(i.e., shear strain η along direction u1, with u2 being perpendic-
ular to u1 and 1 = uα ⊗ uα being the 2D identity tensor) and
Fc = 1 for pentamers. As u1 varies from hexamer to hexamer, it
leads to a broken stress-free state [7]. We note that setting η = 0
gives Fc = 1 everywhere (i.e., zero conformational prestress)
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FIG. 2. Depiction of the three cases considered here and their
stress-free configurations: (a) no prestress, (b) CK prestress, and
(c) conformational prestress. Shells are colored by their radius to
emphasize their shape.

and reduces to the second case above. Also, we specifically
focus on η = 0.2, which is the value of shear observed in
bacteriophage procapsids [10].

D. Discretization and numerical solution

For numerical calculation of the mechanical response of the
shell model, we divide the capsid surface into 26 880 triangles
with 13 442 nodes. Therefore, we discretize the position on the
capsid surface at time point t as

x(sα; t) =
Nnodes∑
I=1

NI (sα)xI (t), (9)

where xI is the position of node I and NI are the shape
functions corresponding to that node (capital indices are used
to denote node numbers). We use C1-continuous subdivision
finite element shape functions for the bending energy 	b

(5) and C0-continuous linear Lagrange polynomials for the
stretching energy 	s [Eq. (6)]. Interested readers are referred
to the literature for more details on these numerical methods
[10,26].

III. CAPSID SHAPE

One of the earliest indicators of stiffness parameters was
the capsid shape [12,16], and it has been studied in full for all
the three cases presented. We present some of the main results
here for completeness. We quantify the shape of capsid using
asphericity defined as the deviation from a perfect sphere [12],

A = 〈�R2〉S
〈R〉2

S
, (10)
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FIG. 3. Normalized asphericity of the capsid as a function of
FvK number γ : There is a buckling transition in Case 2, which is
significantly reduced in Case 3 with η = 0.2.

where �R = R − 〈R〉S and angle brackets 〈·〉S denote average
over the shell surface. For our finite-element models, these
averages are computed over the vertices of the mesh. For
reference, we note that A = 0 for a perfect sphere and Â ≈
0.0026 for a perfect icosahedron.

The first case we consider is trivial as the capsid shape is a
perfect sphere irrespective of its stiffness parameters, i.e., A =
0. Since the bending energy is also minimized for a spherical
shape, the capsid’s equilibrium configuration is also a perfect
sphere with energy 	 = 8πκ , irrespective of its mechanical
properties.

For the second case with CK construction, we note that
if we disregard the bending energy, the equilibrium shape is
a perfect icosahedron with A ≈ 0.0026. However, since an
icosahedron has infinite curvature at its edges (and therefore
infinite bending energy), the equilibrium configuration lies
somewhere between a sphere and an icosahedron depending
on the capsid’s stiffness parameters. Specifically, it was shown
that the asphericity depends only the dimensionless Föppl
von Kármán (FvK) number γ = YR2/κ (Y and κ are the
in-plane and bending stiffnesses and R is the radius) [12].
The 12 pentamers behave as disclination sites because of the
construction from a hexagonal lattice, resulting in prestressed
pentamers. We call these stresses the CK prestresses after the
CK construction of icosahedral capsids [20]. Consequently, the
shell goes through a transition from spherical to faceted shape
for γ ≈ 500 (Fig. 3). Hence, the capsid shape was proposed to
indicate the ratio of its in-plane and bending stiffnesses [12],
and a similar result was obtained for nonicosahedral capsids
[16].

We recently demonstrated that a similar, and even reverse,
shape transition can be driven without changing the mechanical
properties, but instead by shearing the individual hexamer
units [7], which is the third case. The shear in hexamers,
which is observed in several bacteriophage procapsids, adds
another prestress (termed as conformational prestress). This
additional prestress may release or enhance the CK prestress
in pentamers. Hence, it is possible to drive the capsid shape
transition via a mechanism independent of its mechanical
properties, and this discovery has rendered the shape-based
indicator ineffective. Once the shear directions have been
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fixed, the equilibrium configuration depends on both FvK
number γ and shear η. For η = 0.2, the shape transition is
delayed (at γ ≈ 5000) and severely limited (A/Â = 0.2 only
in contrast with 0.8 for Case 2). We have generalized these
results to capsids with different protein arrangements and shear
directions [10].

IV. AFM INDENTATION

A. Background

A popular experimental technique for estimating the me-
chanical stiffness of capsids is indentation using atomic force
microscopy (AFM) [5,6,13–15], which determines the force fz

versus indentation depth δ response of the whole capsid. Many
capsids behave elastically, especially for small indentations,
and the effective capsid stiffness is defined as the slope
of the force-indentation curve: kcap = fz/δ. To calculate the
continuum elasticity constants, we need to relate them with
the effective capsid stiffness.

It is not possible to determine this relation for a general
nonlinear elasticity case. For linearized shell theory, kcap ∝√

κY/R. In many studies, stiffnesses are related to Young’s
modulus E through shell thickness h as Y ∼ Eh and κ ∼ Eh3,
so that kcap ∝ Eh2/R [5,6]. However, these relations between
Y , κ , and E hold true only if the material properties are
uniform through the shell thickness, which is not the case for
highly heterogeneous molecular systems. As an example, in
the case of lipid bilayers, Y ≈ 0 but κ is finite with a finite
shell thickness.

Furthermore, the relation kcap ∝ √
κY/R comes from lin-

earized elasticity theory for a perfect sphere, and the effect
of prestresses—either CK or conformational—is not included.
The effect of CK prestress has only been partially studied; for
example, in the case of failure of capsids [8] and release of pre-
stresses [15]. However, its effect on experimental predictions
has not been described in full, and the effect of conformational
prestress has not been studied. Next, we describe our numerical
method to determine these relations.

B. Method

The indentation of the capsid is solved as a quasi-static
problem. The substrate is modeled as a rigid flat plate at the
bottom and the AFM tip as a rigid hemisphere of radius Rtip ≈
R/3 at the top (Fig. 4). For the spherical stress-free state (Case
1), we indent along any arbitrary axis because of the capsid’s
spherical symmetry. However, following the CK construction,
instead of spherical symmetry, the capsid has an icosahedral
symmetry. Therefore, in Cases 2 and 3, the capsid is indented
along twofold, threefold, and fivefold symmetry axes. As the
AFM tip and substrate (both modeled as rigid bodies) come
into contact with the capsid, constraint conditions on the capsid
boundary are introduced. The coefficient of friction between
the capsid and rigid bodies is set to be high enough (μf = 1)
to avoid any slipping.

Under AFM indentation, the deformed configuration is
determined by numerically minimizing the elastic energy
[Eq. (4)] subject to constraints due to contacts between the
capsid and AFM tip and substrate. The contact constraint
conditions are solved using the augmented Lagrange algorithm

(a) (b)

5

32

Y

Z

X
AFM tip

Substrate

FIG. 4. AFM indentation simulation for (a) spherically symmet-
ric Case 1 and (b) Cases 2 and 3 with icosahedron symmetry using
AFM tip radius Rtip ≈ R/3.

([27], Chapter 6). The simulation is repeated for varying values
of FvK number γ [between O(10) and O(103)] and shear η

(between −0.3 and 0.3). Based on the linearized theory, the
force along indentation direction fz and indentation depth δ are
nondimensionalized using

√
κY and R, respectively. Capsid

stiffness can be estimated by comparing the experimental and
theoretical force-indentation responses.

C. Results

1. Spherical case

Indentation of spherical shells has been investigated in
detail [28–30]. For small indentations, the force-indentation
relationship follows fz/

√
κY = αδ/R, where α is a propor-

tionality constant that depends on the friction and indentor tip
size. Furthermore, the “drop” in the force-indentation relation
which denotes a buckling-type event happens whenever the
capsid loses contact with the indentor tip or substrate. The
number and amount of drops depend on the indentor tip radius
[28]. For Rtip ≈ R/3, which is commonly accepted for AFM
indentation of capsids, there is no drop (Fig. 5). For small
indentation α ≈ 3.3, independent of the FvK number, which
is consistent with previous results [31]. However, we see that

0

3

10

Increasing γ

0.0

0.2

0.0 0.1

f z
/√ κ

Y

δ/R

FIG. 5. Nondimensionalized force-indentation curves for a spher-
ical shell (Case 1) with varying FvK number γ . Inset shows zoom-in
at small indentation, such that the initial slope is independent of γ .
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FIG. 6. Nondimensionalized force-indentation curves (vertical axes are fz/
√

κY and horizontal axes are δ/R) for an icosahedral shell with
varying FvK number γ and shear η (Cases 2 and 3). Three orientations were simulated: twofold (red), threefold (green), and fivefold (blue).
The dashed line shows the response of a sphere without prestresses (Case 1) for comparison.

even a sphere without prestresses shows a softening behavior
at large indentations, which becomes more pronounced as we
increase γ .

2. Effect of prestress

To study the effect of prestresses, we combine Cases 2 and 3
and simulate indentation for varying values of γ (CK prestress)
and shear η (conformational prestress). The results show that,
in general, adding prestresses makes the capsid softer at higher
indentations compared to the spherical case (Fig. 6). The force-
indentation curve for η = 0 along fivefold axis is different from
the twofold and threefold axes, and this difference becomes
more prominent at higher γ (Fig. 6). At higher FvK number, the
shell goes through a buckling transition when indented along
the fivefold axis, but the buckling transition is usually delayed
or softened along two- and threefold axes. Rather interestingly,
the twofold, threefold, and fivefold curves become almost
indistinguishable at η = 0.2, even at high γ . In general, the
variation of shear η, at any given FvK number γ , changes the

relative difference between different orientations minimizing
at η = 0.2.

Furthermore, the initial slope of the nondimensionalized
force-indentation curve for twofold and threefold sites remains
relatively constant for varying γ and η (Fig. 7). However, the
same is not true for the fivefold axis, where the initial slope

(a) (b) (c)
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0.3
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102 103 104
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0.3

0 4 8
R√
κY

dfz(δ=0)
dδ

FIG. 7. Nondimensionalized slope for small indentation for an
icosahedral shell with varying FvK number γ and shear η (Cases 2
and 3). (a) 2-fold; (b) 3-fold; (c) 5-fold.
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becomes more than twice at higher FvK numbers. These results
suggest that the relation between effective capsid stiffness and
elastic constants depends on prestresses as well as orientation
of the indentation, and that a single proportionality relation
may lead to inaccurate elastic constants.

V. EQUILIBRIUM FLUCTUATIONS

A. Background

An alternative to using experimental measurements is to
calculate the elastic properties of capsid from molecular inter-
actions as proposed by May and Brooks [9]. However, May and
Brooks analyzed only the simplest case without any prestresses
and ignored nonradial displacements. As a result they could not
fit the first two modes, which resulted in inconsistent elastic
parameters [11]. Here we extend their approach to a general
case and include prestresses.

B. Theory

We assume that we have a molecular dynamics trajectory
of the capsid, where the atoms vibrate around the equilibrium
state exploring all the microstates. To develop the relationship
between molecular dynamics trajectory and elastic properties
of the capsid, we define a deformation field u around the
equilibrium configuration as

x(X ; t) = X + u(X ; t). (11)

For small displacements, such as those encountered in ther-
mal vibrations, we keep only the lowest (quadratic) order
displacement terms in the energy expression. Therefore, the
energy change with respect to the minimum energy (i.e., the
equilibrium state) is written as

�	 = 1

2

∫
S

u · ∂2W

∂u2
· u dS. (12)

We use 
 to denote the inner product on surface S as

v 
 w =
∫
S

v · w dS, (13)

and v · w = ∑
i viwi represents the Cartesian inner product.

We can choose an orthonormal basis for the displacement
field U i , i.e., U i 
 U j = δij , so that the displacement field is
written in this basis as u(X ; t) = ∑

i ρi(t)U i(X). An important
observation is that if the basis is chosen such that the energy
expression can be written as a quadratic sum,

�	 = 1

2

∑
i

ρ2
i �i, (14)

for some scalars �i , it becomes possible to invoke the theorem
of equipartition. That is, the average value of each term in the
above summation equals kBT/2 energy. Thereby, we obtain
the expression for time-averaged mode amplitude squared,

〈
ρ2

i

〉 = kBT

�i

, (15)

which allows us to relate the molecular dynamics trajectory
and elastic model. Comparing Eqs. (12) and (14), it is easy to
see that the basis must be the eigenvectors of ∂2W/∂u2 and

�i are the corresponding eigenvalues. Therefore, to relate the
thermal vibrations with continuum elastic energy, we need to
compute the eigendecomposition.

It is important to note that if there are repeated eigenval-
ues of multiplicity m corresponding to eigenmodes that are
degenerate (for example, related by rotation of the frame of
reference), then that eigenmode—combining all its degenerate
versions—gets mkBT/2 energy. For example, the rigid trans-
lation in three dimensions of any elastic body has three zero
eigenvalues, and the thermal energy of the rigid translation is
3kBT/2. A similar argument holds for rigid rotations and other
eigenmodes with repeated eigenvalues.

For the discretized case with u(sα; t) = ∑
I NI (sα)uI (t),

the energy change becomes

�	 = 1

2

∑
I,J

u�
I ·

⎛
⎝∫

S

NI

∂2W

∂uI u J
NJ dS

⎞
⎠ · u J , (16)

and the orthonormality condition becomes

∑
I,J

Um
I ·

⎛
⎝∫

S

NI (sα)NJ (sα)dS

⎞
⎠ · Un

J = δmn. (17)

We solve this discretized generalized eigenvalue problem
numerically using a sparse FEAST solver [32] for γ varying
in the range O(10) to O(104). For Case 3, the shear is kept
constant at a value of 0.2, as per the experimental images of
HK97 procapsid—a bacteriophage virus whose hexamers are
sheared [7]. The second derivative in Eq. (16) is calculated
using central finite difference method.

C. Spherical harmonic decomposition

Different cases may have different eigenfunctions. As we
will see that spherical harmonics are the eigenvectors for the
case without prestresses (Case 1), that is not true for prestressed
shells (Cases 2 and 3). To directly compare different cases,
we use spherical harmonics as the common basis to further
decompose the equilibrium fluctuations of a general case.
Spherical harmonics Y lm of degree l = 0, . . . ,∞ and order
m = −l, . . . ,l are defined as the eigenfunctions of Laplace-
Beltrami operator ∇2 on a sphere of radius R

R2∇2Y lm = −l(l + 1)Y lm, (18)

and are orthogonal such that Y lm 
 Y l′m′ = R2δll′δmm′ . The
radial part 1 of a trajectory can be projected onto the spherical
harmonic (SH) basis as

u(X ; t) · r̂ =
∑
l,m

alm(t)Y lm(X). (19)

Therefore, we get∑
i

ρi(t)U i(X) · r̂ =
∑
l,m

alm(t)Y lm(X), (20)

1Instead of radial part, one could also choose the normal component
to be projected onto SH basis. For a spherical surface the radial and
normal directions are equivalent (n = r̂), and for nonspherical sur-
faces the difference between two choices was found to be negligible.
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and the SH amplitude

alm(t) =
∑

i

ρi(t)
(U i(X) · r̂) 
 Y lm(X)

Y lm(X) 
 Y lm(X)
. (21)

We use the fact that Brownian motion over the surface is
completely uncorrelated, i.e., the time-averaged 〈ρiρj 〉 = 0
for i �= j . Thus, we get a simplified expression for the time-
averaged value of the SH amplitude squared (also called SH
fluctuation):

〈
a2

lm

〉 =
∑

i

〈
ρ2

i

〉[ (U i(X) · r̂) 
 Y lm(X)

Y lm(X) 
 Y lm(X)

]2

. (22)

Denoting the inner product of ith eigenfunction with lm SH,

V lm
i = (U i · r̂) 
 Y lm

Y lm 
 Y lm
, (23)

using Eq. (15), and summing over order m = −l, . . . ,l, we get
total fluctuation of SH mode with degree l:

〈
a2

l

〉 =
l∑

m=−l

∑
i

kBT

�i

[
V lm

i

]2
. (24)

Hence, given the elastic properties of capsid, its SH fluctuations
under thermal excitation can be computed without calculating

a trajectory; one only needs to calculate the eigenfunctions
U i and corresponding eigenvalues �i . Alternatively, the MD
trajectory can be directly decomposed to get these fluctuation
values, as demonstrated by May and Brooks [9]. A comparison
of 〈a2

l 〉 from theory and MD provides estimates of capsid elastic
parameters (Y , ν, and κ).

D. Spherical case

In this section, we describe the analytical expression for the
eigenvectors and eigenvalues for the first case of sphere without
any prestresses, as reported by Widom et al. [19]. These
expressions are then compared to numerical calculations for
verification and also used to calculate the spherical harmonic
amplitude.

The displacement field on a perfectly spherical surface of
radius R can be written using vector spherical harmonics as
the basis [19]

u =
∑
l,m

(ξLR ∇Y lm + ξT R r̂ × ∇Y lm + ξrY
lm r̂). (25)

When the displacement field Eq. (25) is used in Eq. (12), we
get

�	 =
∑
l,m

1

2
[ξT R2l(l + 1),ξLR2l(l + 1),ξrR

2] · H · ξ ,

(26)
where ξ = [ξT ,ξL,ξr ]� and the expression for the matrix

H =

⎡
⎢⎣

μ (l−1)(l+2)
R2 0 0

0 (λ + μ) l(l+1)
R2 + μ (l−1)(l+2)

R2 (λ + μ) 2
R2

0 (λ + μ) 2l(l+1)
R2 (λ + μ) 4

R2 + κ l(l−1)(l+1)(l+2)
R4

⎤
⎥⎦ (27)

is borrowed from Widom et al. [19]. Using the property
of vector spherical harmonics, the normalization condition
becomes

ξ 2
T R2l(l + 1) + ξ 2

LR2l(l + 1) + ξ 2
r R2 = 1. (28)

From the definition Eq. (23) we see that V lm
i = ξrδll′δmm′ .

1. Radial displacement only

To compare our results with the previous work by May
and Brooks [9], we consider the special case when in-plane
deformation is restricted to be null ξT = ξL = 0 (i.e., only
radial displacement is allowed). Thus, we get

�	 =
∑
l,m

1

2

[
(λ + μ)

4

R2
+ κ

l(l − 1)(l + 1)(l + 2)

R4

]
ξ 2
r R2.

(29)
Therefore, we get the eigenvalues for this case:

�l = (λ + μ)
4

R2
+ κ

l(l − 1)(l + 1)(l + 2)

R4
, (30)

and, by orthonormality Eq. (28), ξr = V lm
i = 1/R. Using the

relation between Y and μ [Eq. (7b)], the eigenvalues can be

nondimensionalized as
�lR

2

μ
= 4

(
λ

μ
+ 1

)
+ 2(1 + ν)

l(l − 1)(l + 1)(l + 2)

γ
.

(31)

Furthermore, for ν = 1/3, we get λ = μ, and, thus, �lR
2/μ =

8 + [8l(l − 1)(l + 1)(l + 2)]/3γ . These can be plotted (Fig. 8)
and we see that eigenvalues converge �lR

2/μ → 8 as γ →
∞ ∀l.

Next, using these expressions for eigenvalues and V lm
i in

Eq. (24), we get the SH fluctuation:

〈
a2

l

〉 =
l∑

m=−l

kBT

R2�i

=
l∑

m=−l

kBT

(λ + μ)4 + κ l(l−1)(l+1)(l+2)
R2

. (32)

We note that the summand is independent of m. Thus, rear-
ranging we get (for ν = 1/3)2〈

a2
l

〉
μ

kBT
= (2l + 1)

(
8 + 8l(l − 1)(l + 1)(l + 2)

3γ

)−1

. (33)

2In May and Brooks [9], the contributions from degenerate modes
were not summed together, and thus the term 2l + 1 was missing.
The analysis presented here and the excellent match with numerical
results confirms that this factor is accurate.
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100

101

102

103

101 102 103 104

Λ
lR

2 /
μ

γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 8. Nondimensionalized eigenvalues for radial-only motion
of a sphere (Case 1) versus FvK number γ (lines are the analytical
solution Eq. (31) and points are numerical results showing an excellent
fit).

An excellent agreement is obtained when analytical expres-
sion is plotted with the numerical solution (Fig. 9). We also note
that

lim
γ→∞

〈
a2

l

〉
μ

kBT
= (2l + 1)

8
. (34)

2. All displacements allowed

For the general case when in-plane deformations are also
allowed, we split the normal modes into purely in-plane modes
(ξr = 0) and those with radial components (ξr �= 0). Only
the latter contribute to the SH fluctuations 〈a2

l 〉. Since the
equations involved are cumbersome, the details are presented
in the Appendix. Conveniently, vector spherical harmonics are
the eigenfunctions. Numerical and analytical solutions of the
eigenvalues show an excellent agreement (Fig. 10).

We note that the l = 0 degree mode retains its eigenvalue,
and thus the fluctuations 〈a2

0〉 remain the same as the previous
purely radial case (Figs. 9 and 11). However, the eigenvalue
of l = 1 degree mode increases by 50% compared to the

10−2

10−1

100

101

102

101 102 103 104

μ
a

2 l

γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 9. Spherical harmonic decomposition of equilibrium fluctu-
ations for radial-only motion of a sphere (Case 1) versus FvK number
γ (lines are the analytical solution Eq. (33) and points are numerical
results).

100

101

102

103

101 102 103 104

Λ
lR

2 /
μ

γ

l = 0
l = 1

l = 2
l = 3

l = 4

0

0.5

1

101 102 103 104

R
V

lm i

γ

FIG. 10. (Top) Eigenvalues of radial modes and (bottom) their
radial component for a sphere (Case 1) versus FvK number γ [lines
are the analytical solution Eqs. (A1), (A6), and (A9), and points are
numerical results].

purely-radial case, and its equilibrium fluctuations decrease.
Also, the eigenvalues do not converge to the same value at large
γ (Fig. 10). Both l = 0 and 1 modes remain independent of the
bending modulus κ . Furthermore, there are two eigenvalues
corresponding to each degree l—one lower than the purely
radial case and the other higher. Since contribution of each
mode to the equilibrium fluctuations is inversely proportional

10−2

10−1

100

101

102

101 102 103 104

μ
a

2 l

γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 11. Spherical harmonic decomposition of equilibrium fluc-
tuations of a sphere (Case 1) versus FvK number γ [lines are the
analytical solution Eq. (A10) and points are numerical results].
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102
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μ
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2 l
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l = 1

l = 2
l = 3

l = 4

FIG. 12. Spherical harmonic decomposition of equilibrium fluc-
tuations of an icosahedron (Case 2) versus FvK number γ (only
numerical results, as analytical solution could not be obtained).

to its eigenvalue, 〈a2
l 〉 is predominantly decided by the lower

frequency modes. As a result, the equilibrium fluctuations for
l � 2 increase. Hence, including the in-plane deformations
qualitatively changes the normal modes and equilibrium fluc-
tuations.

E. CK prestress

When we follow Caspar-Klug construction and incorporate
the associated prestresses, it breaks the spherical symmetry and
an analytical solution of eigenfunctions could not be obtained.
Thus, we only calculate its eigenvalues and eigenvectors
numerically. We find that, because of the lack of spherical
symmetry, the eigenvectors are not spherical harmonics (even
at low γ ), and the eigenvectors cannot be classified into
in-plane and radial. In other words, there are no purely in-plane
eigenvectors. Therefore, it is difficult to represent the eigen-
values, and we omit its plot for brevity. Nevertheless, we point
out one key difference: as γ increases, the lowest eigenvalues
do not converge to constant values. Instead, eigenvalues keep
decreasing, likely caused by the prestresses at the pentamers.
This is reflected in the SH fluctuations (Fig. 12), where μ〈a2

l 〉
for l � 2 keep increasing even at γ = 104. Furthermore, the
fluctuations for l = 0 and 1 are not constant over all values
of γ . Instead, they show a slight increase at around γ ≈ 103,
which is close to the transition from spherical to faceted shape.

F. Conformational prestress

When we introduce conformational stresses because of
hexamer shearing, an analytical solution of eigenfunctions
could not be obtained. Thus, we calculate the eigenvalues,
eigenvectors, and SH fluctuations numerically for η = 0.2
(Fig. 13). Qualitatively, the results are similar to the CK
prestress case (Figs. 12 and 13). The main difference is that
the transition to higher fluctuation values is shifted towards
higher γ , which is consistent with the shape transition also
being shifted in this case (Fig. 3).

G. Comparison of three cases

To carefully consider the difference in equilibrium fluctu-
ations between the three cases, we plot them together. First,

10−2

10−1

100

101

102

101 102 103 104

μ
a

2 l

γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 13. Spherical harmonic decomposition of equilibrium fluc-
tuations of an icosahedron with conformational prestresses (Case 3)
versus FvK number γ (only numerical results, as analytical solution
could not be obtained).

we compare the μ〈a2
0〉 (Fig. 14), which remains constant for

the spherical case. However, for Cases 2 and 3, it increases
slightly at large γ . For Case 2, the increase happens at γ ≈
500, whereas for Case 3 it happens at γ ≈ 5000. Since the
asphericity in Case 3 is less sensitive to γ , we also plot the
mode amplitude versus the capsid asphericity (Fig. 14 inset).

Finally, we plot the ratio of fluctuations 〈a2
l 〉/〈a2

0〉 for l �
1 (Fig. 15). The results indicate that the radial only solution
gives significantly different results compared to other cases.
Therefore, it is important to account for nonradial deformations
in the theory, even if their magnitude is small. Furthermore, the
results for Cases 1 and 3 are largely similar. The fluctuations
for Case 3 deviate only for large values of γ . In contrast, the
fluctuations for Case 2 deviate significantly at large γ and never
plateau. Last, we notice that the value of γ at which the relative
fluctuations plateau in Cases 1 and 3 increases as we increase
the degree l.

10−1

100

101

102

101 102 103 104

0.1

0.2

0.0 1.0

μ
a

2 0

γ

Case 1 radial
Case 1

Case 2
Case 3

μ
a

2 0

A/Â

FIG. 14. SH amplitude of degree l = 0 is completely insensitive
to the FvK number γ for spherical case, whereas for other cases it
increases slightly at high FvK number. Inset shows the amplitude as
a function of capsid asphericity A normalized by that of a perfect
icosahedron Â.
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Case 1 radial
Case 1

Case 2
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FIG. 15. SH decomposition of all cases for degree l = 1, 2, 3, and
4, respectively, normalized by 〈a2

0〉.

VI. DISCUSSION

A. Significance of presented results

In this study, we aimed to carefully analyze the three
methods used for determining the mechanical properties of
virus capsids in the presence of prestresses. The capsid shape
had already been analyzed previously [7,10,12], and the rel-
evant results were summarized. Clearly, in the presence of
prestresses, the capsid shape becomes an unreliable indicator
of elastic properties.

AFM indentation has been used widely in virus capsid
research [5,6,13–15]. However, in determination of the elastic
modulus from force-indentation curves, effects of prestresses
have been ignored previously [6]. The orientation dependence
of the force-indentation curves has been reported previously
[5,33]. However, the orientational dependence in those works
was ascribed to the geometrical changes with orientation as
the prestress was not built into the model. The present results
show that prestresses—both CK and conformational—play a
role in the force-indentation behavior. Therefore, incorporating
prestresses is important when computing elastic modulus based
on AFM indentation. Higher stiffness of the force-indentation
response along fivefold axis could be seen as an evidence of CK
prestresses in virus capsids (Fig. 7). Similarly, the extraneous
softening at large indentations may indicate conformational
prestresses. However, the effects of prestresses were found to
be limited at small FvK values. Last, the results suggest that
if the initial slope of the force-indentation curve is used to
estimate the elastic moduli, the twofold and threefold axes
would provide a better estimate instead of the fivefold axis
(because of the prestress concentrations).

For the equilibrium fluctuations, the presented analysis
shows that considering the nonradial displacements qualita-
tively changes the results, and thus it is important to take them
into account. Furthermore, the thorough analysis presented
here resolves the issue of l = 0 and l = 1 modes not fitting
the MD results [9,34]. As an example, following the analysis
presented here, we need only a single set of elastic parameters

10−3

10−2

0 3 6 9

a2 l

l

Case 1 fit
MD

FIG. 16. Case 1 with all displacements [Eq. (A10)] shows an
excellent fit to the equilibrium fluctuations of SeMV obtained via
MD (taken from Ref. [9]) using a single set of parameters (Y =
1096.4 kBT , κ = 694 kBT/nm2, ν = 0.015, and γ = 130.8).

for fitting all the SH modes of the Sesbania Mosaic virus’s
(SeMV) MD trajectory (Fig. 16). The effect of prestresses
on equilibrium fluctuations is limited, especially at γ < 5000,
making this approach robust (Fig. 15). These generalizations
make this approach an attractive choice for characterizing
the capsid mechanics. Furthermore, the numerical scheme
presented here can be modified to directly simulate a symmetric
unit of the capsid, and therefore intermediary elastic network
calculations will not be required as proposed by May and
Brooks [9].

B. Combining three methods

We analyzed three methods based on (1) shape of capsid, (2)
AFM indentation, and (3) the MD equilibrium fluctuations. It
is clear from the results that all three methods have limitations
in determining the elastic properties of a capsid. The shape of
a capsid was previously used to obtain an estimate of its FvK
number; however, that approach becomes ineffective in the
presence of conformational stress (Fig. 3). The slope of force-
deflection curve from AFM experiments has been extensively
used to determine capsid’s elastic properties. However, the
slope varies depending on the prestresses in the capsid (Fig. 7).
The equilibrium fluctuations allow us to determine elastic
properties using MD, but they are largely insensitive to small
prestresses (Figs. 14 and 15).

To remove the individual limitations of each method, we
combine these indicators as follows:

(1) First, we determine the asphericity of the capsid. If
the capsid is highly aspherical (i.e., close to perfect icosa-
hedron), then it likely has CK prestress (Case 2) and/or has
conformational prestress with negative η (Case 3). For small
or intermediate asphericity, it could be any of the cases. If high
resolution image of the capsid is available, the value of shear
η could be estimated directly.

(2) Second, we determine the FvK number γ and Pois-
son’s ratio ν from the comparison of 〈a2

l 〉/〈a2
0〉 between MD

simulation and theoretical results. Since the theoretical results
are nearly same for all cases with γ < 1000, it is possible to
determine γ without distinguishing different cases. However,
we note that these curves become relatively flat for γ � 5000
and it is difficult to differentiate FvK values above 5000.
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(3) Next, by comparing the asphericity A and FvK number
γ determined from previous step, we determine the conforma-
tional shear η [10]. We note that this differentiation cannot be
made at small FvK values.

(4) Next, we determine μ by comparing the fluctuations
〈a2

l 〉 from MD simulation results with the corresponding
theoretical results. Usingγ , ν, andμ, we determine the bending
and in-plane stiffnesses (κ and Y ).

(5) Finally, we compare these properties with the initial
slope of AFM force-indentation curve. If possible, we use the
large indentation response and related softening to differentiate
the cases at small γ .

Some of the above steps may have alternatives or could
be adjusted based on the information available. Some of the
associated limitations are discussed next.

C. Limitations

The presented model does not account for geometric details
of the capsid, as those details can also result in orientation de-
pendence of indentation behavior. Incorporating the geometric
details into a model with prestress is a challenge that remains
to be solved. The analysis presented here is purely theoretical.
Even though we consider the practical nature of various
methods, there may be additional limitations in combining
them. We propose to use behavior at large indentations to
identify the conformational prestress. However, some capsids
might break before reaching large indentation, limiting that
step’s practicality. For capsids with γ > 5000 in Cases 1 and
3, it remains challenging to accurately determine γ as the
〈a2

l 〉/〈a2
0〉 curves plateau for high FvK numbers.

Some parameters in this study were fixed, and more simula-
tions would be needed to determine their effect on the results.
For example, we only studied the conformational prestresses
in viruses of HK97 form, which is a T = 7 capsid according to
CK classification [20]. Although we anticipate that changing
the T number would not change the qualitative nature of the

results, this needs to be verified. For thermal fluctuations with
conformational prestresses, we fixed η = 0.2. Similarly, we
assumed tip radius Rtip ≈ R/3 and friction coefficient μf = 1
in our AFM simulations. Even though these are acceptable
estimates, effect of these parameters on the results remains
to be studied to obtain a complete picture. Last, it will be an
important step to implement this combined framework for a
capsid. However, since that requires both the MD trajectory
and AFM experiment, it will be carried out in the future.

D. Conclusion

In this study, we analyzed three different techniques used
for determining the elastic properties of virus capsids. Instead
of determining the elastic parameters of a specific case, we
focused on theoretically analyzing the techniques and the effect
of two different kinds of prestress. The results show that using a
single technique in isolation can provide contradicting results.
Instead, we propose to use them in combination, which can
identify not only the elastic properties but also the prestresses.
Similar strategies may be valuable to other areas as well, where
we combine different methodologies to arrive at consistent and
comprehensive results.
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APPENDIX: EIGENVALUES AND EQUILIBRIUM FLUCTUATIONS FOR A SPHERE

From Eq. (27), it is easy to see that the purely in-plane modes with ξT = 1/R
√

l(l + 1), ξL = ξr = 0 have eigenvalues
�l = μ (l−1)(l+2)

R2 (independent of the bending modulus). However, since ξr = 0, these modes do not contribute to the SH amplitude.
Furthermore, for l = 0, ∇Y00 = 0, resulting in only radial motion u = Y00 r̂ . Thus, we have a purely radial eigenvalue,

�l=0 = (λ + μ)
4

R2
. (A1)

For l � 1 and ξT = 0, we get

�	 =
∑
l,m

1

2
[ξLR2l(l + 1),ξrR

2] · H · ξ , (A2)

with ξ = [ξL,ξr ]� and

H =
[

(λ + μ) l(l+1)
R2 + μ (l−1)(l+2)

R2 (λ + μ) 2
R2

(λ + μ) 2l(l+1)
R2 (λ + μ) 4

R2 + κ l(l−1)(l+1)(l+2)
R4

]
. (A3)

Using λ + μ = (1 + ν)/(1 − ν)μ, the above equation can be rewritten as

H = μ

R2

[
(1 + ν)/(1 − ν)l(l + 1) + (l − 1)(l + 2) 2(1 + ν)/(1 − ν)

2(1 + ν)/(1 − ν)l(l + 1) 4(1 + ν)/(1 − ν) + l(l − 1)(l + 1)(l + 2)γ −1
μ

]
, (A4)
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where, for simplifying the expression, we have defined γμ = μR2/κ = γ /2(1 + ν). We note that for each l � 1, we will get two
eigenvalues and eigenfunctions from Eq. (A3), each with both radial and in-plane components.

For l = 1, the first eigenvalue is �− = 0—a rigid body translation—and the second eigenvalue is �+ = (λ + μ) 6
R2 with

eigenvector ξr = 2φ, ξL = φ and ξT = 0, where the normalization factor is determined by Eq. (28): φ = 1/R
√

l2 + l + 4 =
1/R

√
6. We note that the l = 1 mode has increased eigenvalue compared to the purely radial case but is still independent of the

bending modulus κ .
To determine the eigenvalues for l � 2, to simplify Eq. (A4), we rewrite as

H = μ

R2

[
a c

d e + bγ −1
μ

]
, (A5)

where a = (1 + ν)/(1 − ν)l(l + 1) + (l − 1)(l + 2), b = l(l − 1)(l + 1)(l + 2), c = 2(1 + ν)/(1 − ν), d = 2(1 + ν)/(1 −
ν)l(l + 1), and e = 4(1 + ν)/(1 − ν). Thus, defining a new symbol A = (a − e − b

γμ
), the eigenvalues are

�±
l R2

μ
= 1

2

(
a + e + b

γμ

±
√

A2 + 4cd

)
. (A6)

We see that for large FvK number, the frequencies do not converge to the same value like they did in the radial-only case.
Instead,

lim
γμ→∞

�±
l R2

μ
→ 1

2
(a + e ±

√
(a − e)2 + 4cd). (A7)

Furthermore, the eigenvector is [
ξL

ξr

]
= φ

[
A ± √

A2 + 4cd

2d

]
, (A8)

where φ is determined by the condition Eq. (28). Thus,

R2ξ 2
r = 4d2

8d2 + 2A2l(l + 1) ± 2Al(l + 1)
√

A2 + 4cd
. (A9)

The equilibrium fluctuations for each mode will now have contribution from two eigenfunctions corresponding to �±. Thus,
we get 〈

a2
l

〉
μ

kBT
= (2l + 1)

[
8d2(

a + e + b
γμ

+ √
A2 + 4cd

)
(8d2 + 2A2l(l + 1) + 2Al(l + 1)

√
A2 + 4cd)

+ 8d2(
a + e + b

γμ
− √

A2 + 4cd
)
(8d2 + 2A2l(l + 1) − 2Al(l + 1)

√
A2 + 4cd)

]
. (A10)
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