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Individual heterogeneity generating explosive system network dynamics
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Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans.
However, its role in determining the system’s collective dynamics is not well understood. Here we study how
individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor
similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form
of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model
shows good agreement with data from both biological and social science domains. We conclude that individual
heterogeneity likely plays a key role in the collective development of real-world networks and communities, and
it cannot be ignored.
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I. INTRODUCTION

The mechanisms by which single entities (e.g., molecules,
cells, people, etc.) come together as groups underlie myriad
physical, biological, and social processes [1–9]. Though multi-
ple models have been proposed in order to explain the different
aspects of real-world grouping behavior, the feature of hetero-
geneity among individuals has hardly been considered. Indeed,
the universality of some collective processes across contrasting
systems seems to have overshadowed the reality of intrinsically
heterogeneous populations, and more importantly system-level
evolution driven by individual heterogeneity. Percolation refers
to the dynamical transition to large-scale connectivity by the
addition of individual links [10,11]. Before the transition, all
clusters are of negligible size compared to that of the whole
system. From the transition point onward, the largest cluster
gathers a finite non-negligible fraction of the total number of
individuals. The simplest way to form and grow clusters is
with the classic Erdós-Rényi (ER) model [12,13], in which at
each time step a new link is established between two randomly
selected nodes. This model reaches the percolation transition
when the number of added links reaches half of the total number
of nodes. At this point, the second moment associated with the
cluster-size distribution presents a singularity and the system
passes to a gel phase [14–16].

Careful recent work has been dedicated to exploring the
dynamical control of percolation, particularly the transition
point [17–19]. Depending on the system, researchers look
for ways to either delay or accelerate the appearance of the
percolation transition. This is made possible by introducing
the element of competition among the nodes to be associated
together. Instead of randomly selecting one pair of nodes to be
linked, three or more nodes are selected to compete for link
addition [18,19]. The rules for addition vary from model to
model, however the direct aspect that is being explored is how
the different potential new links might affect the size of the
resultant new cluster. Thus, rules have been proposed so that
only small clusters are formed, which delays the transition,
or large clusters join, resulting in the contrary effect. These
new models of large-scale connectivity show abrupt variations

in the size of the largest cluster and hence are known as
explosive percolation. Examples from the biological and social
domain have been shown to have features akin to explosive
percolation [20,21,26]. However, it is not obvious why these
models should be able to ignore individuals’ heterogeneity
when determining which clusters are formed and when. Even in
our everyday lives, we do not arbitrarily form clusters without
some underlying factor determined by the characteristics of
the individuals involved. For example, in social gatherings
we often join with family members who by definition have
similar genes to ours, while in a sport we join those having
complementary skills in order to form a strong team. Our
findings suggest that heterogeneity-based cluster formation
and hence node-to-node affinity interactions can play a crucial
role in generating explosive phenomena in real-world systems,
and influence the point of transition. As a result, our work
provides fresh insights into how the diversity of individuals
could affect the overall dynamics of the system. This, in turn,
connects to recent findings in the stability of synchronous
states in oscillator networks, which indicate that these par-
ticular states can only be attained by nonidentical oscillators
[22–24]. Moreover, the output of our models closely captures
the dynamics of real-world systems such as online extremism
and protein homology networks.

II. MODEL

The heterogeneity is introduced as a hidden variable xi

that we call the “character” and is assigned randomly to each
node i from a distribution q(x) [27,28]. For simplicity, we
consider all {x} to be real numbers between 0 and 1 since
larger ranges can be easily rescaled to be within this interval.
Also, we consider that the character values are constant in time,
though this can be modified to include variations over time to
account for experience or external influence. The mechanisms
of link addition follow directly from the relationship among
the {x} values associated with the nodes to be linked. This is
quantified by the similarity Sij between node i and node j ,
which is defined as Sij = 1 − |xi − xj |. Thus highly similar
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FIG. 1. Modeling heterogeneous grouping. (a) The heterogeneity of nodes is modeled by the character {x}, which is a real number defined
in the [0,1] interval and randomly assigned to each node from a distribution q(x). Our model of interacting nodes comprises two mechanisms:
M1, which favors linking similar nodes (i.e., close in character), and M2, favoring dissimilar nodes (i.e., distant in character). (b) The model
follows a two-step cycle where it first randomly selects a sample of k unconnected nodes and then selects the pair that maximizes the coalescence
function C(Si,j ) that links together. (c) Dynamics of the largest cluster G1 as a function of the number of links for both heterogeneous formation
mechanisms as well as the random case (i.e., free) and different values of sampling size k. The total population is N = 104 nodes. (d) Variation
of the transition point for M1, M2, and the free model with the sampling size k computed at the instant when G1/N and its growth rate exceed
the value of the random process at L/N = 0.5. (e) Dependence of the largest gap in the growth of G1 for both mechanisms (shadows) and the
free model, and several values of sampling. Lines are guides to the eye. For (d) and (e) we show an average over 500 realizations.

nodes are close to each other in the x spectra and otherwise
for highly dissimilar nodes. The mechanisms of link addition
rest in the definition of the coalescence function C(Sij ). We
consider two complementary mechanisms for link addition:
mechanism 1 (M1), favoring similar nodes, and mechanism 2
(M2), favoring dissimilar nodes [see Fig. 1(a)]. A system fol-
lowing M1 tends to form groups of alike individuals (e.g., kin)
while M2 tends to form groups with unlike or complementary
individuals (e.g., teams). Hence, for M1 a coalescence function
is defined as C(Sij ) = Sij while for M2, C(Sij ) = 1 − Sij .

Our model starts with all N nodes unconnected. At each
time step a sample from the system is randomly selected
and a new link is established between the pair of nodes that
maximizes the coalescence function C(Sij ) [see Fig. 1(b)].
Thus, the distribution q(x), the sampling method and size, and
the specific mechanism of link addition (i.e., M1 or M2) dictate
the evolution of the system. Though the sampling can be either
of nodes or links, the evolution of the network presents similar
properties. Sampling of nodes can be related to individuals that
ran into each other in the course of a time period (e.g., a single
day), and among all the interactions only a few connections
are established based on their mutual affinity. Here we will
consider sampling of nodes for simplicity, with the link version
in the supplemental material (SM) [25]. The smallest sampling
size refers to two randomly selected nodes, which sets the limit

of a random graph model (ER model). Note that this is indepen-
dent of the link addition mechanism and the distribution q(x).
In a similar way, considering a distribution q(x) to be a Dirac
δ implies that all the nodes are identical (i.e., character-free)
and hence the limit of a random graph model is also found
independently of the remaining parameters. The former and
latter observations refer to the competitive and diverse aspects
of the network formation process, respectively. Unless both
aspects are present, the system will follow an ER process.

The evolution of the system is typically described by means
of the size of the largest cluster, which we call G1. All present
clusters sizes are denoted Gi , where i is the size rank starting
from the largest (i.e., i = 1). Figure 1(c) shows the evolution
of G1 for several sampling sizes k, and mechanisms M1 and
M2 when the character values are assigned randomly from a
uniform distribution q(x). The aggregation mechanisms and
sampling sizes have contrasting macroscopic effects in the
evolution of G1. For example, for M1 the percolation transition
shifts from the random case (character-free) point at L/N =
0.5 to greater values of L/N and exhibits macroscopic features
akin to explosive percolation such as large jumps. On the other
hand, for M2 the transition shifts to smaller values of L/N

than the random case, and the growth tends to be smoother. In
all cases, the shift tends to be more severe as the sampling size
increases, as shown in Fig. 1(d).
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These features can be explained by means of the formation
mechanisms. M1 links pairs of nodes whose x values are the
closest to each other. The probability density function (PDF)
f (y) of the similarity y = Si,j associated with the uniform
distribution is f (y) = 2y for y ∈ [0,1]. Since the distribution
is maximum at y = 1, there is a large number of pairs with high
similarity that could lie at any point in the character spectra.
Hence, the formation of small- and medium-sized clusters in
all x regions is expected. This explains the appearance of
jumps in the evolution of the largest cluster resulting from the
aggregation of small- and medium-sized clusters to G1. On
the other hand, M2 tends to link nodes that lie far from each
other in the character spectra. The PDF tells us that the number
of optimal pairs for the M2 process (i.e., small or zero Sij and
hence y) is low. As a consequence, as the sample size increases,
the likelihood that the optimal link already lies within the
largest cluster grows, resulting in slow overall growth and a
reduction in the formation of medium-sized clusters. Thus, the
growth of G1 for M2 becomes slower and smoother than that
of M1.

Figure 1(e) illustrates this fact by examining the size of
the largest gap �Gmax in the evolution of G1 [�Gmax =
max{G1(L + 1) − G1(L)}] due to the addition of a single link.
It clearly shows that the gaps associated with M2 are much
smaller than those of M1. Interestingly, we find that the gap
scales algebraically with the system size as shown in other
explosive percolation models [17,18], and this behavior is
independent of the link addition mechanism. However, it is
found that there is an upper bound in the largest gap for M1
around 1/3 when the sampling size reaches a specific fraction
of the whole system. This observation can be understood as
follows. For a uniform character distribution, the mean-field
character difference (i.e., 〈|xi − xj |〉) between any two nodes
is 1/3. This means that, for a large sampling size, the optimal
pair would carry a character value difference smaller than or
around 1/3. Thus, linking nodes that are separated for more
than 1/3 in character becomes highly unlikely. This process
gives rise to the formation of two or three large clusters at
separated points of the character spectra that fuse when they
have expanded enough, and since the distribution is uniform
the growth in size follows the expansion in character and hence
the gap is on average 1/3.

Next, we analyze the diverse aspect, which refers to the
character distribution q(x). Toward that end, here we consider
q(x) to be equal to a single parameter Beta distribution (β = α)
that is symmetric around x = 0.5, as shown in Fig. 2(a). This
choice allows us to look at polarized populations but with
the same average character value. The uniform distribution
previously presented is found for the special case of α = 1.
Polarized populations can be represented by 0 � α < 1, where
the severity in the polarization increases as α approaches zero.
In the limit of α = 0, the system is maximally polarized with
half of the nodes having character equal to 1 and half equal to
0. This binary system follows two independent random graph
formation processes that will join together only after both
graphs are fully formed (see the supplemental material [25]).
By contrast, unpolarized populations result for α > 1 where
the limit of α → ∞ corresponds to the random graph process,
which is found since the character values of all nodes are
identical.
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FIG. 2. Effect of diversity in grouping. (a) Probability density
function of a Beta distribution for several values of the parameter α

for the case when α = β. (b)–(f) Grouping evolution as a function of
the average character of the largest seven clusters (colored bubbles).
The size of the bubble is proportional to the square root of the size, and
each panel shows a different α value as shown in each panel. The total
population is N = 103 nodes, sampling k = 10, and M1 aggregation
rule.

Figures 2(b)–2(f) illustrate single simulation results of
the evolution of the seven largest clusters (colored bubbles)
vertically positioned at their average character value when the
population follows a single-parameter Beta distribution with
different α values. The size of the bubble is proportional to
the square root of the number of nodes within the cluster, and
the colors represent the rank from 1 to 7 according to their
size [see the legend at Fig. 2(f)]. Here we look at the grouping
dynamics for the case of M1, while M2 will be presented in
the supplemental material [25]. For α < 1, the distribution is
highly polarized and groups are formed at opposite extremes
of the character spectra. Depending on the severity of the
polarization, the system would require more or fewer links to
reach consensus around x = 0.5. This is because as α → 0, the
number of nodes at the center of the x spectra (e.g., moderates)
is smaller, and links between groups at opposite poles become
less likely [see Fig. 2(b)]. A less severe polarization (e.g.,
α = 1/2) allows for a certain number of moderates, which
serve as bridges between the groups in the poles and help
reach consensus [see Fig. 2(c)]. Populations with a comparable
number of nodes along each portion of the x spectra (i.e., α = 1)
form small- and medium-sized clusters at different x points
that subsequently join together into the largest component
around x = 0.5. Interestingly, after consensus is attained, some
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extreme groups tend to appear at both poles [see Fig. 2(d)].
This behavior is also present for a distribution with a larger
amount of moderates than extremists, as depicted in Fig. 2(e)
for the case of α = 2. Finally, for α = 5 we find that the
extremes are formed around the edges of the consensus group,
as shown in Fig. 2(f). These results can provide some insights
concerning how to create consensus (e.g., political) in a diverse
and even polarized population of interacting individuals, but
they warn of the possibility of leaving residual isolated pockets
of individuals with rather extreme average values of x (i.e.,
away from 0.5).

III. REAL-WORLD NETWORKS

We now explore two different real network systems from
the biological and social science domains that experience
explosive grouping behavior.

A. Protein homology network

Networks of proteins can be generated by identifying
homology relationships, i.e., commonalities in the amino acid
sequences of a pair [26,29,30], and connecting them accord-
ingly. Here proteins are viewed as nodes that are linked to each
other through weighted edges. In principle, the network can be
comprised of all deduced proteins. For simplicity, here we look
into the subset of human proteins that have shown features
akin to explosive percolation [20]. The link’s weight is de-
termined by the homology relationship of a given pair. Highly
homologous proteins have a greater weight than heterogeneous
proteins. The homology of a given pair and hence the weight
of their connecting link is measured by the alignment score sij ,
while the score accuracy is determined by the expectation (E)
value [31,32]. The smaller the E value, the more reliable the
score sij becomes [31,32]. According to UniProt [33], a total of
159 522 human proteins are deduced, which can be divided into
20 214 that have been reviewed manually against 139 338 that
await revision. Here we analyze the scores among the subset of
reviewed human proteins provided by the Similarity Matrix of
Proteins project (SIMAP) [30], and we have used links with E

values up to 10−10. For simplicity, we use the score ratio (SR) as
a weight measure, which is defined as SR = sij /max{sii ,sjj },
where sii is the self-alignment score. Note that SR is defined
within the [0,1] interval, where 1 indicates perfect alignment.
The system starts with all proteins isolated, and links are added
from high to low according to their alignment. Thus highly
homologous communities are formed first, and links between
different communities are established later.

Figure 3 presents our findings for the protein system.
Figure 3(a) illustrates two snapshots of the evolution of the
four largest protein clusters (i.e., Gi for i = 1,2,3,4) for a
midpoint evolution stage (top panel) where half of the links
have been added, and the final stage (bottom panel) where
the last link has been added, illustrating their contrasting
topologies. Figure 3(b) shows that the size of the largest cluster
(red circles) tends to show explosive dynamics as new links are
added. The system experiences a roughly linear growth starting
near to the midpoint of the dynamics, which accounts for the
addition of previously established communities to the largest
component. This behavior is captured by our heterogeneous
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FIG. 3. Heterogeneity in the human protein homology network.
(a) Snapshots of the human protein homology network as links are
added. The parameter p represents the fraction of added links. The
top panel is the early stage for p = 0.5 and the bottom panel is the
final stage with p = 1. Each panel shows the largest four clusters (i.e.,
Gi for i = 1,2,3,4). (b) Evolution of the three largest clusters of the
protein network shown in (a) (filled symbols) compared to those of
a heterogeneous process (empty symbols) with a uniform character
distribution and a sampling size of k = 8.

grouping model (pink rings) using a uniform distribution
q(x), M1 formation, and a sampling size of k = 8. Here we
consider only interlink addition since it mimics the addition
of the different connected communities that are added to the
largest cluster after it has emerged. Both systems experience
explosive grouping behavior with comparable rates and gaps.
Interestingly, our model also simultaneously reproduces some
of the dynamical features of the second and third largest
clusters (squares and triangles, respectively). This is largely
due to the system’s individual heterogeneity, which drives the
link addition process according to the affinity (e.g., alignment
in the protein system) between the individual nodes. The
agreement tends to be higher after the percolation transition
than earlier. We attribute this to the strong homology in some
protein communities where single nodes can act as hubs
gathering many individuals and rising to a non-negligible size.
In our model, all nodes are equally likely to be sampled for
potential addition. Moreover, the restrictions inflicted by the
E value leave many potential links absent, which explains why
at the last stage the network is not fully unified [see Fig. 3(a)].
Despite these complications in the alignment parameters, our
model is still in reasonable agreement with several features of
the evolution of the protein network. This is an indication of the
wide flexibility that our model of a heterogeneity framework
brings to the grouping behavior, which makes it adaptable to
different dynamical systems.

B. Online grouping

We next consider the online social group formation in
support of Islamic State (ISIS), whose data were collected
in Ref. [34]. This occurs on Europe’s largest social media
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FIG. 4. Explosive grouping in pro-ISIS online groups. (a) Snap-
shot of online pro-ISIS support groups on the VK platform on January
10, 2015. (b) Evolution of a sample of sharkfin pro-ISIS groups from
first detection to shutdown. (c) Examples of explosive behavior in
pro-ISIS groups as compared to our heterogeneous model for k = 5
(left panel) and k = 10 (middle and right panel). For each case, N is
set to be the respective group population at the moment of shutdown.

platform based in Russia, VKontakte (VK, https://vk.com).
As of December 2017, this site counted 460 million users
worldwide, and it has been used by extremists to spread
propaganda and to recruit sympathizers. A snapshot of the
pro-ISIS network is presented in Fig. 4(a) for January 10, 2015,
when 59 different extreme groups were active with a total of
21 881 followers combined, establishing 48 605 connections
(i.e., follows). This platform has become ideal for extreme
groups, in part because similar networking services such as
Facebook shut down these types of online groups almost im-
mediately, while VK takes more time to act. During that active
time, the online groups attract followers and grow in particular
ways. The methodology of the data extraction is presented
in Ref. [34], where different evolutionary adaptations have
also been uncovered. For example, groups can change names,
restart a new group after a shutdown, or switch between visible
and invisible preferences in order to avoid moderators and
being shut down, among others.

Figure 4(b) shows the evolution of a sample of extreme
online groups from the time of their earliest detection up to the
moment when they were shut down, at daily resolution. The
size of the groups is determined by the number of users that
decide to follow them. We note that in this particular sample the
size of the group passes from zero to an average size of 200
follows with a maximum of nearly 1000 follows in a single
day. In addition, we see that this irregular growth is repeated
at several sections of the formation process. These irregular
jumps in size at the start or during the evolution of a given group
g1 could be a consequence of a group (or groups) g0 being
shut down and all its (or their) former members coordinating to
either join group g1, likely due to an affinity with their message,

and thus generating a jump in its size, or to open a new group
g2, thus creating a jump at the start of its evolution. Note that the
latter process indicates that group g2 is a continuation of group
g0 and therefore they are essentially the same group, while
the former is a cluster aggregation process. In both cases, the
changes in size are abrupt, and an association with a random
aggregation process is less accurate. We therefore propose that
a heterogeneous percolation model with group formation M1
cannot be discarded as a potential mechanism for the creation
and subsequent growth of these particular groups.

Figure 4(c) strengthens our proposal by capturing key
features of the formation of extreme online groups. The panels
show how our heterogeneous model compares with three of the
extreme groups shown in Fig. 4(b) (color indicates the specific
modeled group). The remaining groups are compared with the
model in Fig. S6 of the supplemental material. The model
interprets the VK system as a collection of several subsystems,
each with a specific subpopulation of potential follows that
aggregate over time and whose largest component grows to
become the extreme group. Note that the subpopulation is not
of users but “follows” since each user can follow several groups
simultaneously. Potential followers explore groups daily and
decide whether to join or not, arguably based on affinity.
This can be considered a competitive process in which only
some users (either isolated or from former shut-down groups)
add to the extreme group’s population. Hence we implement
a competitive modeling where on each time step k nodes
compete for addition. Our results of Fig. 4(c) as well as Fig. S6
show that values of k between 2 and 10 capture general growth
trends as well as some key features, such as the size of the
jumps. Due to the bipartite nature of the group evolution,
the formation process considers interlink additions only. This
framework allows us to estimate the start of the online activity
even when the group was invisible or not yet sufficiently
extreme, and hence it did not appear in the data collection radar.
Also, this modeling paves the way for exploration of different
intervention strategies to mitigate the spreading of the group
by attacking it, for example at its earliest stage. We note that
not all the groups identified can be modeled by this explosive
percolation framework for technical reasons, e.g., because of
missing data.

IV. SUMMARY

We have shown that a heterogeneous population of interact-
ing individuals can generate explosive grouping behavior. In
addition, our model provides a framework to study the impacts
of new links on polarized populations. Linking individuals can
result in the formation of new residual clusters at the extremes.
We also tested our model against two different heterogeneous
real-world datasets capturing specific features of the forma-
tion process and showing that heterogeneity plays a decisive
part in the system’s network evolution and should not be
ignored.
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