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We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by
using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving
strategy is investigated. For the deterministic case p = 0, the dynamics remain invariant in each renormalization-
group (RG) transformation. Two fully attractive fixed points, ρ∗

c = 0 and 1, and one unstable fixed point, ρ∗
c =

1/(vmax + 1), are obtained. The critical exponent ν which is related to the correlation length is calculated for
various vmax. The critical exponent appears to decrease weakly with vmax from ν = 1.62 to the asymptotical value
of 1.00. For the random case p > 0, the transition rules in the coarse-grained scale are found to be different from
the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p → 0 is studied
with simulation, and the RG flow in the ρ−p plane is obtained. The fixed points p = 0 and 1 that govern the
driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS
model with the open-boundary condition is outlined.
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I. INTRODUCTION

Dynamical phase transition in traffic systems has been
subjected to extensive study in the past decades in an attempt to
unravel the fundamental structure of transition from free flow to
jamming regimes. A confluence of ideas from fluid dynamical
theories, kinetic theories, and cellular automata models have
been employed [1–3] for the aforementioned purpose.

Cellular automata (CA) in particular have been widely used
in traffic modeling due to their ability to capture collective
behaviors observed in real traffic with a relatively straight-
forward implementation. The simplest traffic CA model that
exhibits a transition from free flow to congested phases has
been proposed by Nagel and Schreckenberg [4]. This model
serves as a foundation for more complex and realistic traf-
fic phenomenon study in which several authors have made
modifications or extensions to the update rules [5–10]. From
the physics viewpoint, the original Nagel-Schreckenberg (NS)
model is fundamentally interesting as it is a system in a
nonequilibrium state that undergoes a transition whose proper-
ties are reminiscent of those of second-order phase transition
in equilibrium statistical physics [11,12]. Thus, it is natural to
consider applying a renormalization group (RG) to probe the
fixed points and RG flows in the parameter space. In the present
paper, we examine the transition behavior by using the dynam-
ically driven renormalization-group (DDRG) [13] technique.

DDRG is a technique developed to examine the behavior
of nonequilibrium statistical models with critical stationary
states. It has been applied to driven diffusive systems with an
absorbing state [14] and systems with self-organized critical
phenomena such as the sand pile model [15] and the fire forest
model [16]. In this approach, a real-space renormalization-
group scheme is combined with a dynamical steady-state
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condition that drives the RG equations through the parameter
space. Unlike systems in equilibrium in which their Hamil-
tonians are well defined and the appropriate RG space is the
parameters in the Hamiltonian, our Hamiltonian is not known
for a nonequilibrium system and the dynamics of the system are
defined by a collection of rules. In this case, the appropriate RG
space is the transition probabilities that govern the dynamics
of the system. A successive application of RG transformations
leads to a trajectory along the parameter space.

This paper is organized as follows. In Sec. II we introduce
the NS model. The renormalization scheme, the simulation,
and the numerical results are presented in Sec. III. A short
discussion on the application of DDRG to the NS model with
an open-boundary condition is given in Sec. IV. Finally, in
Sec. V we conclude.

II. THE MODEL

The NS model consists of an array of N sites with the state
σi which can be either empty or occupied by a vehicle with
speed v = 0,1,2, . . . ,vmax. The position xi and the speed of
each vehicle vi are updated simultaneously according to the
following rules.

(i) Each vehicle speed of v < vmax is increased by 1: vi →
vi + 1.

(ii) Each vehicle with a speed greater than its headway is
reduced to di : vi → di .

(iii) With probability p, each vehicle will reduce its speed
by 1: vi → max(vi − 1,0).

(iv) Each vehicle position is updated: xi → xi + vi .
A periodic-boundary condition is assumed with a random
initial distribution of the vehicle position. The system configu-
ration can be described by a master equation which is given by

Pt+1(σ ) =
∑
{σ 0}

W (σ |σ 0)Pt (σ
0), (1)
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TABLE I. Transition probabilities W (σi |σ 0
i−1,σ

0
i ,σ 0

i+1) for vmax =
1. σi can be either 1 or 0, which represents cell occupancy.
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1 0 0 p 1 1 − p 1 − p p 1
0 1 1 1 − p 0 p p 1 − p 0

where Pt+1(σ ) is the probability for state σ = {σ0, . . . ,σN−1}
at time t + 1 and W (σ |σ 0) is the transition probability from
state σ 0 to state σ in one time step. To ease the mean-field
calculation in the latter section, one may factorize W (σ |σ 0)
into local terms:

W (σ |σ 0) =
N−1∏
i=0

W
(
σi

∣∣σ 0
i−vmax

, . . . ,σ 0
i+vmax

)
, (2)

where W (σi |σ 0
i−vmax

, . . . ,σ 0
i+vmax

) is determined from the
aforementioned rules. For vmax = 1, the transition probabilities
are as presented in Table I. In this case, cell occupancy is
sufficient to describe the state of the system. For vmax > 1, in
general, one will need to consider speed state as well. Though
Eq. (2) implies a random sequential updated dynamics which
is different from our NS model with a parallel update, it
was shown that the mean-field ansatz in a random sequential
updated NS model yields an exact equilibrium state for the NS
model with a parallel update for vmax = 1 [17,18]. Excellent
agreement between analytical approximation and simulation
results for vmax > 1 was obtained as well [18].

When p = 0, the NS model is deterministic and exhibits a
second-order phase transition from a free flow to a congested
state at the critical density ρc = 1/(vmax + 1), where vmax is
the maximum speed. The free flow state corresponds to a
low-density regime (below ρc) where each car advances with
the same speed vmax in each time step. In the comoving frame,
the vehicles freeze in position with equal spacing and the free
flow state can be considered as an ordered state. When the
density of vehicles exceeds the critical density ρc, the system
is then characterized as a congested state. In the high-density
regime, the empty sites are insufficient to allow each vehicle
in the system to move at the same maximum speed. Thus,
in the congested phase, there exists a nonzero fraction of
vehicles moving at a speed less than vmax. In the comoving
frame transversing at the speed vmax, the motion of vehicles
is observed. In this sense, a phase transition has taken place
from an ordered phase to a disordered phase. When p > 0,
the sharp transition from one phase to another is destroyed.
However, one may still perform scaling in the limit p → 0.
The role of p is analogous to the role of the external field h in
ferromagnetism, which serves as a conjugated parameter [19].

III. RG TRANSFORMATION

The DDRG method is a type of renormalization scheme
suited for the study of nonequilibrium systems exhibit-
ing nonstationary critical states. The essential ideas of the
DDRG method derive from Kadanoff’s block analysis [20]
and Suzuki’s coarse-graining of time [21]. For irreversible
nonequilibrium systems, we can describe the dynamics by

using the following master equation:

∂P (σ,t)

∂t
= L(μ)P (σ,t), (3)

where P (σ,t) is the probability distribution function for the
configuration of the system σ at time t andL(μ) is the temporal
evolution operator characterized by a set of dynamical param-
eters μ. Let Re be the coarse-graining operator that eliminates
the degrees of freedom of a cell and rescales both time and
space. Application of Re to Eq. (3) yields

ReP (σ,t) = P̃ (S,t ′), (4)

where P̃ (S,t ′) is the coarse-grained probability distribution.
Equation (4) can be written in a more explicit form as

ReP (σ,t) = Re[eLtP (σ,0)] = eL
′t ′ P̃ (S,0). (5)

The scale transformation Lt → L′t ′ yields the dynamical RG
approach while the scale transformation of P (σ,0) corresponds
to the usual static RG approach. The following recursion
relations are then obtained from the RG scheme:

μ′ = f (μ), t ′ = g(t,μ) ∼= tg(μ). (6)

It is now possible to calculate the fixed points and the critical
exponents of the model. It is worth mentioning that these
equations are obtained from the RG procedure which assumes
P̃ (S,t ′) has the same functional form as P (σ,t).

For the purpose of this work, we consider a more explicit
treatment of Eq. (3). In particular, we focus our attention on
the dynamics of discrete modes, σ = σi , on a lattice which are
characterized by the dynamical parameters μ:

P (σ,t) =
∑
σ 0

Wμ(σ |σ 0)P (σ 0,0), (7)

where Wμ(σ |σ 0) is the discrete version of L that represents
the transition probabilities from σ 0 to σ in a unit time step
t . The system is coarse-grained by rescaling lengths and time
according to the transformations x → bx and t → bzt . The
renormalization transformation can be constructed through a
renormalization operator, Re(S,σ ), that introduces the coarse-
grained variables set S = {Si} and rescales the length of the
system. However, not every choice of operator Re will lead to
meaningful transformation and often it is guided by physical
insight. In general Re is a projection operator that satisfies the
following properties:

Re(S|σ ) ≥ 0,
∑
{S}

Re(S|σ ) = 1. (8)

These properties preserve the normalization condition of the
renormalized distribution. It usually corresponds to a block
transformation in which lattice sites are grouped into a super-
site by means of the majority or spanning rule.

Suppose the dynamical operator W is applied successively,

P (σ,N ) =
∑
{σ 0}

WN
μ (σ |σ 0)P (σ 0,0), (9)

where WN
μ denotes the application of the Wμ operator N times.

For the coarse-grained probability distribution,

P̃ (S,t ′) =
∑
{σ }

Re(S|σ )
∑
{σ 0}

Wbz

μ (σ |σ 0)P (σ 0,0), (10)

032314-2



RENORMALIZATION-GROUP STUDY OF THE NAGEL- … PHYSICAL REVIEW E 97, 032314 (2018)

where we have applied the operator Re and t ′ = bzt . In order
to define the RG transformation more clearly, one can multiply
and divide each term by P̃ (S0,0) = ∑

{σ 0} Re(S0|σ 0)P (σ 0,0)
to yield

P̃ (S,t ′) =
∑
{S0}

W ′
μ(S|S0)P̃ (S0,0), (11)

where

W ′
μ(S|S0)

=
∑

{σ 0}
∑

{σ } Re(S0|σ 0)Re(S|σ )Wbz

μ (σ |σ 0)P (σ 0,0)∑
{σ 0} Re(S0|σ 0)P (σ 0,0)

.

(12)

Equation (12) is the basic renormalization equation that
defines the transition probabilites for the coarse-grained system
from which the desired recursive relations are obtained. By
imposing the condition that the renormalized transition proba-
bility W̃ has the same form as W , we then obtain the rescaled
parameter set μ′ = f (μ). The transition probabilities in the NS
model are governed by breaking probability, the corresponding
RG parameter space is thus p. Here we first establish the RG
scheme for the deterministic case p = 0 and then subsequently
explore the stochastic case p > 0.

A. Deterministic case p = 0

After allowing the system to relax for a sufficiently long
time, the system will settle down to nonequilibrium steady
states. In the steady states, the following equation,

P (σ ) =
∑
{σ 0}

Wt (σ |σ 0)P (σ 0), (13)

holds for any value of t , where P (σ ) is the stationary probabil-
ity. We perform a real-space RG transformation that renor-
malizes the transition probabilities W . The coarse-graining
operator Re takes the form

Re(Si |σ (vmax+2)) =
{

1
∑

σ σi ≥ 2,

0 otherwise. (14)

where σi is the cell occupancy and the state of site Si is the
result of coarse-graining vmax + 2 sites. The speed state which
is required to fully characterize the system for vmax > 1 is
deduced separately by inspecting the spatially coarse-grained
system configuration at the coarse-grained time. The coarse-
graining operator is constructed such that the steady-state
configurations of the system at criticality are preserved. For
the case vmax = 1, Re is the usual three-site majority rule.
For the system with vmax is greater than 1, the steady-state
configurations at criticality will be of the form (1 . . . 1 . . . 1 . . .)
where 1 denotes sites occupied with a vehicle and . . . denotes
empty cells of the length vmax. A naive majority rule is not
able to preserve such patterns of the system. Instead one has
to consider a biased majority rule in which a block of b sites
will only be transformed to an empty supercell provided the
number of empty cells is greater than vmax.

Temporal coarse-graining t → bzt , where z is the dynamic
critical exponent and b = vmax + 2, is performed on the
system. By inspection, z has to be 1 in order to have the

same dynamics in each RG transformation. The value of z

obtained from this RG scheme is in exact agreement with
numerical simulations reported [22,23]. It should be noted that
the exponent z deduced above differs from values obtained by
fitting the scaling behavior of the relaxation time defined in
Refs. [11,24] with τ ∼ Lz. With the coarse-graining operator
defined as above, the transition probabilities in Table I with
p = 0 remain invariant; i.e., W̃ = W in each step of the RG
transformation. This indicates p = 0 is a fixed point, the nature
of which is discussed later. We make an ansatz that P (σ ) can
be expressed as a product of one-site stationary probabilities,
P (σi), which takes the following form:

P (σi) =
∑

σ 0(1+2vmax)

W (σi |σ 0(1+2vmax))P (σ 0(1+2vmax)). (15)

Upon coarse-graining, the renormalized one-site stationary
probability is

P̃ (Si) =
∑

σ (vmax+2)

Re(Si |σ (vmax+2))P (σ (vmax+2)), (16)

where P̃ (Si) satisfies Eq. (15). With P (σ (vmax+2)) made known,
Eq. (16) can then be used to find density fixed points. For the
case vmax = 1, the spatial and temporal coarse-graining are
performed with b = 3. The majority rule is used to determine
the state of the coarse-grained cell. The one-site stationary
probability is given by

P̃ (1) = P (1,1,1) + P (1,1,0) + P (1,0,1) + P (0,1,1). (17)

To calculate the three-site stationary probabilities, one
may consider a simple mean-field approximation that ne-
glects the correlation among each site, P (σi−1,σi,σi+1) =
P (σi−1)P (σi)P (σi+1). For better approximation, an n-site
approximation can be used to express the probabilities. As
the model has an inherent translational invariance property, an
(n,n − 1) cluster approximation is used [25]. Equation (17)
can be written as

P̃ (1) = P 2(1,1)

P (1)
+ 2

P (1,1)P (1,0)

P (1)
+ P 2(1,0)

P (0)
, (18)

where

P (1,1) = P (1) − P (1,0), (19a)

P (1,0) = 1 − √
1 − 4P (1)(1 − P (1))

2
. (19b)

Two stable fixed points, P ∗(1) = 0 and 1, and one unstable
fixed point, P ∗(1) = 0.5, are obtained. The stable fixed points
correspond to the trivial case in which the system is either fully
empty or fully occupied by vehicles, respectively. The unstable
fixed point is the critical density ρc at which the transition
from free flow to the congested phase occurs. The RG flow
is as shown in Fig. 5. Starting from any density, repeated RG
transformations will drive the initial density towards one of the
two stable fixed points. Also, one may obtain the correlation
length exponent ν. In the vicinity of ρc, the correlation length
diverges as

ξ ∝ |ρ − ρc|−ν, (20)

where the exponent ν can be determined by ν =
log(b)/log (dP̃ /dP |ρc

).
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FIG. 1. (a)–(d) Three-site stationary probability distribution for
the NS model with vmax = 1 obtained via (2,1) cluster approximation
and simulation data.

ν = 1 is obtained for vmax = 1 with the two-cluster approxi-
mation. A better approximation can be obtained by using a big-
ger cluster approximation. Though the accuracy of the approx-
imation improves by increasing the cluster size, this method is
only feasible for a small cluster due to the exponential growth
of the system of equations to solve; i.e., (vmax + 2)n is generally

FIG. 2. dP̃ /dP obtained via cluster approximation and simula-
tion data. The dashed line and the solid line represent data obtained
via cluster approximation and simulation, respectively.

needed for an n-cluster approximation [18]. We consider the
usage of simulation data to find the three-site stationary prob-
ability distributions. Figures 1(a)–1(d) show the discrepancies
between various three-site probability distributions obtained
from cluster approximation and simulation results. This in
turns leads to different dP̃ /dP values calculated as shown
in Fig. 2 which are needed to calculate the critical exponent ν.
From simulation results, the ν exponent is found to be 1.62.

We now extend the calculations for the case vmax > 1.
As mentioned previously, the NS model with vmax > 1 is
qualitatively very different from that with vmax = 1. Particle-
hole symmetry is absent and a biased majority rule as outlined
in Eq. (14) is needed to preserve the steady-state configurations
of the system at criticality. From the dP̃ /dP values obtained
for different vmax values, one can observe that dP̃ /dP scales

FIG. 3. Correlation-length critical exponent ν for various vmax.
The inset shows dP̃ /dP for various vmax. The linear fit cvmax + d is
used with fitting parameters c = 1.5(2) and d = 0.469(3).
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FIG. 4. (a) Space-time diagram for the NS model with vmax =
1 for density ρ = 0.55 and braking probability p = 0.001. (b)–(d)
Dynamics of the NS model after being coarse-grained spatially and
temporally for the first to the third time.

linearly with vmax. A linear fit of the form dP̃ /dP = cvmax + d

is used and the fitting parameters are found to be c = 1.50(2)
and d = 0.469(3) as shown in the inset of Fig. 3. The ν

exponent is calculated and curve fitting of the form ν =
log(vmax + 2)/log(avmax + b) is chosen, with a and b being the
parameters determined previously. From the RG calculation,
ν appears to decrease with increasing vmax, changing from
ν = 1.62 to ν = 1.35. In the asymptotic limit vmax → ∞, the
ν exponent tends to 1.00. The vmax dependence of ν is also
observed in the limit p → 1, where cars tend to decelerate [26].

B. Stochastic case p > 0

In the present section, we consider a NS model with a
nonzero braking probability. The transition probability W

is renormalized with the same RG scheme outlined in the
previous section. As an example, Fig. 4 shows the space-
time diagram for a system with vmax = 1 and p = 0.001
under several iterations of the RG transformation. The NS
simulations are performed for a system of length L = 106

with the density ρ0 and the braking probability p0. After the
system has relaxed for a sufficiently long time (trelax = 10L),
the system is then coarse-grained spatially and temporally. The
renormalized density ρ1 and the braking probabilty p1 are then
obtained from the coarse-grained system which will then be
used for subsequent NS simulation. This procedure is iterated
for several times until the system reaches a fixed point. The
RG flow in the ρ−p plane is then plotted.

This scheme assumes the coarse-grained system adheres
to the NS dynamics. This assumption was tested with NS
simulations of vmax = 1 with track length L = 313 and simula-
tion time tsim = 313. After the system has relaxed sufficiently,
the configurations of the system are used to determine the
renormalized density ρn and the transition probability Wn

by successively coarse-graining the system both spatially and
temporally. Contrary to the coarse-graining scheme described
earlier where feedback of newly obtained renormalized pa-
rameters is needed to perform new simulations, this scheme
generates a sequence of (ρn,pn) from a single simulation. It
is found that for p0 → 0, the assumption holds. The results
of renormalized density and transition probabilities for the NS
model with vmax = 1 up to the fourth iteration are shown in
Table II. Beyond the fourth iteration, the size of the system is
not large enough to provide a good estimate of the transition
probabilities. A higher iteration with an accurate calculation
of the renormalized density and transition probabilities can be
obtained by starting from a larger system size, however the sim-
ulation time scales exponentially with the increase of the
system size. The braking probabilities obtained are found to be
in good agreement with the renormalized braking probability
obtained with the other scheme outlined. However, as noticed,
with the increase of p, this leads to proliferation of states upon
the RG transformation; i.e., the existence of states that violate
the NS rules is present. To define a renormalized braking
probability that avoids proliferation at each RG iteration, we
consider the following form.

For the case vmax = 1, the renormalized braking probability
is calculated via

p′ = n(1,0|1,0)

n(0,1|1,0) + n(1,0|1,0)
, (21)

where n(σ τ+1
i ,σ τ+1

i+1 |σ τ
i ,σ τ

i+1) denotes the number of configu-
ration in state (σi,σi+1) at time τ + 1 given that it is in state
(σi,σi+1) at time τ . This definition ensures no proliferation of
states; i.e., states that are not allowed in the NS model are taken
into account [13]. The RG flow in the ρ−p plane as shown in
Fig. 5 is obtained by performing the aforementioned coarse-
graining process [27]. With a nonzero braking probability as
the initial condition and a renormalized braking probability
definition that avoids proliferation, the parameters will flow
towards the fixed point p = 1 for ρ close to ρc. For ρ > 0.55
or ρ < 0.45, the parameters will flow towards the fixed point
p = 0 instead.

TABLE II. Renormalized density and transition probabilities for the NS model with vmax = 1 at each iteration of the coarse-graining
procedure with no feedback. The transition probabilities are in good agreement with the NS rules. The proliferation of states, i.e., states not
allowed in the NS models, is present when more coarse-graining iterations are performed.

Iteration L ρ w(0|000) w(0|001) w(0|010) w(1|011) w(1|100) w(1|101) w(0|110) w(1|111)

0 313 0.499 1 1 0.9999 1 0.9999 0.9999 0.9999 1
1 312 0.497 0.9999 0.9999 0.9991 0.9998 0.9992 0.9991 0.9992 0.9999
2 311 0.491 0.9991 0.9991 0.9921 0.9973 0.9931 0.9920 0.9931 0.9990
3 310 0.477 0.9911 0.9911 0.9348 0.9752 0.9416 0.9336 0.9420 0.9898
4 39 0.446 0.9265 0.9265 0.6589 0.8150 0.6379 0.6352 0.6455 0.9142
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FIG. 5. RG flow in theρ−p plane for the NS model withvmax = 1.
Blue arrows indicate the RG flow for the quenched disorder NS model.
Yellow arrows indicate the RG flow for the deterministic NS model.
Black circles represent the trivial fixed points and the white circle
represents the unstable fixed point. Yellow (blue) arrows represent
the RG flow with p = 0 (p > 0).

For the case vmax = 2, the renormalized braking probability
is calculated as

p′ =
{

n(0,1,0|1,0,0)
n(0,1,0|1,0,0)+n(0,0,1|1,0,0) , ρ � ρc,

n(1,0,X|1,0,1)
n(0,1,X|1,0,1)+n(1,0,X|1,0,1) , ρ > ρc,

(22)

where X ∈ {1,0}. The need of having different approaches
in computing the p′ is necessary as both the (1,0,1) and
(1,0,0) configurations are density dependent as exemplified
in Fig. 6. For a density which is lower than ρc, the existence of
(1,0,1) is vanishingly small as the vehicles will tend to keep

FIG. 6. Fraction of vehicles in the NS model (vmax = 2) with a
headway of either one empty site (dashed and dash-dotted lines) or at
least two empty sites (solid line) as a function of density for p = 0,
0.1, and 0.3.

FIG. 7. RG flow in theρ−p plane for the NS model withvmax = 2.
Blue arrows indicate the RG flow for the quenched disorder NS model.
Yellow arrows indicate the RG flow for the deterministic NS model.
Black circles represent the trivial fixed points and the white circle
represents the unstable fixed point. Yellow (blue) arrows represent
the RG flow with p = 0 (p > 0).

at least two empty sites with each other. Thus, one will obtain
an erroneous result if (1,0,1) is used to determine p′. The
renormalized braking probability is determined with (1,0,0)
instead. Likewise, for a density that is greater than ρc, (1,0,1)
is used to calculate p′.

As observed from the RG flows for Fig. 7, there are
two fixed points as well, p = 0 and p = 1 [27]. Unlike the
NS model with vmax = 1, where the fixed points represent
the trivial behavior of vehicles, these fixed points lead to
distinct driving strategies in the NS model. The NS model
with p = 0 can be viewed as the case where the vehicles
are dominated by repulsive interaction that tends to align
the vehicles at least vmax empty sites between each other.
As discussed in previous sections, the NS model with p = 0
shows a continuous phase transition from a free flow state
to congested phases. Whereas for the NS model with p = 1,
the vehicles are dominated by attractive interactions between
vehicles. A slight deviation from metastable configurations
will lead to a complete breakdown of the flow in the system.
This can be thought as a NS model that adopts an overcautious
driving strategy. It was shown to exhibit phase separation and
the existence of metastable states and can be regarded as a
first-order phase transition. The existence of these fixed points,
p = 0 and 1, for a given vmax from RG calculations agrees with
the notion suggested by Schadschneider [28] that the behavior
of the NS model is governed by them.

IV. OPEN-BOUNDARY CONDITION

Most of the works concerning the NS model assume
periodic-boundary conditions, with much attention being paid
to the question of transition from a free flow state to congested
phases. The NS model with an open-boundary condition is
no less significant than the model with periodic-boundary
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conditions. This is exemplified by the fact that the open-
boundary NS model can be used to study situations where
multilanes merge to one lane due to road construction or
where there is lane diversion caused by accidents and natural
disasters. In fact, the open-boundary NS model exhibits more
complex behavior. The critical states of the open-boundary
NS model are dependent on the boundary condition, i.e., the
boundary-induced phase transition [29,30]. Also, by manipu-
lating both the injection rate α and the extinction rate β, one can
observed a first-order phase transition or a second-order phase
transition. In this section, we provide a short discussion of
how the DDRG method can be extended to an open-boundary
system.

In a NS model with periodic-boundary conditions, the car
density serves as a tuning parameter. However, in an open-
boundary system, the injection rate α and the extinction rate
β are the tuning parameters while the density is a derived
parameter. Thus, the corresponding parameter space is (α,β).
The dynamics of vehicles are also dictated by the rules
specified for a NS model with periodic-boundary conditions.
The only difference is that the boundaries of the system
need some special treatments. For example, if vmax = 1, the
transition rates for the left boundary WL(σ t+1

0 |σ t
0,σ

t
1) and the

right boundary WR(σ t+1
N |σ t

N−1,σ
t
N ) are as follows:

WL(1|00) = α, WR(1|00) = 0, (23)

WL(1|01) = α, WR(1|01) = 1 − β, (24)

WL(1|10) = p, WR(1|10) = 1 − p, (25)

WL(1|11) = 1, WR(1|11) = 1. (26)

One may also write down the the boundary dynamics in a more
explicit manner as follows:

σ t+1
1 = α

(
1 − σ t

1

) + (1 − p)σ t
1

(
1 − σ t

2

) + σ t
1σ

t
2, (27a)

σ t+1
N = pσ t

N−1

(
1 − σ t

N

) + (1 − β)σ t
N , (27b)

where σ t
i denotes the state of the ith cell at time step t . By

applying the coarse-graining operator Re defined in Eq. (14)
and proceeding with the DDRG procedure, the renormalized
transition probabilities W̃R/L can be calculated. Recursion
relations for parameters α and β can be then formed to
determine the fixed points and critical exponents. For the
case vmax = 1, the NS model is identical to the asymmetric
simple exclusion process (ASEP) model with a parallel up-
date which is well studied [18,31,32] and consists of three
distinct regimes (free flow, jamming, and maximum current).
The transition from the free flow to the jamming phase is
first order along the α = β line for α,β < 1 − √

p. The
transition from the free flow (jamming) to the maximum

current phase is second order and occurs at the injection
(extinction) rate αc(βc), with αc = βc = 1 − √

p. A real-space
renormalization group was applied to the ASEP model by
Hanney and Stinchcombe [33] to study fixed points and RG
flows in the parameter space (α/p,β/p). In their work, the
density and current are assumed to remain invariant under the
RG transformation. Several nontrivial fixed points were found,
notably (αc,βc), which controls the second-order transition
from the free flow (jamming) phase to maximum current,
and the flow line, which represents a first-order transition.
It is expected that the DDRG approach will lead to similar
results. For the NS model with vmax > 1, detailed studies were
performed by Cheybani et al. [34,35]. It was observed that
there exists a first-order phase transition between free flow
and the jamming phase for the case vmax ≥ 3 and p < pc. For
p > pc, an additional maximum-current phase separated by a
second-order phase transition which is similar to ASEP. The
application of the DDRG to the NS model is expected to answer
the fixed points and the RG flow in the α−β plane as well.

V. CONCLUSION

In this paper, we investigated the dynamical transition from
a free flow state to congested phases in the NS model by
using the DDRG. For the deterministic case p = 0, two fully
attractive fixed points, ρ∗

c = 0 and 1, and one unstable fixed
point, ρ∗

c = 1/(vmax + 1), were found. The unstable fixed point
corresponds to the critical density where the phase transition
occurs. The critical exponent ν related to the correlation length
was obtained for various vmax. The critical exponent appears to
decrease weakly with vmax from ν = 1.62 to an asymptotical
value of 1.00. For the stochastic case p > 0, the case p → 0
was studied with simulation, and the renormalized p that
prevents the proliferation of states was used. The RG flow
in the ρ−p plane was obtained and fixed points that govern
the driving strategy in the NS model were found. A short
discussion on the extension of the current calculation to an
open-boundary NS model was outlined.

We believe this work shows the possibility of employing the
renormalization-group technique in studying traffic models.
For simplicity, the simplest traffic model was used in this study
to test the feasibility. It is of interest to extend our calculations
to more realistic traffic models, in particular, models that are
able to describe the spatiotemporal patterns as delineated in
Kerner’s traffic theory [36]. Moreover, it would be interesting
to classify traffic models based on the critical exponents to
existing universality classes, whenever possible. These are
among the questions we would like to explore in our future
work.
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