
PHYSICAL REVIEW E 97, 032319 (2018)

Effect of form of obstacle on speed of crowd evacuation
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This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room,
using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities.
An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a
quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on
the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion
time in the proposed model.
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I. INTRODUCTION

The study of collective motion [1,2] in biological systems
has attracted physicists’ and mathematicians’ attention, be-
cause models of these phenomena require rich physical and
mathematical insights. In particular, Vicsek’s pioneering work
on collective motion [3,4] implemented insights from physics
in order to model a biological collective motion system. The
clustering of agents’ velocity-vector angles toward a local
angle, averaged over those of agents with a distance less than
a threshold, yields a characteristic spatial structure [3,5–10].
This convergence toward an averaged value over a finite range
is also implemented in the Hegselmann-Krause model of opin-
ion formation [11]. Similarly, several mathematical models
such as the Cucker-Smale model [12], the self-propulsion–
repulsive-attractive model with drag force [13,14], and the
Kuramoto-Vicsek model [15,16] have been used in order
to model biological swarming. Pedestrian collective motion
has been studied by Helbing et al. [17,18], who used the
social-force model [19] to investigate the key characteristics
of pedestrian collective motion. Recently, Dietrich and Köster
[20] proposed the gradient-navigation model for pedestrian
collective motion. The attractive-repulsive force and accel-
eration or deceleration due to the relaxation of pedestrian
velocities toward their intended velocities [21] are consid-
ered to be significant characteristics of pedestrian collective
motion. Many discrete element method (DEM) simulations
[22–25] have been performed which implemented Helbing and
Molnar’s social-force model [21], whereas cellular automata
[26,27] have been also considered as an application of game
theory in pedestrian dynamics.

Meanwhile, Helbing proposed a collective-motion model
that uses a hydrodynamic equation derived from the Boltz-
mann equation [28–30]. This equation includes a distribution
function with five dimensions, namely, f (t,v,vin,x) (t ∈ R+:
time; x ∈ R2: physical space; v ∈ R2: velocity space; vin ∈
R2: intended velocity space). The derivation of hydrodynamic
equations [31–34] such as the Navier-Stokes (NS) equation

*ryosuke.yano@tokiorisk.co.jp

has been considered to model phase transitions in biolog-
ical collective-motion systems. We consider, however, that
collective phenomena of pedestrians are always beyond the
Grad-Boltzmann or Grad-Enskog limit, because the number
of pedestrians in a typical crowd is much smaller than the
Avogadro number, as observed in the flow of granular materials
[35]. Therefore, numerical modeling of pedestrian motion
can offer insights beyond the hydrodynamic description de-
rived from the Boltzmann-Enskog equation [22]. The network
structure among destinations also has a significant effect
on collective motion when movements of pedestrians occur
among cities or countries [36], but this work focuses on a
finer-grained level of analysis.

In this paper, we focus on how the shape of an obstacle
affects the speed with which a crowd of pedestrians evacuates
a room. Evacuation is an important application of collective-
motion modeling [37] because excessive jamming in the
flow of pedestrians can generate extremely hazardous, even
fatal, conditions when a large crowd must quickly evacuate
a room. The following discussion assumes that the forces
between pedestrians can be modeled as spring-mass systems.
Therefore, pedestrian dynamics are similar to those observed in
active soft matter such as granular particles or soft disks [38]
that have intended velocities. In order to realistically model
pedestrian dynamics, the model must include representations
of the following dynamic phenomena: herding (swarming)
among neighboring pedestrians [39], the effect of visibility
of vacant spaces or obstacles [39], route-choice strategies
[40], avoiding injured or dead pedestrians as obstacles [41],
the distribution of intended velocities in accordance with the
age [42] or (competitive) character of pedestrians [43], the
relationship between pedestrian density and intended velocity,
the convergence rate toward the intended velocities [44],
and the effect of polydisperse noncircular areas of personal
space [45]. Obviously, these phenomena cannot all be repre-
sented with spring-mass interaction forces. A toy model with
spring-mass forces, while not being totally realistic, can offer
basic data about how the shape of an obstacle affects the
evacuation-completion time. The spring constant in our model
corresponds to the strength of an individual’s repulsion from
other pedestrians that infringe upon this individual’s personal
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space. Evacuation of pedestrians through a narrow exit has
been modeled as a bottleneck flow of granular particles in
the past [46–49], as the gravitational attraction of granular
particles toward the bottleneck at the bottom of a hopper is
analogous to a pedestrian’s intended velocity. The relationships
between the width of the exit and the evacuation-completion
time and between the shape and location of an obstacle and
the evacuation-completion time have been adequately studied
in previous work [50,50,51]. Previous studies on the effects of
obstacle shape, however, have only considered limited sets of
possible shapes. Frank and Dorso [52] compared the effects
of thin-plate and circular cylinder (C.C.) obstacles, and Stark
et al. [53] compared the effects of triangular prisms (T.P.) with
different vertex angles. Therefore, we modeled the effect of
a wide range of obstacle shapes placed in front of an exit on
the evacuation time. We modeled the above-mentioned C.C.
and T.P. obstacle shapes, along with quadrangular prism (Q.P.)
and diamond prism (D.P.) obstacles. The footprints of the four
types of obstacles are equal in the models. We also modeled
a large-scale evacuation of 2400 pedestrians from one room
to another through an exit. The width of the exit allows ten
pedestrians to pass through it at once without encroaching upon
each other’s personal space. Such an evacuation might occur
in a large room, such as conference floor or an amphitheater.
The numerical results from these simulations indicate that
the evacuation-completion time is significantly affected by
the shape of the obstacle. C.C. obstacles yield the shortest
evacuation-completion time in our numerical simulations. If
an exit in a room is unavoidably obstructed by a structural
element, our results suggest that the obstacle should have
a cylindrical shape in order to encourage efficient and safe
evacuations. We also investigated the effect of the spring
constant on the evacuation-completion time. The results sug-
gest that the freezing-by-heating discovered by Helbing et al.
[54] may correspond to an increase in the spring constant, if
the volatility of Brownian pedestrian motion [55,56], namely,
active Brownian particles, is fixed. Stanley [57] predicted that
this freezing-by-heating discovered by Helbing et al. [54]
might play an important role in crowd evacuations. Our model,
however, cannot represent the melting transition by further
heating via an increase in the spring constant, because the
volatility of fluctuations [56] is fixed in the model. This paper
seeks an understanding of how pedestrians evacuate buildings
by visualizing the force-chain network [58] together with
the flow velocity as calculated by spatially coarse-graining
pedestrian velocities.

II. NUMERICAL METHOD TO CALCULATE EVACUATION

The dynamics of pedestrian motion are modeled as simple
interactions by regarding pedestrians as active soft matter,
namely, granular disks with intended velocities. The conven-
tional numerical method, which has been used to calculate the
dynamics of granular matter, is also applied to the simulation
of the evacuation of pedestrians, exclusively.

A schematic of the pedestrian dynamics is shown in Fig. 1. A
soft two-dimensional disk of radius R models the effect of one
pedestrian occupying a domain. R is not the domain occupied
by the real physical volume of the pedestrian, but instead it
represents a social domain, because two pedestrians will feel
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FIG. 1. Schematic of dynamics of pedestrian (R: radius of circular
private domain; xi : location of pedestrian indexed by i; vi : velocity
of pedestrian indexed by i; vin

i : intended velocity of pedestrian
indexed by i; Fn

ij and Ft
ij : normal and tangential forces between

two interacting pedestrians indexed by i and j ).

stress (forces) when their personal spaces overlap. If we were
to model the actual diverse sizes of pedestrians, polydisperse
disks with different radii R [59] would need be considered.
We leave the consideration of polydisperse disk sizes for future
work, for the sake of simplicity in this study.

A repulsive force [60] appears when the distance between
two pedestrians is less than 2R; normal and tangential force
components are considered. The tangential component, which
presents realistic cohesion [61] between two interacting pedes-
trians, is beyond the scope of this paper. We neglect the torque
on the active particles caused by the tangential component of
the interaction in order to simplify the following discussion.
Finally, the set of parameters used in our numerical model
should be determined from the experimental results [62,63] of
pedestrian motion. The development of big-data technology
allowed us to observe pedestrian motion using Wi-Fi [64] and
video data.

The normal force (Fn
ij ) and tangential force (Ft

ij ) between
two interacting pedestrians indexed by i and j are calculated
as follows (the subscript in Fn,t

ij indicates forces received by
the ith pedestrian from the j th pedestrian):

Fn
ij = −kpp(|xi − xj | − 2R)en

ij ,

Ft
ij = μppFn

ij et
ij

en
ij = xi − xj

|xi − xj | ,

et
ij = −sgn

[
ϕ(−π/2)en

ij · (gij /|gij |)
]
ϕ(−π/2)en

ij , (1)

where xi is the coordinate of the center of the disk, kpp ∈
R+ is the spring constant, μpp is the friction coefficient if
F t

ij follows Coulomb friction, ϕ(θ ) is a 2 × 2 rotation matrix
by θ , and gij := vi − vj is the relative velocity between two
interacting pedestrians indexed by i and j . In the social-force
model by Helbing and Vicsek [21], the social force, which
obeys the exponential function of the distance between two
pedestrians, is added to Fn

ij , in order to inhibit the ith pedestrian
from passing through the j th pedestrian, whereas we neglect
such a social force, which obeys an exponential function of the
distance between two pedestrians, in order to focus on the effect
of the spring constant on the evacuation-completion time.
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Next, the inelastic collisions between two inelastic disks
are expressed with the damper equipped with the spring.
Additionally, we consider fluctuations in pedestrian motion as
a Brownian motion. Fluctuations in pedestrian motion might
be caused by attempts to avoid collisions or the impatience in
choosing walking trajectories. Therefore, we conjecture that
an increase in the volatility of motion fluctuations slows down
the evacuation speed, because deviations from the intended
velocity lengthen the total path that each pedestrian takes to
an exit. On the other hand, we also conjecture that clogging
of pedestrians around an exit is alleviated, as observed in the
transition from jamming to unjamming, when a silo is vibrated
[65]. Thus, fluctuations may have significant effects on pedes-
trian collective motion, as observed in freezing-by-heating by
Helbing et al. [28]. The time evolution of the velocity of
the ith pedestrian, accounting for collisions between pairs of
pedestrians and fluctuations [66], is formulated as

dvi

dt
=

∑
j �=i

�(2R − |xi − xj |)
(
Fn

ij + Ft
ij

)

−D|vi |β
(

vi

|vi |
)

+ ξdtBi, (2)

where D ∈ (R+ ∪ 0) is the damping rate, β ∈ R+, sgn(x)
is the signature of x, �(2R − |xi − xj |) is Heaviside’s step
function, Bi (ξ ∈ R+) is the Wiener process, and the mass
of each circle is set to unity for the sake of simplicity.
Our choice to describe fluctuations with the Wiener process
must be validated in future work, as pedestrian motion is
sometimes described by a Lévy walk [67]. D = 0 in Eq. (2)
corresponds to the perfectly elastic collisions between pairs of
interacting pedestrians. In Helbing’s social-force model [28],
the attractive force, which sometimes forms pedestrian groups
with a characteristic velocity [68], is considered together with
the repulsive force. We neglect such an attractive force, because
we consider that attractive forces among pedestrians are not
appropriate for describing an evacuation scenario, in which
all the pedestrians try to reach the exit at a relative high
intended velocity. Evacuation scenarios seem to encourage
competitive motion, which decreases the swarming behavior
that the attractive force is meant to represent.

Finally, the velocities of pedestrians converge to their
intended velocities (vin

i ), and directions turn toward the exit.
Adding the relaxation of the velocities of pedestrians toward
their intended velocities, Eq. (2) is modified as

dvi

dt
=

∑
j �=i

�(2R − |xi − xj |)
(
Fn

ij + Ft
ij

)

−D|vi |β vi

|vi | + ξdtBi + ζ
(
vin

i − vi

)
, (3)

where ζ ∈ R+ is the rate at which the velocities converge to the
“constant” intended velocity. Of course, ζ of pedestrians who
can see an exit will be larger than that of pedestrians who cannot
see the exit, whereas a constant ζ is used in this study. Provided
that ζ is large such that effects of fluctuations may be neglected,
all the pedestrians move toward the exit at their intended
velocities. On the other hand, if ξ is large enough such that the
convergence of the velocity may be neglected, pedestrians tend
to move toward isotropic directions. The effects of variations
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FIG. 2. Schematic of evacuation of 2400 pedestrians at t = 0,
when the shape of the obstacle is C.C. The color of a circle corresponds
to the angle of initial velocity θi ∈ [0,2π ) of a pedestrian indexed by
i in Eq. (4).

in the intended velocities are interesting, as observed in agents
who ignore the traffic rules in traffic flow [69] or in the variation
of their intended velocities in accordance with age [42]. Theses
effects are, however, beyond the scope of this study.

The interaction between a pedestrian and an obstacle or
wall is modeled in a way similar to how interpedestrian
interactions are modeled with Eq. (1). The spring constant
(k) that determines force between a pedestrian and obstacle
is kpo, and spring constant between the pedestrian and wall
is kpw, where friction coefficients in the interaction between
the pedestrian-obstacle and wall are defined by μpo and μpw,
respectively. During an interaction with an obstacle or a wall,
the pedestrian velocities never relax to their intended velocities
and are never damped.

III. PARAMETERS USED IN NUMERICAL STUDY

We investigate the evacuation of pedestrians through an
exit from the right room to the left room, which are par-
titioned by the wall. A schematic of the numerical domain
is shown in Fig. 2, when the shape of the obstacle is C.C.
In the discussion below, all the physical quantities are nor-
malized. A square domain (X ⊆ R2) stretched by X,Y ∈
X|X ∈ [−Lx/2,Lx/2] ∧ Y ∈ [−Ly/2,Ly/2] is considered, in
which Lx = Ly = 2L = 200. The walls are set along the
lines X = −Lx/2,Y ∈ [−L,L], X = L,Y ∈ [−L,L], X ∈
[−L,L],Y = −L, X ∈ [−L,L],Y = L, X = 0,Y ∈ [Yex,L],
and X = 0,Y ∈ [−L, − Yex], as shown in Fig. 2. The exit is
placed at X = 0, Y ∈ (−Lex,Lex), in which Lex = 10. Ntot =
2400 pedestrians are placed randomly in the domain (X,Y ) ∈
X0|X ∈ (Xf + R,L − R],Y ∈ [−L + R,L − R], where R is
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set to unity and Xf = 30. The directions of initial velocities
of pedestrians are sampled using the Maxwell-Boltzmann
distribution, whose temperature is equal to 0.5 and mean value
is π ; in short,

θi = θ̄ +
√

−θ∞ ln a cos(2πb), θ̄ = π, θ∞ = 5,

a ∈ (0,1], b ∈ (0,1], (4)

where a and b are white noise terms and θ ∈ (0,2π ]. Of course,
these initial conditions are idealized for our numerical study.
The absolute values of pedestrian velocities (|v|) are fixed to
unity at t = 0. Consequently, (vi

x,v
i
y) = (cos θi, sin θi) at t =

0.
The initial domain occupied by pedestrians at t = 0 is fixed

to X0 regardless of shape of the obstacle. Additionally, the
area occupied by the obstacle in X is fixed to a constant value
and its right edge, namely, the maximum value of X in the
domain of the obstacle, is fixed to X = Xf = 30. The center
of the C.C. obstacle is set at (Xc,Yc) = (20,0) and its radius
is set to Rc = 10. Here, x ∈ Xi

p||x − xi | � R represents the
domain occupied by the ith pedestrian and x ∈ Xo represents
the domain occupied by the obstacle. As a result, the area of
the obstacle in X is fixed to πR2

c . We consider four types of
shapes of the obstacle, namely, C.C, Q.P., T.P., and D.P. The
length of one side of the square in the case of the Q.P. is set
to

√
πRc and length of the side of the triangle vertical to the

X axis is set to 2
√

3
√

3πRc, when the vertex of the isosceles
triangle is set to π/3.

kpw = 103, kpo = 104, μpp = μpw = 0.1, μpo =
μppkpp/kpo, D = 1, β = 1, ξ = 1, and ζ = 10 are used
in Eqs. (1)–(3).

The intended velocities of pedestrians are modeled as
follows:

vin
i = (−1,0) in xi ∈ [R,L − R) ∧ yi

∈ (−Lex + R,L − R) ∧ Xi
p ∩ Xo = ø,

vin
i = (cos θ3, sin θ3) in xi ∈ [0,L − R) ∧ yi

∈ (−L + R, − Lex + R] ∧ Xi
p ∩ Xo = ø,

where

θ1 = π − tan−1

(−Lex + R − yi

xi

)
,

θ2 = π − tan−1

(
Lex − R − yi

xi

)
,

θ3 = θ2 + (θ1 − θ2)W1;

vin
i = (cos θ6, sin θ6) in xi ∈ [R,L − R) ∧ yi

∈ [Lex − R,L − R) ∧ Xi
p ∩ Xo = ø,

where

θ4 = π + tan−1

(
yi − (Lex − R)

xi

)
,

θ5 = π + tan−1

(
yi − (−Lex + R)

xi

)
,

θ6 = θ4 + (θ5 − θ4)W2;

vin
i = (0,0) in xi ∈ [−L,R] ∧ yi

∈ (−L,L) ∧ Xi
p ∩ Xo = ø,

where W1,W2 ∈ [0,1] are white noise terms. The above model
does not include pedestrians’ route choices [70], such as
choices to move toward more vacant space or to avoid collisions
[71]. In previous studies [21,72], ζ = 2s−1, |vin| = 1.34 m s−1,
the contact distance R ∼ 0.5 ± 0.2 m, and kpp ∼ 2000 N
(when the repulsive force is defined as an exponential function
of the distance between two pedestrians [72]). Therefore, the
set of parameters in the present simulation is similar to that used
in previous studies [21,72], if nondimensionalized physical
quantities L∞ = 1.0 m and t∞ = 1 s are assumed, although
ζ = 10 s−1 is larger than ζ = 2 s−1, because we postulate
an evacuation. ξ , β, D, μpi (i = p,w,o), and kpi (i = w,o)
are, however, fixed artificially, because their concrete values
are not determined for evacuation scenarios. For example,
ξ = |vin| = 1 might be plausible, when the units of these
quantities are m s−1. A more realistic set of parameters must
be obtained using data of real evacuations or evacuation drills.

The normalized time interval is set to 2.5 × 10−3 and the
contour of the circle in Fig. 2 corresponds to the angle of vi . In
the present numerical study, evacuations of 2400 pedestrians
from the right room to the left room are simulated, as shown in
Fig. 2. Therefore, the modeled evacuations occur in a large
space (i.e., two rooms of 2 × 104 m2), which usually has
multiple emergency exits [73,74]. We, however, consider only
one exit in order to isolate the effect of the shape of the obstacle
on the evacuation-completion time.

IV. NUMERICAL RESULTS

Following the numerical method discussed in Sec. II, evac-
uations of 2400 pedestrians are simulated using the obstacle
whose shape is C.C., Q.P., T.P., or D.P. Figure 3 shows
snapshots of pedestrians at t = 120 and 300 moving around
C.C., Q.P., T.P., and D.P obstacles, when kpp = 100 or 103.
The color of the circles corresponds to the vector angle of the
pedestrians’ velocities, namely, θi := tan−1 (vy

i /vx
i ) (i: index

of agent). Figures 3 shows that the area occupied by pedestrians
decreases as kpp decreases. This trend reflects the fact that
the repulsion force from the modeled spring when rij < R

tends to inhibit the invasion of other pedestrians indexed by
j inside the private domain (xi ∈ Xi

p) via the increase in
kpp. As a result, the volatility of θi in the calculation domain
increases as kpp increases, in particular, in front of the obstacle
(X > Xf ), for any shape of obstacle, as shown in Fig. 3.
In short, the standard deviation of thermal fluctuations in
pedestrian motion increases in accordance with the spring
constant. Such thermal fluctuations were interpreted as kinetic
stress (or in other words, static pressure in the gas dynamics)
by Garcimartin et al. [75]. They indicated that kinetic stress
has more significant effects on the overall evacuation pattern
than the local density does. Additionally, Fig. 3 shows that
the spatial distributions of pedestrians are almost symmetric
in cases of C.C, Q.P., and T.P, whereas the distributions of
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FIG. 3. Snapshots of pedestrians at t = 120 (left-half frames) and 300 (right-half frames) in cases of C.C. Q.P., T.P., and D.P., when
kpp = 100 and 103 (kpp: spring constant). The color of a circle corresponds to the angle of velocity θi ∈ [0,2π ) of a pedestrian indexed by i.

pedestrians are asymmetric in the case of D.P. We found
characteristic distributions of pedestrians along Y = −X, X >

Xf in the case of D.P., as shown in Fig. 3. The answer to the
reason why such a characteristic distribution is obtained in
the case of D.P. is left as a topic for future research, where
the investigation of the bifurcation [76] of both density of
pedestrians and its temporal variation at an exit in accordance
with the rotation angle of Q.P. around its center axis might be
of interest.

Figure 4 shows streamlines at t = 120 and 300 in cases of
C.C., Q.P., T.P., and D.P, when kpp = 103. The flow velocity
is calculated by averaging the velocities of the pedestrians
included inside each cell, which is formed by 30 × 30 equally
spaced grids in X. Figure 4 shows that no vortex occurs at

t = 120 in the case of C.C., whereas many vortices occur at
t = 120 in the case of T.P. Marked vortices are not generated in
the case of D.P., when compared with T.P. and Q.P. An analysis
of the turbulence of the flowfield [77–79] in cases of C.C. at
t = 300, T.P., and Q.P. is noted as a topic for future research.

Next, we consider the force-chain network in the case
of C.C., when kpp = 10, 100, or 103. Figure 5 shows the
force-chain network obtained using kpp = 10 (top frame), 100
(middle frame) and 103 (bottom frame). Figure 5 shows that the
number of links connected to a node (or pedestrian) increases as
kpp decreases. The length of a link corresponds to the distance
between two interacting pedestrians. Thus, the density can be
calculated in terms of the length of the links. On the other
hand, the lengths of all the links are equal to R in the case of
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FIG. 4. Streamlines of flow velocity at t = 120 and 300 in cases of C.C., Q.P., T.P., and D.P., when kpp = 103 (kpp: spring constant).

kpp = 103. Therefore, no marked compression of the personal
domain Xi

p occurs in the case of kpp = 103. Consequently,
the local number density never surpasses the maximum value
obtained by calculating the closest packing of disks in the case
of kpp = 103. Figure 5 indicates that a shock layer forms in the
cases of kpp = 10 and 100. A schematic of this phenomenon is

FIG. 5. Snapshots of the force chain network at t = 120 in the
case of C.C., when kpp = 10 (top frame), 100 (middle frame), and
103 (bottom frame) (kpp: spring constant).

shown in Fig. 6. The shock-detachment distance (	s) increases
as kpp increases, whereas a dilute region forms behind C.C.
owing to the expansion wave. Another interesting result is that
low-density lanes form in the case of kpp = 103. The reader
may readily confirm that the nontriangular lattices form lanes
in the range of X > 0, as shown in the bottom frame of Fig. 5.

Figure 7 plots the number of links (l) versus its distribution
function, f (l) := 1/Ntot

∑Ntot
i=1 δ(l − li) (li : number of links

connected to pedestrian indexed by i) at t = 120 obtained
using kpp = 10, 100, and 103 in the case of C.C. f (l) ∈ R+
is obtained in the range of l ∈ [0,28] ∩ Z+ in the case of
kpp = 10, f (l) ∈ R+ is obtained in the range of l ∈ [0,10] in
the case of kpp = 100, and f (l) ∈ R+ is obtained in the range
of l ∈ [0,6] in the case of kpp = 10. Therefore, the number
of links increases as kpp decreases. The maximum of f (l) is
obtained at l = 6, which corresponds to the closest packing of
hard disks, in the case of kpp = 103, whereas the maximum of

Expansion wave

Wall

Dense regime

Dilute regime
ls

Shock wave

Shock layer

FIG. 6. Schematic of the flow field in the case of C.C. (ls : shock-
detachment distance).
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FIG. 7. l (number of links) versus f (l) (distribution function of
link number) obtained using kpp = 10, 100, and 103 (kpp: spring
constant) at t = 120 in the case of C.C.

f (l) is obtained at l = 7 in the case of kpp = 100 and obtained
at l = 4 in the case of kpp = 10. f (l) obtained using kpp = 10
seems to be a plateau in the range of l ∈ [6,11], whereas f (l)
obtained using kpp = 103 increases in the range of l ∈ [1,6],
and f (l) obtained using kpp = 100 is bimodal, with peaks at
l = 5 and 7.

Finally, we investigate the relationship between the
evacuation-completion time and shape of the obstacle. First,
the effect of the spring constant (kpp) on the evacuation-
completion time is investigated. Figure 8 plots the number of
pedestrians evacuated (Nev = | �i,xi<0 i|) versus elapsed time
(t), which is measured from the start time of evacuation (t = 0)
in cases of C.C. (upper-left frame), Q.P. (upper-right frame),
T.P. (lower-left frame), and D.P. (lower-right frame). Three
values of kpp, namely, 100, 500, and 103, are used in cases of
Q.P., T.P., and D.P., whereas another value of kpp, namely 10,
is added in the case of C.C. The evacuation-completion time
(tev := mint ∀xi(t) < 0) decreases as kpp increases in the case
of C.C., whereas tev obtained using kpp = 500 is quite similar
to that obtained using kpp = 103. The evacuation rate (dtNev)
increases in [0,t1] (d2

t Nev|t=t1 = 0) and decreases in t ∈ [t1,tev]
when kpp = 10 and 100, whereas dtNev is a positive constant
in most of the range of t ∈ [0,tev] when kpp = 500 and 103, in

FIG. 8. t versus Nev (number of pedestrians who finished their
evacuations) in cases of C.C (upper-left frame), Q.P. (upper-right
frame), T.P. (lower-left frame), and D.P. (lower-right frame).

FIG. 9. τNev (elapsed time required by evacuations of Nev pedes-
trians) obtained using kpp = 100 and kpp = 103 (kpp: spring constant)
in cases of C.C., Q.P., T.P., and D.P., when Nev = 24, 120, 600, 1200,
1600, and 2352.

cases of C.C, Q.P., and T.P. tev decreases as kpp increases in
the case of C.C., whereas tev obtained using kpp = 500 is quite
similar to that obtained using kpp = 103. Consequently, we can
understand that freezing-by-heating is obtained by increasing
kpp, because the increase in kpp yields a decrease in loss of
kinetic energy of the pedestrian via inelastic collisions with
other pedestrians, and we can regard the increase in kpp as
the heating. On the other hand, we must confirm whether the
further increase in kpp changes tev by changing the solid state
to the gaseous state in our future study. At least, the phase of
flow field obtained using kpp = 10 and 100 seems to be liquid
phase, as shown in Fig. 5. The increase in tev in accordance
with the increase in kpp is also obtained in cases of Q.P and
T.P., whereas tev|kpp=100 < tev|kpp=103 < tev|kpp=500 is obtained
in the case of D.P. Such a characteristic behavior in the case
of D.P. is probably caused by the characteristic distribution of
pedestrians in the case of D.P., as shown in Fig. 3. Nev|kpp=100

is similar to Nev|kpp=500,103 in t ∈ [0,200] in the case of D.P,
whereas the nonlinear behavior of Nev|kpp=500,103 is marked in
t ∈ [200,tev]. As with the case of T.P., the complete evacuation
of pedestrians from the right room to the left room is not
obtained, because some pedestrians remain to the right of T.P.,
namely, xi > Xf . The increase in the volatility of fluctuations
might enable the complete evacuation in the case of T.P.

Finally, we investigate effects of the shape of the obstacle
on τNev , which is the time required by evacuations of Nev

pedestrians. In cases of both kpp = 100 and 103, tev|C.C. <

tev|Q.P. < tev|D.P. < tev|T.P. is obtained, as shown in Fig. 8.
Figure 9 shows τNev obtained using kpp = 100 and 103 in
cases of C.C., T.P., Q.P., and D.P., when Nev = 24 (1% of total
pedestrians), 120 (5% of total pedestrians), 600 (25% of total
pedestrians), 1200 (50% of total pedestrians), 1600 (67% of
total pedestrians), and 2,352 (98% of total pedestrians). τNev

obtained using kpp = 100 in the case of D.P. is smaller than
τNev obtained using kpp = 100 in cases of C.C. T.P., and Q.P.,
when Nev � 600. Similarly, τNev obtained using kpp = 103 in
the case of D.P. is smaller than τNev obtained using kpp = 103
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in cases of C.C., T.P., and Q.P., when Nev = 24, 120, 600,
and 1200. We can confirm that the most rapid evacuation is
obtained using the D.P. in the early stage of the evacuation.
In short, τNev |D.P. < τNev |C.C. < τNev |Q.P. < τNev |T.P. is obtained
using kpp = 100, when τNev � 600. Meanwhile, τNev |C.C. <

τNev |Q.P. < τNev |T.P. < τNev |D.P. is obtained using kpp = 100,
when τNev = 1200 and 1600. Finally, τNev |C.C. < τNev |Q.P. <

τNev |D.P. < τNev |T.P. is obtained using kpp = 100, when τNev =
2,352, because there exist pedestrians who cannot evacu-
ate from the right room to the left room, as shown in
Fig. 8 in the case of T.P. τNev |D.P. < τNev |C.C. < τNev |Q.P. <

τNev |T.P. is obtained using kpp = 103, when τNev = 24, 120,
and 600. τNev |D.P. < τNev |C.C. < τNev |T.P. < τNev |Q.P. is obtained
using kpp = 103, when τNev = 1200, whereas τNev |C.C. <

τNev |T.P. < τNev |Q.P. < τNev |D.P. is obtained using kpp = 103,
when τNev = 1,600. Finally, τNev |C.C. < τNev |Q.P. < τNev |D.P. <

τNev |T.P. is obtained using kpp = 103, when τNev = 2352. In
future work, we plan to examine whether the decrease in Nev

from 2400 would indicate which tev|D.P. is the smallest among
four types of obstacles. As far as our numerical study shows,
C.C. is, however, the best choice in order to realize the shortest
evacuation-completion time, when an obstacle with a constant
area must be placed in front of an exit.

V. CONCLUDING REMARKS

In this paper, we investigated effects of the shape of
the obstacle on the evacuation-completion time using four
types of the shape, namely, C.C., Q.P., T.P., and D.P. The
evacuation of 2400 pedestrians was calculated using the DEM.
A toy model, which regards the pedestrians as active soft
matter based on the spring-mass system, was considered as
the initial study of effects of the shape of the obstacle on
the evacuation-completion time. The number of links in the
force-chain network increases as the spring constant decreases.
The closest packing is obtained when the spring constant (kpp),
which determines the interaction between pairs of pedestrians,
is equal to 103. The length of links in the force-chain network
indicates that a shock layer is formed around C.C. Additionally,
many vortices are generated forward of the obstacle in the case
of T.P. The increase in kpp, namely, decrease in inelasticity,
yields an increase in the evacuation-completion time in cases of
C.C., Q.P., and T.P., whereas such a tendency does not always
hold true for D.P. The evacuation-completion time obtained
using C.C. is shortest among the four types of the shape of the
obstacle. Meanwhile, the shortest evacuation-completion time
is obtained by D.P., when the elapsed time is short.
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