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Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic
devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a
vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small
deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and
the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate
the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating
breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason
number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT
regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While
higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored
when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the
direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly,
in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting
an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better
dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension
can be controlled as per the application.
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I. INTRODUCTION

Vesicles, which are bounded by a lipid bilayer membrane,
can acquire a variety of equilibrium shapes such as prolate and
oblate spheroids, discocytes, stomatocytes, etc., a result of min-
imizing the bending energy for a prescribed reduced volume.
On the other hand, nonequilibrium, dynamical states are ob-
served under externally applied forces such as hydrodynamic
flow or electric field and have received extensive attention
because of their relevance in bio-microfluidics. Moreover, flow
of bio-fluids in organisms involve flow of vesicle-like objects
such as red blood cells (RBCs) among others, suspended in an
ambient fluid. An interplay of hydrodynamic and membrane
forces as well as forces due to applied electric or shear
fields determine the shape of these vesicles and influence the
surrounding flow field.

A vesicle resists deformation due to external forces, such as
viscous stresses due to shear flow, on account of its membrane
fluidity, bending resistivity, and area incompressibility. A
linear shear flow can be decomposed into two parts: an exten-
sional (symmetric traceless part) and a rotational component
(antisymmetric part). In the case of a vesicle in shear flow,
the extensional component causes extension and deformation
of a vesicle into an ellipsoidal shape and orients it along
the extensional axis of the flow (making an angle of π/4
with the direction of flow). On the other hand, the rotational
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component (antisymmetric part) provides a rigid body-like
rotation to the vesicle by applying a torque to it [1]. Unlike
in rigid objects, shear flows can induce tank-treading motion
in a membrane-bound vesicle, wherein lipid molecules are
transported by the local velocity because of the fluidic nature
of the membrane.

A vesicle under shear flow exhibits various dynamical
modes such as tank treading (TT), trembling (TR) (first
observed and called the vascillating breathing (VB) mode
by Misbah [2]), and tumbling (TU). The existence of each
of these regimes depends upon several geometric as well as
flow parameters (such as excess area stored in the membrane
of the vesicle, viscosity contrast across the membrane, and
flow capillary number). Influenced by these parameters, a
vesicle can acquire a nonaxisymmetric ellipsoidal shape which
is inclined at a stationary angle to the flow direction. The
membrane rotates around its fixed ellipsoidal shape, and the
resulting motion is called TT. Beyond a certain viscosity
contrast across the membrane, the TT regime is inhibited, and
a vesicle shows full periodic rotations (flipping motion) with
respect to the direction of shear flow. This is referred to as
the TU mode. An intermediate regime between TT and TU
modes, called the TR mode, is observed wherein a vesicle’s
long axis oscillates around the shear direction and undergoes
asymmetric shape deformations in the vorticity direction (also
called VB or swinging).

The pioneering theoretical work by Keller and Skalak
[3] on an undeforming, ellipsoidal shaped RBC in shear
flow admitting a nonzero, position-dependent surface velocity,
showed that a vesicle can have TT or TU motion. The first
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experimental study on vesicle under shear flow was conducted
in Ref. [4], which observed the TT and the TU regimes.
While the early theoretical studies on vesicles under shear
flow, without viscosity contrast, showed a TT regime [5,6],
rigorous numerical studies [7,8] indicated a TT-TU transition.
Results of systematic experiments [9] in the TT regime were
found to be in agreement with theory [10]. The numerical
predictions of a TT-TU transition by Misbah et al. [7,8]
were later experimentally observed by Mader et al. [11]. A
theoretical study by Misbah [2] predicted vesicle oscillation
around the flow direction, and he termed it the “vacillating
breathing” mode. The VB mode has been called the TR mode
by others, and the distinction could be subtle with respect to the
role of noise [12,13]. In this work, although we do not consider
thermal noise, we refer to the VB mode as the TR mode. Later
Kantsler et al. [14] reported an experimental observation in
which a vesicle in shear flow trembles around the flow direction
with strong shape fluctuations, which they called “trembling,”
thereby confirming the predictions of Ref. [2]. This was called
the “swinging state” in another numerical study [15]. This cou-
pling of shape and orientation angle was further studied [16]
using a mechanical force balance approach. These different
dynamical states around the TU regime could be qualitatively
described by a two-dimensional analytical model [1].

In the earlier theoretical studies [2] the deviation of the vesi-
cle shape from a sphere, as well as the membrane forces were
considered only up to leading order in the parameter ε = √

�,
where � is the excess area of a vesicle. The resulting evolution
equations are independent of the bending rigidity as well as the
capillary number, but depend upon the viscosity contrast and
the excess area. An extension of the leading order theory to
higher order corrections [O(ε2)] in the shape deviation as well
as the membrane forces first suggested in Ref. [17] and later
in Refs. [15,18,19] led to an evolution equation that exhibited
explicit dependence on the capillary number. The expression is
more complicated when higher order hydrodynamic terms are
also added [17,20,21]. The resulting shape evolution equations
admit several new dynamical states.

A detailed phase diagram for vesicle dynamics in shear
flow [18] was obtained [22,23] by conducting a series of
experiments in pure shear flow when there is viscosity contrast
across the vesicle ηin/ηex > 1 [22]. This was later extended to a
general shear flow with no viscosity contrast across the vesicle
[23]. It was found that the experimental results [22,23] were
in qualitative agreement with the theory [17–19], although a
quantitative comparison was unsatisfactory. To address this
issue, [21] a higher order theory was suggested wherein the
introduction of the fourth order harmonic [21], along with
the zeroth order haramonic at O(ε2), accurately predicts the
experimental phase diagram (� vs Ca). The origin of the fourth
order spherical harmonic is argued to be on account of the
nonlinear membrane forces as well as due to the interaction
between the shape and the flow. The higher order zeroth order
correction is on account of volume conservation. The modified
theory with higher order spherical harmonics was also found
to be in good agreement with numerical simulations [24]. This
numerical study by Biben et al. [24] elaborates out the role of
the zeroth and fourth order spherical harmonics [21,24] and
compares Refs. [15,18,19], which consider only the second
order spherical harmonics.

These studies were also extended for a vesicle with reduced
volume same as RBCs using three-dimensional numerical sim-
ulations [25]. In another numerical study [26], vesicle shapes
under shear flow were obtained by using the area difference
elasticity model and the spontaneous curvature model.

The work on a vesicle under simultaneous shear flow and
an applied uniform dc electric field [27] exhibited significant
effect on the TT and TU dynamics. The electric field was found
to suppress the tumbling dynamics. Since then, there have been
at least three works on understanding the effect of simultaneous
shear and dc electric fields using numerical methods, such as
the level set method [28,29], the immersed boundary method
[30], and the boundary integral method [31], which extend the
studies to large deformation of the vesicle. All these numerical
studies found that the TU regime is transformed into a TT
regime by application of strong dc electric fields.

The motivation of the present work is to extend these studies
on vesicles under simultaneous shear and dc electric fields to
ac electric fields. DC fields are seldom used in experiments in
vesicles, unless employed for electroporation studies. AC di-
electrophoresis is commonly used in biotechnological applica-
tions and in microfluidic devices. It is therefore important to un-
derstand the effect of frequency and magnitude of ac fields on
the TT, TR, and TU regimes observed in the absence of electric
fields. Moreover, the conductivity ratio is known to be critical
in shape deformations of vesicles in axisymmetric ac electric
fields. It is therefore expected to nontrivially alter the dynamics
of vesicles in combined shear and ac electric fields as well. Ad-
ditionally the theoretical analysis of Ref. [27] needs to be mod-
ified to include higher order membrane deformation forces.

The analysis is conducted to O(ε2) order in the shape
deviation for the membrane forces, and the hydrodynamics
is considered at the O(ε) order. Also the role of the zeroth and
fourth order spherical harmonics is not considered in this work.
The results should therefore be analyzed as an asymptotic case
of the higher order theory discussed in Ref. [21].

II. MATHEMATICAL FORMULATION

A. Model description

Consider a vesicle of radius R0 such that Ṽ = 4
3πR3

0 with a
nonconducting, bilayer membrane, subjected to linear shear
flow resulting in dimensional velocities (ũx = γ̇ ỹ êx,ũ y =
ũz = 0) induced by moving two walls in opposite directions
along the X axis, and here γ̇ is the applied shear rate and ỹ

is the distance along the Y direction. Henceforth all dimen-
sional quantities are expressed by a superscript ∼ (tilde) and
nondimensional without one. The r,θ,	 directions in the corre-
sponding spherical coordinates system are the radial position,
the azimuthal angle measured from the Z axis towards the X-Y
plane and the polar angle measured anticlockwise from the X

axis in the X-Y plane. The centroid of the vesicle remains fixed
at a position where the velocity of the imposed shear flow is
zero. The outer and the inner regions of the vesicle have differ-
ent physical properties such as conductivities (σex,σin), permit-
tivities (εex,εin), and viscosities (ηex,ηin). The membrane has a
finite thickness of h = 5 nm, and it is nonconducting (zero con-
ductance) and has dimensional capacitance C̃mem = εmem/h.
The dimensionless ratios of interest are σr = σin/σex,εr =
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FIG. 1. Schematic of vesicle under ac electric field and shear flow.

εin/εex,η = ηin/ηex. Here subscripts “ex” and “in” represent
quantities outside and inside the vesicle, respectively.

In addition to shear flow, an externally applied ac electric
field Ẽ

∞
cos ω̃t̃ in the Y direction, with frequency ω̃, acts on a

vesicle suspended in the fluid. Such a vesicle, under the action
of simultaneous shear and electric fields, can get inclined at an
angle ψ to the direction of shear flow (Fig. 1), measured anti-
clockwise, and can show both steady and unsteady dynamics
depending upon the system parameters. This dynamical state
is a result of a balance between shape stabilizing membrane
stresses (bending as well as tension stress) and the destabilizing
electric and hydrodynamic stresses.

Various scales are associated with different quantities in
the model that are used to nondimensionalize the governing
equations. All lengths are nondimensionalized by R0, time
by inverse shear rate γ̇ −1, velocity by R0γ̇ , electric field by
E0, frequency by γ̇ , electric potential by E0R0, and stresses
by γ̇ ηex. The electric stresses are of the order εexE

2
0 , and

membrane stresses are of the order of κb/R
3
0. The relaxation

of bulk charge in the outer and inner fluids takes place on
a time scale of t̃ex

c = εex/σex,t̃
in
c = εin/σin, respectively, the

interfacial polarization occurs on time scales t̃MW = εin+2εex
σin+2σex

,
the charging of a capacitive membrane takes place on a
time scale of t̃mem = R0C̃mem( 1

2 + 1
σr

)/σex, the electric field-
induced vesicle deformation takes place on a time scale of
t̃el = ηex/(εexE

2
0 ), while shape distortion due to extensional

part of applied shear takes place on a time scale of t̃γ̇ = γ̇ −1.
The shape deformations relax on a time scale of t̃k = ηexR

3
0/κb.

The relevant nondimensional numbers are the flow capillary
number, Ca = γ̇ ηexR

3
0/κb, which can also be interpreted as the

ratio of deforming stress ηexγ̇ to the restoring stress κb/R
3
0,

and the Mason number Mn = εexE
2
0/(ηexγ̇ ) compares the

relative strength of the electric and the viscous shear stresses.

All equations hereby are presented in nondimensional form
only, and no superscript is used for simplicity and brevity.

B. Shear-ac coupled model

1. Hydrodynamics

The flow is described in the low Reynolds number limit
using the vector spherical harmonics while the pressure and the
electric potentials are expanded in scalar spherical harmonics.
As is the practice in modeling these systems [10,12,13,32–35],
the membrane thermal fluctuations are ignored. The velocity
fields (uin,uex) as well as the pressure fields (pin,pex) in the
inner and the outer regions of the vesicle are given by

∇pin − ∇2uin = 0, (1)

∇ · uin = 0 (2)

and

∇pex − ∇2uex = 0, (3)

∇ · uex = 0 (4)

in the outer region. Note that the viscosity ratio is appropriately
taken into account in the stress balance. Hydrodynamic stresses
in the inner and outer regions of a vesicle are given by

τ h
in = − pin I + η[∇uin + (∇uin)T ], (5)

τ h
ex = − pex I + [∇uex + (∇uex)T ], (6)

where I is the identity matrix and superscript T represents
the transpose of the matrix. The traction vectors on the vesicle
surface (at r = 1) are given by

τh
in.êr = −pin êr + Zin at r = 1, (7)

τh
ex.êr = −pex êr + Zex at r = 1, (8)

with

Zj = êr · [∇u j + (∇u j )
T ]

= r
d

dr

(u j

r

)
+ 1

r
∇[(u j · êr )r], (9)

where j = in,ex and êr is the unit normal vector to the
vesicle surface along the radial direction. Expressions for
Zin|r=1,Zex|r=1 along with the final hydrodynamic traction
matrices are provided in Appendix A [(A21) and (A22)].

2. Electrostatics

For a vesicle subjected to an ac electric field, the expressions for the complex amplitudes of the electric potentials in the inner
and the outer regions are given by [36]

φin = Pinr

n=1∑
n=−1

e∞
1nY1n, (10)

φex = φ∞ + Pex

r2

n=1∑
n=−1

e∞
1nY1n, (11)
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where φ∞ = −r
∑n=1

n=−1 e∞
1nY1n is the externally applied unperturbed nondimensional electric potential. Here Y1n is the associated

Legendre polynomial of degree 1 and order n. If the applied electric field acts in the velocity gradient and the vorticity directions,

then Ẽ
∞ = E0(α ê y + β êz), where α,β are related to the spherical harmonic coefficients by e∞

10 = β
√

4π
3 , e∞

±1 = αi
√

2π
3 . Unknown

coefficients (Pin, Pex) in Eqs. (10) and (11) are determined by applying the electrostatic boundary conditions at the vesicle surface
(at r = 1)

φin − φex = Vmem

n=1∑
n=−1

e∞
1nY1n, (12)

(1 + iωζ )
dφex

dr
= (σr + iωεrζ )

dφin

dr
, (13)

−(1 + iωζ )
dφex

dr
= iCmemωζVmem

n=1∑
n=−1

e∞
1nY1n; (14)

here Vmem is the nondimensional transmembrane potential across the bilayer membrane, and ζ = γ̇ t̃ex
c is a dimensionless parameter

introduced since in the electrostatics equations the time as well as the frequency nondimensionalization are done using the shear
rate and t̃ex

c is of the order of 10−6 s.
This yields

Pin = − 3Cmemζω(−1 + iωζ )

−2σr − I [Cmem(2 + σr ) + 2(εr + σr )]ωζ + [2εr + Cmem(2 + εr )]ω2ζ 2
, (15)

Pex = {iσr − (Cmem + εr + σr − Cmemσr )ωζ + i[Cmem(−1 + εr ) − εr ]ω2ζ 2}
σr [−2i + (2 + Cmem)ωζ ] + ωζ {2(Cmem + εr ) + i[2εr + Cmem(2 + εr )]ωζ } , (16)

Vmem = 3(−i + ωζ )(−iσr + εrωζ )

−2σr − i[Cmem(2 + σr ) + 2(εr + σr )]ωζ + [2εr + Cmem(2 + εr )]ω2ζ 2
. (17)

Here the normal and tangential electric field components in the inner and outer region are Ein, ex,r = − dφin, ex

dr
êr , Ein, ex,θ =

− 1
r

dφin, ex

dθ
êθ , and Ein, ex,� = − 1

r sin θ

dφin, ex

d	
ê�. The induced surface change on the membrane interface is given by Qc =

Re[Eex,r ] − εrRe[Ein,r ], where Re[·] represents the real part of the quantity enclosed in the square bracket, to give

Qc = − 3Cmem(εr − σr )[Cmem(2 + σr ) + 2(εr + σr )]ω2ζ 2(β cos θ + α sin θ sin 	)

4σ 2
r + [4(Cmem + εr )2 + 4C2

memσr + (2 + Cmem)2σ 2
r

]
ω2ζ 2 + [2εr + Cmem(2 + εr )]2ω4ζ 4

. (18)

The time-independent nondimensional electric stress (note that this is the total real stress and not the complex amplitude) in
the r,θ,	 directions inside as well as outside the vesicle are [36]

τE
in,ex,r = 1

4 (Ein,ex,rE
∗
in,ex,r − Ein,ex,θE

∗
in,ex,θ − Ein,ex,φE∗

in,ex,	)Mn, (19)

τE
in,ex,θ = 1

4 (E∗
in,ex,rEin,ex,θ + Ein,ex,rE

∗
in,ex,θ )Mn, (20)

τE
in,ex,	 = 1

4 (E∗
in,ex,rEin,ex,	 + Ein,ex,rE

∗
in,ex,	)Mn. (21)

Here the asterisk (∗) represents the complex conjugate. We consider only time-independent part in this work since the electric
time scales and the frequency of the applied field are considered to be much faster than the shear rate (typically ω̃ = 500 Hz
onwards).

Since the electric stresses are calculated on an undeformed sphere, the net normal and tangential components of electric stresses
at the vesicle surface are

τE
r = τE

ex,r − εrτ
E
in,r , (22)

τE
θ = τE

ex,θ − εrτ
E
in,θ , (23)

τE
	 = τE

ex,	 − εrτ
E
in,	. (24)

The final expressions for the above resultant stress components are provided in Appendix B in terms of α,β. Deformation causing
normal electric force is obtained by subtracting the isotropic part of the normal stress (τE

0 , provided in Appendix B) from τE
r .

Thus τE
n = τE

r − τE
0 Y00(θ,	), where Y00(θ,	) = 1/

√
4π and the isotropic part is given by

τE
0 =

∫ 	=2π

	=0

∫ θ=π

θ=0 τr sin θY00(θ,	)∫ 	=2π

	=0

∫ θ=π

θ=0 sin θY00(θ,	)Y00(θ,	)
. (25)
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The resulting normal ( f E
n = êr · τE

n ) and tangential ( f E
t,θ = êθ · τE

θ , f E
t,� = ê� · τE

	 ) electric tractions are

f E
n = − N

[
3α2 cos 2	 sin2 θ + 1

2 (α2 − 2β2)(1 + 3 cos 2θ )
]
êr , (26)

f E
t = S

{−α2 sin θ sin 2	 ê� + 1
2

[
α2(cos 2	 − 1) + 2β2] sin 2θ êθ

}
, (27)

where

N = 6
{
σ 2

r + [2Cmemεr + ε2
r + σ 2

r + C2
mem

(
1 − 2εr + σ 2

r

)]
ζ 2ω2 + [C2

mem(−1 + εr )2 + 2Cmemεr + ε2
r

]
ζ 4ω4

}
16
{
4σ 2

r + [4(Cmem + εr )2 + 4C2
memσr + (2 + Cmem)2σ 2

r

]
ω2ζ 2 + [2εr + Cmem(2 + εr )]2ω4ζ 4

} Mn, (28)

S = 9Cmemω2ζ 2
[
Cmem(εr − σr ) − σ 2

r − ε2
r ω

2ζ 2
]

4
{
4σ 2

r + [4(Cmem + εr )2 + 4C2
memσr + (2 + Cmem)2σ 2

r

]
ω2ζ 2 + [2εr + Cmem(2 + εr )]2ω4ζ 4

}Mn. (29)

Therefore the total electric traction is f E
tot = f E

n + f E
t .

In the specific case of α = 1,β = 0 (for Y -directional electric field), the total membrane traction can be expressed in terms of
vector spherical harmonics by using the identities provided in Appendix C as

f E
tot = −N

2

[
8

√
π

5
y202 + 6

√
8π

15
( y222 + y2−22)

]
− S

2

(
−
√

32π

15
y200

)
+ S

√
4π

5
( y220 + y2−20). (30)

Equation (30) can be written in a more compact way as

f E
tot = f E

n + f E
t =

m=2∑
m=−2

τE
2m2 y2m2 +

m=2∑
m=−2

τE
2m0 y2m0,

f E
tot = (τE

2−22 y2−22 + τE
202 y202 + τE

222 y222

)+ (τE
2−20 y2−20 + τE

200 y200 + τE
220 y220

)
(31)

such that the normal and tangential electric stresses are

τE
2−22 = − 2N

√
6π

5
, τE

202 = −4N

√
π

5
, τE

222 = −2N

√
6π

5
, (32)

τE
2−20 = S

√
4π

5
, τE

200 = S

√
8π

15
, τE

220 = S

√
4π

5
. (33)

The net Maxwell stress is τE =∑l=2

∑l
m=−l (τE

lm0 ylm0 + τE
lm2 ylm2), where τE

lm0 and τE
lm2 are tangential and normal electric

stresses, respectively. Here another component of tangential stress
∑

l=2

∑l
m=−l τ

E
lm1 ylm1 is not taken into account since it turns

out to be zero.

3. Membrane mechanics with higher order corrections

The surface of a slightly deformed vesicle is described by

rs = α +
∞∑
l=0

l∑
m=−l

flmYlm, (34)

where α is obtained by volume conservation constraint
∫

r3
s sin θ dθ dφ = 4π , which gives α = 1 −∑∞

l=0

∑l
m=−l flmYlm/(4π )

while the constraint of area conservation is
∫

r2
s /(êr · n) sin θ dθ dφ = 4π + � and leads to an excess area stored in the vesicle

in the deformed state � =∑∞
l=0

∑l
m=−l

(l+2)(l−1)
2 flmYlm.

The nondimensional membrane stress on the vesicle can be written as

τmem = 1

Ca
{[−2(2H 3 − 2KH + ∇2H ) + 2σH ]êr − ∇sσ }, (35)

where σ = σ0 +∑∞
l=0

∑l
m=−l σlmYlm with σ0 is the uniform nondimensional membrane tension [such that σ = σ̃ /(κbR

2
o)] and

σlm is the nonuniform membrane tension which varies along the vesicle surface. On taking curvature terms up to second order in
spherical harmonics, the mean curvature is given by

H = 1 + 1
2 [l(l + 1) − 2]F (θ,φ) − [l(l + 1) − 1]F (θ,φ)2 (36)

and the Gaussian curvature by

K = 1 + [l(l + 1) − 2]F (θ,φ) − 3[l(l + 1) − 1]F (θ,φ)2 − l(l + 1)F (θ,φ)

[
−l(l + 1)F (θ,φ) − d2F (θ,φ)

dθ2

]
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− cot2 θ csc2 θ

[
dF (θ,φ)

dφ

]2

+ 2 cot θ csc2 θ
dF (θ,φ)

dφ

d2F (θ,φ)

dθdφ
−
[
−l(l + 1)F (θ,φ) − d2F (θ,φ)

dθ2

]2

− csc2 θ

[
d2F (θ,φ)

dθdφ

]2

, (37)

where F (θ,φ) =∑l=2

∑l
m=−l flmYlm(θ,φ).

Using these two curvatures (H and K) all other linear and nonlinear terms in membrane stress can be obtained such that the
resulting normal and tangential membrane stresses with higher order correction terms are, respectively,

τmem
lm0 = ∇sσ = −Ca−1

[√
l(l + 1)

∑
l=2

l∑
m=−l

σlmYlm

]
(38)

and

τmem
lm2 = Ca−1[−2(2H 3 − 2KH + ∇2H ) + 2σH ]. (39)

Substitution of the curvature terms [Eqs. (36) and (37)] in Eq. (39) gives normal membrane stress for m = −2,0,2 modes as

τmem
2−22 = Ca−1

[
1

14π
(144

√
5πf20f2−2 + 40

√
5πf20f2−2σ0) + 4f2−2(6 + σ0) + 2σ2−2

]
y2−22, (40)

τmem
202 = Ca−1

(
1

14π

{
(144

√
5π + 40

√
5πσ0)f2−2f22 − [4

√
5π (18 + 5σ0)]f 2

20

}+ 4(6 + σ0)f20 + 2σ20

)
y202, (41)

τmem
222 = Ca−1

[
1

14π
(144

√
5πf20f22 + 40

√
5πf20f22σ0) + 4f22(6 + σ0) + 2σ22

]
y222. (42)

4. Overall stress balance

The overall tangential stress balance across the vesicle is given by(
τ

h,ex
lm0 − ητ

h,in
lm0

)
+ τE

lm0 = τmem
lm0 . (43)

Similarly the overall normal stress balance is (
τ

h,ex
lm2 − ητ

h,in
lm2

)
+ τE

lm2 = τmem
lm2 . (44)

The tangential stress balance is used to obtain the nonuniform tension terms (σ2−2,σ20,σ22), whereas the normal stress balance
gives normal velocity components (C2−22,C202,C222), provided in Appendix D. The expressions are derived using the higher
order theory for membrane forces.

5. Dynamic evolution equation with ac-shear coupling

With higher order corrections in the membrane stress the evolution equations for different deformation modes when a vesicle
is subjected to pure shear flow under electric field is given by [27]

df2m

dt
= i

m

2
f2m + C2m2, (45)

where m = −2,0,2 and C2m2 is the normal component of membrane velocity due to contribution from both pure shear flow and
ac electric field-induced stresses (details provided in Appendixes D and E)

C2−22 = CSh
2−2 − 24

[
7π (6 + σ0) + √

5π (18 + 5σ0)f20

7π (32 + 23η)Ca

]
f2−2 + MnCel

2−2, (46)

C202 = CSh
20 +

[
−168π (6 + σ0)f20 + 12

√
5π (18 + 5σ0)

(
f 2

20 − 2f22f2−2
)

7π (32 + 23η)Ca

]
+ MnCel

20, (47)

C222 = CSh
22 − 24

[
7π (6 + σ0) + √

5π (18 + 5σ0)f20

7π (32 + 23η)Ca

]
f22 + MnCel

22. (48)

Here Csh
2m = −im( 2

√
30π

32+23η
) is the contribution from pure shear part, and Cel

2m represents electrostatic contribution. Mn is measure
of applied electric field strength relative to the applied shear.
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In terms of inclination angle (ψ), the amplitude of deformation modes can be represented as f22 = Re−2iψ and f2−2 = Re2iψ

with R = √
A cos θ/2, which measures the deformation. Separation of real and imaginary parts gives the evolution equations for

the inclination angle and the vesicle shape:

dψ

dt
= 4

√
30π

(32 + 23λ)

cos 2ψ

cos θ
− 1

2
− MnX1, (49)

dθ

dt
= − 8

√
30π√

A(32 + 23η)
sin θ sin 2ψ + 720

√
A

7
√

10π (32 + 23η)Ca
cos 3θ + MnX2, (50)

where additional terms due to electrostatic contribution are

X1 = sin 2ψ

2 cos θ

{
14

√
π
[
3Cel

22 + Cel
2−2 + (− Cel

22 + Cel
2−2

)
cos 2θ

]+ 5
√

10
√

A
[
Cel

22 + Cel
2−2

+ (3Cel
22 + Cel

2−2

)
cos 2θ

]
sin θ

}
/(28

√
A

√
π + 5

√
10A sin 3θ ), (51)

X2 =
√

2

A

{
Cel

20 cos θ + 1

2
√

2

[− 3Cel
22 + Cel

2−2 + (Cel
22 + Cel

2−2

)
cos 2θ

]
cos 2ψ/ sin θ

}
. (52)

Here the electrostatic contribution Cel
2m = (6τ2m2 + 2

√
6τ2m0)/(32 + 23η).

In Eq. (49), the left-hand side term represents the torque due to the rotating vesicle. On the right-hand side, the first term is the
torque due to the elongational part which tries to align the vesicle in the principal direction of the strain rate tensor, the second
term is the clockwise torque due to the rotational part of the mean flow, while the third part is the electrical torque.

Only the l = 2 modes are considered in the analysis since they are excited by the electric and hydrodynamic stresses and
lead to deformation. The symmetry in the problem implies that only m = −2,0,2 are admitted, where m = ±2 represents the
components in the X-Y plane and m = 0 mode corresponds to the axisymmetric mode along the Z axis. The evolution equations
so obtained are highly nonlinear, transcendental differential equations due to the coupling of higher order terms, and are therefore
solved numerically using Mathematica 10.

III. RESULTS AND DISCUSSION

The physics of the TT, TR and TU regimes can be under-
stood as follows. Consider a rigid spherical object in shear
flow, the applied flow can be decomposed into a rotational part
which tries to rotate the particle with an angular velocity equal
to half the shear rate (for pure shear flow the extensional strain
rate and the rotational vorticity is identical and equal to half the
shear rate), unless it is at rest, and exerts a torque accordingly.
The extensional flow part then generates a stresslet, which in
a spherical particle can never exert a net force or a torque due
to symmetry. As a result, a torque-free rigid sphere means the
sphere rotates with the same angular velocity (half the applied
shear rate), without offering any resistance, thereby leading to
a torque balance.

When a rigid ellipsoidal particle is placed in shear flow,
it continues to rotate with an angular velocity half the shear
rate. However, the extensional flow can exert a torque on an
ellipsoidal particle, trying to align it in the direction of the
extensional strain rate, which is 45◦ to the direction of flow.
The dynamics of the orientation of an ellipsoidal particle can
be given by

dψ

dt
= −A + B cos(2ψ), (53)

as suggested in Ref. [37]. It turns out that for rigid ellipsoids,
for reasons to be discussed later, the magnitude of A is always
greater than or equal to B, thereby a steady state solution
is never obtained. Thus an ellipsoidal particle rotates (called
tumbling in the vesicles and cells literature) when placed in a

shearing flow, since it cannot simultaneously admit a tangential
velocity in the rotating reference frame of the particle.

Unlike a rigid ellipsoid, a deformable drop placed in a
shear flow can allow a finite tangential velocity of the interface
(surface), called the TT velocity, even in the reference frame
of the rotating drop [38]. This leads to A being less than B,
and a steady value of ψ the orientation angle is observed. In
this case, the torque exerted by the shear is partially balanced
by the restoring torque of the elongational flow that aligns it
at an angle of 45◦ to the direction of flow, and partially by the
interface velocity in the rotating reference frame.

The case of a vesicle in shear flow is similar to that of a
drop, the tangential velocity of the membrane (TT velocity)
helps in reducing the torque due to the applied shear, which
is then balanced by the torque due to the elongational part of

3 6 9 12 15

0.0

0.2

0.4

0.6

(a) (b)

FIG. 2. Pure shear: (a) vesicle inclination angle in TT regime vs
viscosity ratio and (b) the phase diagram showing different regimes for
viscosity ratio vs Ca, in the absence of electric field (Mn = 0, Ca =
1,� = 0.2).
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FIG. 3. (a) Transmembrane potential (Vmem, black lines) and interface charge (Qc, red lines) variation with frequency for σr = 10 (solid)
and σr = 0.1 (hollow), (b) Normal stress (N , black lines) and tangential stress (S, red lines) variation with frequency for σr = 10 (solid) and
σr = 0.1(hollow) (ζ = 10−7,Cmem = 50,εr = 1).

the shear flow. The torque exerted by the applied shear on the
deformed ellipsoidal vesicle increases with an increase in the
inner viscosity of the vesicle, such that the angle of inclination
decreases from π/4 to 0, with an increase in the inner viscosity.
The case of a rigid particle can be envisaged as a limiting
case of inner viscosity tending to infinity (Fig. 2). With an
increase in the inner viscosity, the torque due to elongational
flow weakens, and the rotational torque increases such that
beyond a critical viscosity ratio, and the vesicle no longer tank-
treads but undergoes a tumbling transition. The TT velocity in
the TU regime was shown in Ref. [3] to vary as cos 2ψ . In
the TT regime, the frequency of the TT velocity is constant
such that the tangential velocity varies in the 	 direction [3]
for a given orientation angle ψ . Thus a vesicle undergoes a
TT to TR to TU transition as the viscosity of the inner fluid is
increased.

It is therefore of interest to understand the effect of electric
field on the three dynamical modes of tank treading, trembling,
and tumbling.

The nondimensional numbers used in this work were ob-
tained using dimensional parameter values in a range in which
most of the pure shear experiments are typically conducted
[9,14,22,23]. A vesicle of size R0 = 10 μm is assumed to be
suspended in an another leaky-dielectric fluid, and the ratios

102 103 104 105 106 107 108 109
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FIG. 4. Electric torque (T el) on a deformed vesicle in TT state,
(a) variation of the electric torque with frequency (for ψ = π/4)
for σr = 10 (solid spheres), σr = 0.1 (hollow spheres) for a vesicle
inclined at ψ = pi/4 (b) electric torque at different inclination angles
at Mn = 10, ω = 106 for σr = 10 (solid spheres), σr = 0.1 (hollow
spheres) (η = 3,Ca = 1,ζ = 10−7,εr = 1,� = 0.2,Cmem = 50).

of their inside or outside fluid properties are εr = 1, σr =
0.1,10, and η = 1–20. These can be considered to represent
electrical conductivities of the order of 1 − 100 × 10−5 S/m,
and viscosities varying from 1–100 × 10−3 Pa-s. Typical shear
rates of γ̇ = 0.1 s−1 and frequency of the applied electric
field could vary from ω = 1 kHz to 10 MHz, with electric
field strength (E0) varied in the range of 0.01–1 kV/cm. It
is assumed that the membrane is insulating, and its nondi-
mensional capacitance is Cmem = (εmem/h)(R0/εex) = 50, the
charging of the membrane then takes place on a time scale
of t̃mem = (R0/σex)Cmem(1/2 + 1/σr ) ∼ 10−4–10−5 s while
the Maxwell Wagner charge relaxation time is of the order
of t̃MW = εex/σex(2 + εr )/(2 + σr ) ∼ 10−6–10−7 s. The flow
capillary number Ca = γ̇ ηexR

3
0/κb, and the electric Mason

10-3 10-2 10-1 100 101 102 103

0.5

1.0

1.5

Mn
(a)

10-3 10-2 10-1 100 101 102 103
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(b)
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0.0
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FIG. 5. (a, b) Variation of inclination angle with strength of
applied electric field in TT regime for σr = 10 and σr = 0.1, respec-
tively; (c) Variation of inclination angle with frequency of applied
electric field in TT regime for σr = 10, σr = 0.1 at electric field
strength Mn = 20 (Ca = 1,η = 3).
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FIG. 6. Vesicle orientation under the effect of ac field in shear flow at fixed Mn. (a–f) σr = 10, (g–l) σr = 0.1. In each set ω increases as
103, 105, 107 from left to right (η = 3,Mn = 10,Ca = 1,ζ = 10−7,εr = 1,� = 0.2,Cmem = 50).

number Mn = εexE
2
0/(γ̇ ηex) take values in the range of 0.1–5.0

and 0.1–100, respectively. The analysis is presented for two
sets of conductivity ratios σr = 0.1,10, representing relative
conductivities of the inner fluid to be lower or higher than the
outer, respectively.

A. Transmembrane potential

The variation of transmembrane potential (Vmem) with
frequency is presented in Fig. 3(a). The figure shows that at
very low frequencies the transmembrane potential is maximum
because of the high impedance of the capacitive membrane that
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FIG. 7. Vesicle orientation under the effect of ac field in shear flow at fixed ω. (a–f) σr = 10, (g–l) σr = 0.1. In each set Mn increases as
0.001,10,1000 from left to right (η = 3,ω = 107,Ca = 1,ζ = 10−7,εr = 1,� = 0.2,Cmem = 50).

prevents penetration of the field inside. The membrane in this
case is fully charged, and the net charge on the membrane
is zero on account of equal positive and negative charges on
either side of the membrane. The variation of potential is sin 2	

and is thereby maximum, although of opposite signs at 	 =
π/2 (positive) and 	 = −π/2 (negative). As the frequency
increases beyond t−1

mem, the field penetrates the membrane, a
fall in Vmem, and build up of a net positive (σr > 1) or negative
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charge (σr < 1) at 	 = π/2 at the membrane interface, akin
to the case of a liquid drop in electric field is observed. At
very high frequencies (>t−1

MW) a perfect dielectric response of
fluid as well as membrane is observed, and Vmem as well as net
charge Qc (on account of zero absolute charge on each side of
the bilayer) tend to zero.

The tangential stresses at low and high frequencies are in-
dependent of the conductivity ratio and are zero for completely
different reasons. At very high frequencies, the membrane is
uncharged, while at very low frequencies, the normal electric
field in the outer region at the membrane interface vanishes,
since the membrane acts like a perfect insulator with very high
impedance. The normal stresses at very high frequencies are
independent of σr and identically equal zero due to diminishing
contrast of the electrical parameters. At very low frequencies,
the normal electric stress is compressive at 	 = 0, diminishing
towards 	 = π/2,−π/2. This can be decomposed into an
isotropic compressive pressure and a tensile force which is
maximum at 	 = π/2 and −π/2. At intermediate frequencies
(>t−1

mem and <t−1
MW), depending upon the value of σr , the electric

field acting upon the net charge accumulated at the membrane
of a vesicle can result in tangential stresses that can act from
	 = 0 to 	 = π/2 (σr > 1) or from 	 = π/2 to 	 = 0(σr <

1). Thus, when σr > 1 tensile stresses on the vesicle deform it
into a prolate shape, while compressive stresses cause oblate
deformation [Fig. 3(b)] when σr < 1.

Thus, in general, one can observe conductivity ratio σr

dependent behavior at intermediate frequencies, whereas the
behavior should be independent of σr for very high and very
low frequencies.

B. Tank-treading regime

A vesicle, under linear shear flow, with viscosity ratio less
than a critical value, is deformed into an ellipsoidal shape and
orients itself at an angle termed the inclination angle with the
direction of shear flow. The vesicle shape remains unchanged
at that inclination angle while the membrane undergoes a
continuous rotation around its fixed shape, called tank treading.
The inclination angle is modified by the application of an ac
electric field when a vesicle is in the TT regime. The inclination
angle ψ with respect to the direction of flow increases in
a clockwise direction and reaches its maximum value of
ψ = π/2 when σr > 1 or can decrease to zero when σr < 1,
especially in the intermediate frequency range. The dynamics
is decided by the relative magnitudes of the hydrodynamic,
electric, and membrane torques. The electric torque depends
upon the frequency, electric field, and conductivity ratio.

Figure 4(a) shows the variation of the total electric torque
acting upon a deformed vesicle with frequency inclined at
ψ = π/4 for the two conductivity ratios. The torque is always
anticlockwise (positive) in the first quadrant at all frequencies
for σr > 1, whereas it is clockwise (negative) at intermediate
frequencies for σr < 1. Figure 4(b) shows that at an intermedi-
ate frequency (103 < ω < 105), the torque in the first quadrant
(0 < ψ < π/2) is clockwise (negative) for σr < 1, indicating
a tendency to rotate the vesicle along the X direction. On
the other hand for σr > 1, the torque in the first quadrant is
anticlockwise (positive), thereby rotating the vesicle towards
the Y axis. The stability of the stationary point ψ = 0 (X
axis) for σr < 1 can be seen from the anticlockwise torque
(positive) in the fourth quadrant (3π/2 < ψ < 2π ). Similarly

FIG. 8. TR to TU transition as a function of time for σr = 10: (a, b) TR motion and corresponding shape deformation at η = 9.3;
(c, d) transition from TR to TU motion and corresponding shape deformation at η = 9.4 (Mn = 0.1,ω = 106,Ca = 1,ζ = 10−7,εr = 1,� =
0.2,Cmem = 50).
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FIG. 9. TR to TU transition as a function of time for σr = 0.1: (a, b) TR motion and corresponding shape deformation at η = 10.6;
(c, d) transition from TR to TU motion and corresponding shape deformation at η = 10.7 (Mn = 0.1,ω = 106,Ca = 1,ζ = 10−7,εr = 1,� =
0.2,Cmem = 50).

the ψ = π/2 is a stable point for σr > 1 and can be seen
from the clockwise torque (negative) in the second quadrant
(π/2 < ψ < π ). The torque in the very low and very high

FIG. 10. Phase diagram for transition between dynamic states
(a) η = 10,σr = 10, (b)η = 12,σr = 10, (c) η = 10,σr = 0.1, and
(d) η = 12,σr = 0.1. TR (yellow region), TT (green region), TT
in intermediate frequency for σr < 1 (purple), TU (blue region)
(εr = 1,� = 0.2,Cmem = 50,Ca = 1,ζ = 10−7).

frequencies for both the conductivity ratio is anticlockwise in
the first quadrant, thereby favoring ψ = π/2.

The effect of the electric torque is clearly seen in Figs. 5(a)
and 5(b) in the TT regime which shows the variation of
inclination angle (ψ) with the applied field strength for three
different frequency values. Selection of these frequencies is
based on the nondimensional (by the shear rate) membrane
charging time t−1

mem ∼ 105 where tmem = t̃mem/t̃γ̇ . Thus the
three values of ω of interest are ω < t−1

mem, ω ∼ t−1
mem, and

ω > t−1
mem. Figure 6 shows the shape of the deformed vesicle

as a function of frequency for a given Mn for σr = 10,0.1.
Similarly, Fig. 7 shows the shape of a deformed vesicle as a
function of Mn at intermediate frequencies for the two con-
ductivity ratios. A clear dependence of both the shape (prolate
or oblate) and the orientation (near ψ = π/2 or ψ = 0) can
be clearly seen. For σr > 1 [Fig. 5(a)], a vesicle acquires a
prolate ellipsoidal shape [Figs. 7(a)–7(c)] and the inclination
angle increases for a given frequency from a value correspond-
ing to Mn = 0 to its maximum value of π/2, with the major axis
parallel to the applied electric field. A stronger effect of electric
field is seen at intermediate frequencies when the Maxwell
stresses and thereby the electric torques are higher. When
σr < 1 [Fig. 5(b)], in the low-frequency regime (ω < t−1

mem)
a vesicle shape remains prolate ellipsoidal [Fig. 7(g)] and
shows an increase in inclination angle up to ψ = π/2 with
an increase in Mn. When the frequency ω > t−1

mem the vesicle
acquires an oblate ellipsoidal shape [Figs. 7(h) and 7(i)] and
shows a decrement in inclination angle with Mn for a given
frequency, finally attaining a zero inclination angle. Thus the
shape-Maxwell stress coupling leads to interesting dependence
of inclination angle on the applied frequency.

032404-12



EFFECT OF AC ELECTRIC FIELD ON THE DYNAMICS … PHYSICAL REVIEW E 97, 032404 (2018)

The variation of the inclination angle with frequency for a
particular value of Mn is shown in Fig. 5(c) for the σr = 10,0.1
cases and is exactly similar to that seen for the variation of
electric torque with frequency (Fig. 4). This confirms that the
electric torque determines the inclination angle of a vesicle
in simultaneous shear and electric fields. When σr = 10, the
inclination angle remains constant at low frequency and then
start increasing with ω to attain its maximum value at ω =
107. Further increase in frequency decreases vesicle orientation
angle. When σr = 0.1 a prolate spheroidal shape is seen at low
frequency, similar to the case σr = 10. Remarkably when ω

is increased, the inclination angle decreases almost to zero
and remains at that orientation for a range of frequency value
105–107, beyond which it again increases to a value similar to
that seen at σr = 10 [but not shown in Fig. 5(b)].

C. Trembling-tumbling transition

A vesicle subjected to linear shear flow shows TR as an
intermediate regime between TT and TU (Figs. 11 and 12 and
discussed in detail in Appendix F). Figure 8 presents the tran-
sition from TR to TU regime when σr > 1. A vesicle in the TR
regime exhibits small oscillations about an average orientation
[Fig. 8(a)]. The TU motion of a vesicle is characterized by
a continuous periodic flipping [Fig. 8(c)]. Both the TR and
TU regimes show corresponding shape oscillations apart from
orientation oscillations [Figs. 8(b) and 8(d), respectively] and
rotations respectively [9]. When σr < 1 (Fig. 9), a similar
TR-TU transition is observed. However, the transition for
σr < 1 occurs at much higher viscosity ratio than σr > 1. This
is despite the fact that the electric torque is anticlockwise for
σr > 1 and vice versa for σr < 1. This could be attributed to the
higher hydrodynamic torque and a rigid ellipsoid-like behavior
for σr > 1 which promotes elongation in the X-Y plane in the
first quadrant. The transition viscosity ratio not only depends
upon the conductivity ratio, but is also significantly different
than the transition viscosity ratio in the absence of electric field
(Mn = 0). Thus electric field alters the TT-TR-TU transition
of a vesicle in shear flow.

D. Phase diagram

There is no significant variation in the η-Ca phase diagram
(Figs. 11 and 12 are presented in Appendix F) with respect to
Ca, owing to which the dynamics of a vesicle in simultaneous
shear flow and electric fields is best presented in the Mn-ω
coordinates. Two viscosity values are selected such that when
Mn = 0 the vesicle either shows TR (η = 10) or TU (η = 12)
modes. In each of these dynamic modes, the effect of Mn and
ω is investigated for conductivity ratio σr > 1 and σr < 1.

1. σr > 1

In this case the electric torque is always anticlockwise and is
maximum when the t−1

mem < ω < t−1
MW. Correspondingly, in the

low η regime, the anticlockwise torque suppresses the low Mn
TR modes into high Mn TT modes. The transition Mn for TR to
TU to TT is lower when t−1

memb < ω < t−1
MW [Fig. 10(a)]. Similar

arguments can be given to explain the TU to TT transition for
the higher viscosity contrast (high η) case [Fig. 10(b)].

2. σr < 1

When σr < 1 the transition is frequency dependent. In
the low viscosity case, at low and high frequencies, the
transition from TR to TT occurs via the TU mode, similar
to the σr > 1 case [Fig. 10(c)]. However at an intermediate
frequency, a TR-TT transition is seen and the TU mode is
suppressed. Figure 10(d) for the high viscosity case shows
dynamic transitions such that a direct TU-TT transition is
observed at low and high frequencies. In the intermediate
frequency range, as Mn is increased, there is an appearance of
TR regime before entering into the TT regime. In all the cases,
an oscillatory relaxation to TT state (long time relaxation) takes
place near the TR-TT phase boundary. An important feature
of the σr < 1 case is the transition from the TT(ψ = π/2)
at the low and high frequencies to the ψ = 0 at intermediate
frequencies, especially at high Mn. In the low Mn regime, the
two TT modes differ with the low frequency showing a long
tumbling mode is observed in the dynamics before switching
to TT, whereas in the intermediate frequency case, the TT
state is attained instantaneously. The electric torque at these
transition frequencies ω = t−1

mem and ω = t−1
MW changes sign,

and goes through zero, thereby enabling the TR and TU modes
in Figs. 10(b) and 10(d), respectively, corresponding to the
Mn = 0 case.

IV. CONCLUSIONS

A systematic study on the effect of electric field on the
different dynamical modes such as TT, TR, and TU that are
commonly observed in a vesicle in shear flow. The electrical
parameters of interest here are the conductivity ratio, the
frequency of applied field, and the Mason number, apart from
the viscosity contrast between inner and outer fluid. Our study
shows that apart from the role of the electric torque on deciding
the dynamical modes of a vesicle in simultaneous electric and
shear field, a complicated coupling between the elongation
caused by high Mn can lead to unexpected appearance of an
intermediate TU regime in some cases. The phase diagrams
presented here can enable the judicious use of electrical pa-
rameters in either promoting or prohibiting specific dynamical
modes. For example, a TU mode may be more desirable if
mixing of the vesicles content as well as agitation in the system
is desired. On the other hand, if undisturbed, streamlined flow
of vesicles is desired, it might be desirable to be in the TT
regime. We show here that electric field parameters can easily
allow enforcing a desired dynamical mode in such systems. The
dynamical modes of a suspension of emulsions, as encountered
for example in dielectrophoretic devices, can determine the
effective residence time as well as the total possible suspension
density in biotechnological applications involving continuous
processing. The present study in that case would form the basis
for more detailed calculations.
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APPENDIX A: HYDRODYNAMICS

In the low Reynolds number limit, the velocity fields for
the inner and outer regions given by the solution of the Stokes
equation (Lamb solution [39])

uin = C
g

lm0ug
lm0 + C

g

lm1ug
lm1 + C

g

lm2ug
lm2, (A1)

uex = (Cd
lm0ud

lm0 + Cd
lm1ud

lm1 + Cd
lm2ud

lm2

)
+ (

C∞
lm0ug

lm0 + C∞
lm1ug

lm1 + C∞
lm2ug

lm2

)
, (A2)

where coefficientsC
g

lm0,C
g

lm1,C
g

lm2 are coefficients correspond-
ing to the growing harmonics in the interior region and
Cd

lm0,C
d
lm1,C

d
lm2 are decaying harmonic coefficients in the

exterior region. These unknown coefficients are determined
by using the velocity continuity, membrane incompressibility
conditions, and stress balance at the surface of the vesicle.

C∞
lm0,C

∞
lm1,C

∞
lm2 are coefficients associated with the applied

unperturbed external flow (when uex = u∞), and they depend
on the elongational (s) as well as rotational (�) component of
applied flow described as (for l = 2,m = ±2 mode)

C∞
2±20 = ∓2i

(√
π

5

)
s, (A3)

C∞
2±21 = 0, (A4)

C∞
2±22 = ∓2i

(√
2π

15

)
s, (A5)

C∞
1±10 = 2i

(√
2π

3

)
�, (A6)

where � = s = γ̇ /2 for the case of pure shear.
ug

lm0,u
g
lm1,u

g
lm2 and ud

lm0,u
d
lm1,u

d
lm2 are growing and decay-

ing velocity eigenfunctions for inner and outer fluid, respec-
tively, defined as [16]

ug
lm0 = 1

2 rl−1[−(l + 1) + (l + 3)r2] ylm0

− 1
2 rl−1[l(l + 1)]1/2(1 − r2) ylm2, (A7)

ug
lm1 = rl ylm1, (A8)

ug
lm2 = 1

2
rl−1(3 + l)

(
l + 1

l

)1/2

(1 − r2) ylm0

+ 1

2
rl−1[l + 3 − (l + 1)r2] ylm2, (A9)

ud
lm0 = 1

2 r−l(2 − l + lr−2) ylm0

+ 1
2 r−l[l(l + 1)]1/2(1 − r−2) ylm2, (A10)

ud
lm1 = r−l−1 ylm1, (A11)

ud
lm2 = 1

2
r−l(2 − l)

(
l

l + 1

)1/2

(1 − r−2) ylm0

+ 1

2
r−l[l + (2 − l)r−2] ylm2. (A12)

Here ylm0, ylm1, ylm2 are vector spherical harmonics defined
as

ylm0 = 1√
l(l + 1)

∂Ylm

∂θ
êθ

+ im√
l(l + 1)

Ylm

sin θ
ê�, (A13)

ylm1 = − m√
l(l + 1)

Ylm

sin θ
êθ − i√

l(l + 1)

∂Ylm

∂θ
ê�, (A14)

ylm2 = êrYlm (A15)

with scalar spherical harmonics

Ylm(θ,	) =
√

2l + 1

4π

(l − m)!

(l + m)!
(−1)mPlm(cos θ )eim	. (A16)

1. Solution for hydrodynamic stress

The hydrodynamic stress in the interior and exterior (j =
in,ex) regions of a vesicle are given by

τ h
j = −pj I + ηj [∇u j + (∇u j )

T ], (A17)

where ηj = 1 for outer vesicle, ηj = η for inner vesicle, I is
the identity matrix and superscript T represents the transpose
of the matrix, and p and u are pressure and velocity field,
respectively. Normal stress traction exerted on the vesicle
surface (at r = 1) are given by

τh
in · êr = −pin êr + Zin at r = 1, (A18)

τh
ex · êr = −pex êr + Zex at r = 1, (A19)

with

Zj = êr · [∇u j + (∇u j )
T ] = r

d

dr

(u j

r

)
+ 1

r
∇[(u j · êr )r], (A20)

where j = in,ex. Expression for Zin|r=1,Zex|r=1 are

Zin ={2C
g

lm1(−1 + l) ylm1 + C
g

lm2[(−6
√

1 + 1/l − 2
√

1 + 1/ll + 2
√

l(1 + l)] ylm0 − 6 ylm2

}
+ {2C

g

lm0

√
l(1 + l) + C

g

lm2[−(1 + l)(2 + l) + l(3 + l)]
}

ylm2 + C
g

lm0{2[1 − l2 + l(2 + l)] ylm0 + 2
√

l(1 + l) ylm2}/2,

(A21)

Zex = [− 3C∞
lm2

√
1 + 1/l + (3

√
l/(1 + l)

](
C

g

lm2 − C∞
lm2

)− (Cg

lm0 − 2C∞
lm0

)
(1 + 2l)) ylm0

+ [
C∞

lm1l − (2Cd
lm1 + C∞

lm1) − Cd
lm1l
]

ylm1 + [2C
g

lm0

√
l(1 + l) − 4C

g

lm2

]
ylm2. (A22)
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The pressure field in each region in terms of growing or decaying harmonics can be expressed as a solution of the Laplace
equation (∇2p = 0)

pin = Ainr
lYlm, (A23)

pex = Ag
exr

lYlm + Ad
exr

−l−1Ylm, (A24)

where Ain,A
g
ex,A

d
ex are pressure coefficients obtained by solving momentum equation for interior and exterior fluid (i.e., ∇pj =

μj∇2u j with j = in,ex). Full expressions are

Ain = (1 + l)
{
C

g

lm0(3 + 2l) − C
g

lm2[3
√

1 + 1/l + √
1 + 1/ll + √

l(1 + l)]
}

√
l(1 + l)

, (A25)

Ag
ex = −

[
(3 + 2l)

(
C∞

lm2 + C∞
lm2l − C∞

lm0

√
l
√

1 + l
)]

l
, (A26)

Ad
ex =

[√
l(−1 + 2l)

(
Cd

lm2

√
l + Cd

lm0

√
1 + l

)]
(1 + l)

. (A27)

The hydrodynamic stress traction acting on the vesicle at inner surface is [from Eq. (A18)]

τh
in.êr |r=λ = (−Ainr

l ylm2 + Zin)|r=1. (A28)

Similarly hydrodynamic stress traction acting at the outer surface of the vesicle is [from Eq. (A19)]

τh
ex.êr |r=1 = (− Ag

exr
l ylm2 − Ad

exr
−l−1 ylm2 + Zex

)∣∣
r=1. (A29)

Substitution of pressure coefficients (Ain,A
d
ex,A

g
ex) and Z values (Zin,Zex) into the above equations gives stress traction on the

inner and outer surface of the vesicle (at r = 1) due to inner fluid and exterior fluid, respectively, in matrix form as [16]

τh
in · êr |r=1 =

⎛
⎜⎜⎝

2l + 1 0 −3
√

l+1
l

0 l − 1 0

−3
√

l+1
l

0 1 + 3
l
+ 2l

⎞
⎟⎟⎠(Cg

lm0 C
g

lm1 C
g

lm2

)⎛⎜⎝
ylm0

ylm1

ylm2

⎞
⎟⎠, (A30)

τh
ex · êr |r=1 =

⎡
⎢⎢⎣

1 + 2l 0 −3
√

l+1
l

0 −l + 1 0

−3
√

l+1
l

0 1 + 3
l
+ 2l

⎤
⎥⎥⎦(C∞

lm0 C∞
lm1 C∞

lm2

)⎛⎜⎝
ylm0

ylm1

ylm2

⎞
⎟⎠

+

⎡
⎢⎢⎣

−1 − 2l 0 3
√

l
l+1

0 −2 − l 0

3
√

l
l+1 0 −1 − 2l − 3

l+1

⎤
⎥⎥⎦(Cd

lm0 Cd
lm1 Cd

lm2

)⎛⎜⎝
ylm0

ylm1

ylm2

⎞
⎟⎠. (A31)

This can be further expressed as the tangential hydrodynamic stress inside and outside:

τ
h,in
lm0 =

[
(2l + 1)Cg

lm0 +
(

−3

√
l + 1

l

)
C

g

lm2

]
ylm0, (A32)

τ
h,ex
lm0 =

[
(4l + 2)C∞

lm0 +
(

−3

√
l + 1

l
− 3

√
l

l + 1

)
C∞

lm2

]
ylm0 +

[
(−2l − 1)Cd

lm0 +
(

3

√
l

l + 1

)
Cd

lm2

]
ylm0, (A33)

while the normal hydrodynamic stress inside and outside are

τ
h,in
lm2 =

[(
−3

√
l + 1

l

)
C

g

lm0 +
(

2l + 1 + 3

l

)
C

g

lm2

]
ylm2, (A34)

τ
h,ex
lm2 =

[(
−3

√
l + 1

l
− 3

√
l

l + 1

)
C∞

lm0 +
(

4l + 2 + 3

l
+ 3

l + 1

)
C∞

lm2

]
ylm2

+
[(

3

√
l

l + 1

)
Cd

lm0 +
(

−2l − 1 − 3

l + 1

)
Cd

lm2

]
ylm2, (A35)

032404-15



KUMARI PRITI SINHA AND ROCHISH M. THAOKAR PHYSICAL REVIEW E 97, 032404 (2018)

where Clm2 =
√

l(l+1)
2 Clm0, C

g

lm0 = Cd
lm0 = Clm0, C

g

lm2 = Cd
lm2 = Clm2.

APPENDIX B: RESULTANT NORMAL AND TANGENTIAL MAXWELL STRESS

The net êr directional normal electric stress normalized by Mn is given by

τE
r = Mn

4

(
Z1 + Z2{

4σ 2
r + ζ 2

[
4(Cmem + εr )2 + 4C2

memσr + (2 + Cmem)2σ 2
r

]
ω2 + [2εr + Cmem(2 + εr )]2ζ 4�4

}
)

, (B1)

where

Z1 = 9C2
memεrζ

2ω2(1 + ζ 2ω2){(α2 − 2β2) cos[2θ ] + α(α + 2α cos 2	 sin θ2 − 4β sin 2� sin 	)}
8σ 2

r + 2ζ 2
(
4(Cmem + εr )2 + 4C2

memσr + (2 + Cmem)2σ 2
r

)
ω2 + 2[2εr + Cmem(2 + εr )]2ζ 4ω4

,

Z2 = 9
(
(−α2 cos 	2 − β2 sin θ2)(1 + ζ 2ω2)

[
σ 2

r + (Cmem + εr )2ζ 2ω2
]+ αβ

{
σ 2

r + ζ 2
[
(Cmem + εr )2

+ (
1 + C2

mem

)
σ 2

r

]
ω2 + [C2

mem + 2Cmemεr + (1 + C2
mem

)
ε2
r

]
ζ 4ω4

}
sin 2θ sin 	

+ C2
memα2ζ 2ω2

(
σ 2

r + ε2
r ζ

2ω2
)

sin θ2 sin 	2 + cos θ2
{
C2

memβ2ζ 2ω2
(
σ 2

r + ε2
r ζ

2ω2
)

− α2(1 + ζ 2ω2)
[
σ 2

r + (Cmem + εr )2ζ 2ω2
]

sin 	2
})

.

Similarly the isotropic normal electric stress normalized by Mn is

τE
0 = Mn

(
3
√

π (α2 + β2)
{− 2σ 2

r + [− 4εrCmem + C2
mem

(− 2 + εr + σ 2
r

)− 2
(
ε2
r + σ 2

r

)]
ω2ζ 2 + [− 4Cmemεr − 2ε2

r

+ C2
mem

(− 2 + εr + ε2
r

)]
ω4ζ 4

})/(
2
{
4σ 2

r + [4(Cmem + εr )2 + 4C2
memσr + (2 + Cmem)2σ 2

r

]
ω2ζ 2

+ [2εr + Cmem(2 + εr )]2ω4ζ 4
})

. (B2)

The deformation causing net normal electric stress

τE
n = Mn

(
3
{
σ 2

r + ζ 2
[
2Cmemεr + ε2

r + σ 2
r + C2

mem

(
1 − 2εr + σ 2

r

)]
ω2 + [C2

mem(−1 + εr )2 + 2Cmemεr + ε2
r

]
ζ 4ω4

}
× [−2(α2 − 2β2)(1 + 3 cos 2θ ) − 12α2 cos 2	 sin θ2 + 24αβ sin 2θ sin 	]

)/(
32{4σ 2

r + ζ 2[4(Cmem + εr )2

+ 4C2
memσr + (2 + Cmem)2σ 2

r

]
ω2 + [2εr + Cmem(2 + εr )]2ζ 4ω4

})
. (B3)

The net êθ and ê� directional tangential electric stress

τE
θ =

(
9Cmemζ 2ω2

[
Cmem(εr − σr ) − σ 2

r − ε2
r ζ

2ω2
]
(−α2 + 2β2 + α2 cos 2	) sin 2θ

8
{
4σ 2

r + ζ 2
[
4(Cmem + εr )2 + 4C2

memσr + (2 + Cmem)2σ 2
r

]
ω2 + [2εr + Cmem(2 + εr )]2ζ 4ω4

}
)

Mn, (B4)

τE
	 =

(
− 9Cmemαζ 2ω2

[
Cmem(εr − σr ) − σ 2

r − ε2
r ζ

2ω2
]

cos 	(β cos θ + α sin θ sin 	)

8σ 2
r + 2ζ 2

[
4(Cmem + εr )2 + 4C2

memσr + (2 + Cmem)2σ 2
r

]
ω2 + 2[2εr + Cmem(2 + εr )]2ζ 4ω4

)
Mn. (B5)

APPENDIX C: VECTOR SPHERICAL HARMONICS

y200 = −
√

15

32π
sin 2θ êθ , (C1)

y202 = 1

8

√
5

π
(1 + 3 cos 2θ )êr , (C2)

y222 + y2−22 =
√

15

8π
cos 2	 sin2 θ êr , (C3)

y220 + y2−20 =
√

5

4π
(cos 2	 sin 2θ êθ − sin 2	 sin θ ê�). (C4)

APPENDIX D: OVERALL STRESS BALANCE

At the vesicle surface membrane stresses up to second order approximation are balanced by hydrodynamic stress and electric
stress. Thus overall tangential stress balance across the vesicle is given by(

τ
h,ex
lm0 − ητ

h,in
lm0

)+ τE
lm0 = τmem

lm0 , (D1)
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and similarly overall normal stress balance by(
τ

h,ex
lm2 − ητ

h,in
lm2

)+ τE
lm2 = τmem

lm2 . (D2)

Substitution of tangential hydrodynamic stress [(A32) and (A33)], electric stress (33), and membrane stress (38) into Eq. (D1)
gives nonuniform tension acting on the vesicle

σlm = Ca

[
−C∞

lm0
2(2l + 1)√

l(l + 1)
+ C∞

lm2
3(2l + 1)

l(l + 1)
+ Clm0

l + 2 + η(l − 1)

2
√

l(l + 1)
− Mn

τE
lm0√

l(l + 1)

]
, (D3)

which for m = −2,0,2 gives

σ2−2 = Ca

[
−20C∞

2−20 + 5
√

6C∞
2−22 + (4 + η)C2−20

2
√

6
− Mn√

6
τE

2−20

]
, (D4)

σ20 = Ca

[
−20C∞

200 + 5
√

6C∞
202 + (4 + η)C200

2
√

6
− Mn√

6
τE

200

]
, (D5)

σ22 = Ca

[
−20C∞

220 + 5
√

6C∞
222 + (4 + η)C220

2
√

6
− Mn√

6
τE

220

]
. (D6)

Solving Eq. (D2) using normal hydrodynamic stresses [(A34) and (A35)], electric stress (32), and membrane stresses [(40)–42)]
by using membrane incompressibility [Clm2 = √

l(l + 1)Clm0/2] gives normal velocity component in the form

Clm2 = CSh
lm + �(σ0)

Ca
flm + MnCel

lm. (D7)

For m = −2,0,2 modes this equation become

C2−22 = −24f2−2[7π (6 + σ0) + √
5πf20(18 + 5σ0)] + 35

(√
6C∞

2−20 + 9C∞
2−22

)
πCa

7π (32 + 23η)Ca
+ MnCel

2−2, (D8)

C202 = 12
√

5π
(
f 2

20 − 2f2−2f22
)
(18 + 5σ0) − 7π

[
24f20(6 + σ0) − 5

(√
6C∞

200 + 9C∞
202

)
Ca
]

7π (32 + 23η)Ca
+ MnCel

20, (D9)

C222 = −24f22[7π (6 + σ0) + √
5πf20(18 + 5σ0)] + 35

(√
6C∞

220 + 9C∞
222

)
πCa

7π (32 + 23η)Ca
+ MnCel

22, (D10)

where C∞
220 = −i

√
π/5,C∞

2−20 = i
√

π/5,C∞
222 = −i

√
2π/15,C∞

2−22 = i
√

2π/15,C∞
200 = 0,C∞

202 = 0 and

Cel
2−2 =

(
6τE

2−22 + 2
√

6τE
2−20

)
32 + 23λ

, (D11)

Cel
20 =

(
6τE

202 + 2
√

6τE
200

)
32 + 23λ

, (D12)

Cel
22 =

(
6τE

222 + 2
√

6τE
220

)
32 + 23λ

. (D13)

From the above equations uniform tension (σ0) is estimated by the constraint of area conservation (�̇ = 0 where overdot
represents derivative with respect to time), that is, ḟ22f2−2 + ḟ20f20 + ḟ2−2f22 = 0; here ḟ2−2,ḟ20,ḟ22 expression is provided in
Appendix E [Eq. (E1)]. This gives

σ0 = − 18
5 + {(1008

√
π�) + 28

√
5π [6f20MnP − 2f20MnS +

√
6f22(−5i + 3MnP − MnS) +

√
6f2−2(5i

+ 3MnP − MnS)]Ca − 35
√

π
[
5
(√

6C∞
200 + 9C∞

202

)
f20Ca

]}/[
300

√
5f20

(
f 2

20 − 6f2−2f22
)− 420�√

π
]
. (D14)

APPENDIX E: EVOLUTION EQUATION

By using Eq. (D7), the final evolution equation is of the form (with ω = 1)

dflm

dt
= i

m

2
ω + Clm2. (E1)

Substituting σ0 from Eq. (D14) into Eq. (E1) gives final evolution with higher order membrane correction as
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FIG. 11. η vs Ca phase diagram for transition in dynamic states (TT: green region, TR: yellow region, TU: blue region) for σr = 10. (a–c)
Mn = 0.01, (d–f) Mn = 0.1, and (g–i) Mn = 1. In each set ω varies as 102,105,107 (� = 0.2,Cmem = 50,ζ = 10−7).

df2−2

dt
= − if2−2 + Csh

2−2 + Cel
2−2Mn + 2f2−2

{
[−7π (32 + 23η) − 115f20

√
5πη − 10]

[
Csh

2−2f22 + Csh
22f2−2

+ (
Cel

20f20 + Cel
2−2f22 + Cel

22f2−2
)
Mn
]
Ca − 16f20

√
5π
(− 9� − 9f 2

20 + 54f22f2−2
)}/{

Ca
[
7�π

− 5f 20
(
f 2

20 − 6f22f2−2
)√

5π
]
(32 + 23η)

}
, (E2)

df20

dt
= 2f 20π

[
(−224 − 161η)

(
Cel

20f20 + Cel
2−2f22 + Cel

22f2−2
)
CaMn + 144

(
f 3

20 − 6f20f22f2−2
)√

5/π

− (
Csh

2−2f22 + Csh
22f2−2

)
(32 + 23η)Ca

]+ (f 2
20 − 2f22f2−2

)√
5π
{− 144� + 5Ca

[
Csh

2−2f22 + Csh
22f2−2

+ (
Cel

20f20 + Cel
2−2f22 + Cel

22f2−2
)
Mn
]
(32 + 23η)

}
, (E3)

df22

dt
= if22 + Csh

22 + Cel
22Mn + 2f22

{
[−7π (32 + 23η) − 115f20

√
5πη − 10]

[
Csh

2−2f22 + Csh
22f2−2

+ (Cel
20f20 + Cel

2−2f22 + Cel
22f2−2

)
Mn
]
Ca − 16f20

√
5π
(− 9� − 9f 2

20 + 54f22f2−2
)}/[

Ca
(
7�π

− 5f 20
(
f 2

20 − 6f22f2−2
)√

5π
)
(32 + 23η)

]
. (E4)
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FIG. 12. η vs Ca phase diagram for transition in dynamic states (TT: green region, TR: yellow region, TU: blue region) for σr = 0.1. (a–c)
Mn = 0.01, (d–f) Mn = 0.1, and (g–i) Mn = 1. In each set ω varies as 102,105,107 (� = 0.2,Cmem = 50,ζ = 10−7).

APPENDIX F: EFFECT OF Mn AND ω ON THE η-Ca
PHASE DIAGRAM

Phase diagrams in Figs. 11 and 12 show the transition
between TT-TU, TT-TR, and TR-TU modes for σr > 1 and
σr < 1, respectively. In both cases the study is limited to Ca up
to Ca = 1 only. Beyond that nonlinear hydrodynamic correc-
tions are important and are not considered in this work. Also
for both the conductivity ratio cases, results show deviation
from pure shear results (black solid lines), and the system loses
its character of Ca-independent TT-TR and TR-TU transition.
A clear shift is seen in the TT-TR, TR-TU phase transition
boundaries such that the η value at which TT-TR, TR-TU takes
place depends upon flow Ca. The analysis was conducted for
three values of Mn, 0.01, 0.1, and 1. With an increase in Mn
the boundary separating the two regimes especially TT-TR and
TR-TU shows a narrowing of TR region and a lower transition

viscosity which is frequency dependent. In all these transitions
(a) to (i) the TT-TU transition value is fixed at around η = 7.4
for a given excess area of � = 0.2.

Figure 12 shows a similar study for σr < 1 case. Low-
frequency behavior is the same as for the σr > 1 case, and the
TR regime gets suppressed with an increase of Ca. At interme-
diate frequency TT-TR and TR-TU transition boundaries are
pushed to higher η with an increase in Ca, as Mn is increased
from 0.01 to 1. This also shows widening of the TR regime with
Ca. Moreover for all three Mn values, high-frequency phase
diagrams coincide with a pure shear phase diagram, unlike
σr > 1 case.

The results are a bit counterintutive. One would have
expected that a high anticlockwise torque (at high Mn) for
σr > 1 would have delayed the TT-TU transition. Similarly a
clockwise torque would have hastened the TT-TU transition for
σr < 1. We postulate that for σr > 1, a prolate shape is favored
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by a high Mn. This in turn increases the anticlockwise torque
due to the Ca, thereby admitting lower transition viscosity as
Ca is increased. On the other hand for σr < 1 at intermediate

frequencies, the ψ ∼ 0, whereby an increase in Ca decreases
the deformation of the vesicle, leading to an increase in the
transition viscosity [Eq. (49)].
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