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Geometric evolution of complex networks with degree correlations
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We present a general class of geometric network growth mechanisms by homogeneous attachment in which the
links created at a given time t are distributed homogeneously between a new node and the existing nodes selected
uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric
space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent
chemical potential μ(t). The chemical potential limits the spatial extent of newly created links. Using a hidden
variable framework, we obtain an analytical expression for the degree sequence and show that μ(t) can be fixed
to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that
depending on the order in which nodes appear in the network—its history—the degree-degree correlations can
be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the
average clustering coefficient 〈c〉. In the thermodynamic limit, we identify a phase transition between a random
regime where 〈c〉 → 0 when β < βc and a geometric regime where 〈c〉 > 0 when β > βc.
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I. INTRODUCTION

Random geometric graphs (RGGs) provide a realistic ap-
proach to model real complex networks. In this class of models,
N nodes are located in a metric space M and are connected if
they are separated by a distance shorter than a given threshold
distance μ [1,2]. While RGGs are naturally associated with
spatial networks [3]—such as infrastructure [4], transport
[5–7], neuronal networks [8], and ad hoc wireless networks
[9–11]—they can also be used to model real networks with
no a priori geographical space embedding. In these geometric
representations, nodes are positioned in a hidden metric space
where the distances between them encode their probability of
being connected [12–14]. This modeling approach allows us
to reproduce a wide range of topological properties observed
in real networks, such as self-similarity [15], high clustering
coefficient [16], scale-free degree distribution [17,18], efficient
navigability [19], and distribution of weights of links [20].

This network geometry approach has been generalized to
incorporate network growth mechanisms to further explain the
observed structure of real networks under simple principles
[12,13,21–23]. Two classes of mechanisms are considered
in these approaches. The first one corresponds to a direct
generalization of the classical preferential attachment (PA)
coupled with a geometric mechanism: spatial or geometric
preferential attachment [21–23]. In this class of models, nodes
are added on a manifold at each time t , similarly to a
geometric prescription, but connect with the existing nodes
with a probability proportional to their degree and to a distance
dependent function f (d). However, the power-law behavior of
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the degree distribution remains robust to the choice of a specific
f (d) and the curvature of space.

The second class involves the interplay between two attrac-
tiveness attributes, popularity and similarity, which dictates
the connection probability. Contrary to spatial PA, new nodes
connect more likely to high popularity, denoted by a hidden
variable r(t) dependent on the time of birth t of nodes, and
to high similarity, denoted by the angular distance between
two nodes positioned on a circle. This model is usually
referred to as a spatial growing network model with soft
preferential attachment. Its evolution mechanism induces the
power-law behavior of the degree distribution, but connects
proportionally to their expected degree instead of their real
degree. By further tuning the positions of new nodes based
on the spatial density of existing ones, this class of models is
capable of generating scale-free networks with soft commu-
nities using geometry alone. All these network models have
an interesting correspondence with static RGGs in hyperbolic
geometry [12,17,18,24,25]. This suggests that the hidden space
of real networks might be hyperbolic as well. In fact, several
algorithms inferring the positions of nodes of real complex
networks in the hyperbolic disk have been proposed based on
these realistic models [12–14].

While the PA mechanism and hyperbolic geometry have
been proved to naturally generate networks with power-law
degree distribution, they do not capture the whole range of
fundamental structural properties characterizing real networks.
A good example is the assortative behavior of certain social
networks such as scientific collaborations networks [26–28],
film actor networks [29], and the pretty good privacy web of
trust networks [30]. The reason for the lack of assortativity
in the PA and hyperbolic models is that they map to the
soft configuration model: a maximum entropy ensemble in
which the degree sequence is fixed with soft constraints such
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that no degree-degree correlations can be enforced [18,31].
Growth mechanisms with custom degree-degree correlations
are therefore still wanting.

We present a type of growing geometric network model
which, in contrast with PA, distributes the links created by
newborn nodes homogeneously among the existing ones. We
call this attachment process homogeneous attachment (HA).
From a geometric point of view, HA is interpreted as a growing
geometric network mechanism where the connection threshold
μ ≡ μ(t) is a function of the time of birth of the newborn
node. While previous works have considered similar scenarios
in which the connection threshold is tailored to model social
networks [32–34], to account for scale invariance [35] or to
infer hyperbolic maps with external and internal links creation
[13,14], our parameter μ(t) is general and sufficiently versatile
to reproduce a wide range of realistic structural properties.
This feature allows the creation of an arbitrary number of
links at each time enabling direct specification of the degree
distribution and the degree-degree correlations.

The paper is organized as follows. In Sec. II, the growing
geometric network model is presented in detail. Section III
is devoted to the development of an analytical expression for
the degree of each node. This analytical description fixes μ(t)
for any type of degree sequences, and therefore specifies the
degree distribution. In Sec. IV, we show how the history of
a network (the order of appearance of nodes) can be used
to tune the degree-degree correlations without altering the
degree distribution. In Sec. V, the effects of the underlying
geometry on the network topology are studied with special
attention given to the average clustering coefficient 〈c〉. Finally,
in Sec. VI we draw some conclusions, limitations of the model,
and perspectives.

II. GROWING GEOMETRIC NETWORKS

Let us consider the isotropic, homogeneous, and borderless
surface of a (D + 1) ball of radius R as the metric space M
(dimension D) in which the growing geometric networks are
embedded. This choice simplifies the analytical calculations
below, but does not alter the generality of our conclusions.
Considering an initially empty metric space, the growing
process goes as follows (see Fig. 1).

(1) At any time t � 1, a new node (noted t) is assigned the
random position xt uniformly distributed on M.

(2) Node t connects with the existing nodes s < t with
probability p(xt ,xs ; t).

(3) Steps 2 and 3 are repeated until a total of N nodes has
been reached.

In the model, p(x, y; t) is a general function of the birth
time t and the positions of the nodes x and y that we leave
unspecified for the moment. Notice, however, that both the
spatial and time dependencies have nontrivial effects on the
network topology. On the one hand, the geometry encoded
in p(x, y; t) will affect the properties of the networks like
the distribution of component sizes [36] and the clustering
coefficient [16]. On the other hand, the time dependency will
determine when distant connections are allowed which, in turn,
induce correlations between nodes with different birth times.
For instance, if p(x, y; t) is a decreasing function of t , older
nodes will on average be hubs tightly connected to one another

FIG. 1. Illustration of the HA growth mechanism for geometric
networks: (a) birth of node t which connects with three neighbors,
including s at distance dts < μ(t), and (b) subsequent birth of node
r > t connecting to t with drt < μ(r). For illustration purposes,
p[xt ,xs ; μ(t)] = �[μ(t) − dts] such that any node within a circle of
radius μ(t) (gray area) centered on node t will become connected
to it.

while younger nodes will have lower degrees. The choice of
p(x, y; t) can therefore induce a hierarchical core-periphery
structure, where the hubs are strongly interconnected at the
topological center of the structure and where the low degree
nodes are mostly connected in chains with the center and
occupy the outskirt of the network.

A natural and straightforward generalization of previous
works [1,2] is to add a time dependence to the probability of
connection

p[x, y; μ(t)] = �[μ(t) − d(x, y)] =
{

1 if d(x, y) < μ(t)
0 otherwise ,

(1)
where �(d) is the Heaviside step function, d(x, y) is the metric
distance between x and y, and μ(t) is the connection threshold.
Fixing μ(t) = μ reduces to the known sharp RGG model
which is deterministic in the creation of the links but not always
suitable to describe real networks [9,10,37].

For more flexibility, we consider a connection probability
analog to the Fermi-Dirac distribution

p[x, y; μ(t),β] = 1

exp{β[d(x, y) − μ(t)]} + 1
, (2)

where β > 0 is a parameter controlling the clustering coeffi-
cient and μ(t) limits the spatial extent of new links [16,17].
From a statistical physics point of view, using this connection
probability amounts to considering the links as fermions of
energy given by the length of the links, d(x, y), embedded in
an environment maintained at temperature 1/β with a chemical
potential μ(t).

This connection probability is interesting for two reasons.
First, it is very similar to the connection probability of the
exponential random graph model. This network ensemble
maximizes the Gibbs entropy when the average number of
links between any given pair of nodes is fixed [38]. Second,
varying β enables us to navigate between the hot regime
β → 0 and the cold regime β → ∞. In the limit N → ∞
and when μ(t) = μ, the connection probability in the hot
regime no longer depends on the position of the nodes, and
the corresponding network ensemble is of the Erdős-Rényi
type, where 〈c〉 = O(N−1) → 0 [16]. In contrast, in the cold
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regime, under the same conditions, 〈c〉 reaches a maximum
independent of N [16].

III. DEGREE SEQUENCE

Since μ(t) limits the spatial extent of potential connections,
it has a direct impact on the degree sequence. In this section,
we shed light on the relation between μ(t) and the resulting
structure.

A. Hidden variables

Homogeneous attachment is a growing mechanism in which
new nodes connect to existing nodes with the same probability
dependent on their birth time. A convenient way to analyze this
mechanism is via the framework of random graphs with hidden
variables [39]. In this class of models, each node i = 1, . . . ,N

is assigned a hidden variable hi , sampled from a probability
distribution ρ(h), and links are created between nodes (i,j )
with probability pH (hi,hj ). This general model encodes the
correlation among nodes via the hidden variables, which can
either be random numbers hi or vectors of random numbers
hi . Although this model is very general and versatile, it is
nevertheless amenable to a full mathematical description of
the structural properties of the network ensemble such as the
degree distribution, the correlations, and the clustering.

In our model, there are two hidden variables involved:
the time of birth t and the position x = (x1,x2, . . . ,xD+1) on
the surface of the (D + 1) ball M such that the associate
hidden variables are h = (t,x). Whereas x is a random variable
distributed uniformly on M by definition, the same cannot
be said straightforwardly for t . However, since a node was
born at every t = 1, . . . ,N , randomly choosing a node of birth
time t will occur uniformly. This is sufficient to provide a
mathematical description of the network ensemble using the
hidden variable framework. The hidden variable probability
distribution is then

ρ(h) = 1

NSD(R)
= �

(D+1
2

)
N2π (D+1)/2RD (3)

where SD(R) is the surface of the (D + 1) ball of radius R and
�(x) = ∫ ∞

0 tx−1e−t dt is the Gamma function.
For the sake of simplicity, we consider the characteristic

time T ≡ N and length X ≡ πR to define the normalized
hidden variable h̃ = (τ,ξ ), where

τ ≡ τ (t) = t

T
= t

N
, (4a)

ξ ≡ ξ (x) = x
X

= x
πR

(4b)

and the normalized quantities

R̃ ≡ R

X
= 1

π
, (5a)

μ̃(τ ) ≡ μ(τT )

X
= μ(τN )

πR
, (5b)

β̃ ≡ βX = βπR. (5c)

This choice of normalization implies that

ρ ≡ ρ(h̃) = �
(D+1

2

)
2π (1−D)/2

(6)

becomes a constant. Note also that as N tends to infinity
the difference between birth times, �τ = N−1, tends to zero,
which allows us to consider the birth times τ as a continu-
ous variable in [0,1) to facilitate the analytical calculations.
Additionally, because M is homogeneous and isotropic, all
analytical calculations will always consider the referenced
node to be at 0 ≡ (R̃,0, · · · ,0) without loss of generality.
Finally, considering two nodes with hidden variables h̃ = (τ,ξ )
and h̃

′ = (τ ′,ξ ′), the connection probability becomes

pH (h̃,h̃
′
) = �(τ − τ ′)p[ξ , ξ ′ ; μ̃(τ ),β̃]

+�(τ ′ − τ )p[ξ ′, ξ ; μ̃(τ ′),β̃], (7)

where the step functions select the appropriate probability
depending on which nodes appeared first.

B. Fixing the degree sequence

Since the new links are distributed homogeneously among
the existing nodes at any given time, the expected degree of
node τ at the end of the process has the following simple form:

κ(τ ) = N

[
τn(τ ) +

∫ 1

τ

n(τ ′)dτ ′
]
, (8)

where

n(τ ) =
∫
M

p[ 0, ξ ; μ̃(τ ),β]ρ dξ , (9)

which corresponds to the probability that node τ will connect
to any existing nodes at its birth. This integral can be solved
analytically when D = 1, leading to a closed form expression:

n(τ ) = 1

β̃
ln

{
exp(−β̃) + exp[−β̃μ̃(τ )]

1 + exp[−β̃μ̃(τ )]

}
. (10)

For D �= 1, Eq. (9) must be solved numerically. Each term of
Eq. (8) can be interpreted explicitly: the first one corresponds
to the number of links which node τ creates on its arrival while
the second term accounts for the links it gains by the creation
of the other nodes.

The average degree of node τ can be obtained as a function
of μ̃(τ ) using Eq. (9). Indeed, Eq. (8) can be inverted such that
we obtain n(τ ) as a function of the degree sequence {κ(τ )}. We
start by deriving Eq. (8) with respect to τ such that we obtain
the following differential equation:

dκ(τ )

dτ
= Nτ

dn(τ )

dτ
. (11)

Then, solving for n(τ ) by integrating by part from τ to 1, this
yields

n(τ ) = 1

N

[
κ(τ )

τ
−

∫ 1

τ

κ(τ ′)
τ ′2 dτ ′

]
= O(N−1). (12)

This represents one of the most interesting assets of the HA
model: given an ordered degree sequence in time κ(τ ), it is
possible to calculate analytically n(τ ) to obtain the appropriate
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FIG. 2. κ(τ ) as a function of the birth time τ for exponent α

and average degree 〈k〉. The small dots correspond to data obtained
from Monte Carlo simulations where μ̃(τ ) is given by Eq. (13) with
n(τ ) given by Eq. (15). The markers (squares, circles, and triangles)
correspond to the average data and the solid lines correspond to
Eq. (14). N = 104 and β̃ → ∞ where the connection probability
corresponds to Eq. (1). The other parameters are indicated on the
plot. The results have been averaged over 96 instances.

form of μ̃(τ ) via Eq. (9) which, in the case D = 1, yields

μ̃(τ ) = 1

β̃
ln

{
1 − exp[−β̃n(τ )]

exp[−β̃n(τ )] − exp(−β̃)

}
. (13)

It is therefore possible to obtain the corresponding function
μ̃(τ ) to reproduce any given degree sequence.

It is important to understand at this point that what is fixed
here is the ordered expected degree sequence in time, which
is quite different from a configuration model prescription. For
example, an increasing degree sequence in time would yield a
totally different structure than a decreasing one. We will show
that this additional trait of the model allows us to tune the level
of correlations between the degree of nodes.

C. Scale-free growing geometric networks

Scale-free networks (P (k) ∝ k−γ ) can be generated with
our model by assuming that the ordered degree sequence has
the following form:

κ(τ ) = ντ−α, (14)

where ν > 0 fixes the average degree 〈k〉, and where 0 � α < 1
amounts to the heterogeneity of the degree sequence and
controls the exponent of the degree distribution via γ = 1 + 1

α
.

It is then possible to calculate explicitly n(τ ) using Eq. (12):

n(τ ) = ν

N (α + 1)
(ατ−α−1 + 1). (15)

Figure 2 shows κ(τ ) for scale-free geometric networks with
different sets of parameters where the chemical potential is
given by Eq. (13) (see Fig. 3). Clearly, Eq. (14) correctly
describes the behavior of the degree sequence.

FIG. 3. Chemical potential μ̃(τ ) vs τ used to generate scale-free
geometric networks with different values of α and 〈k〉 indicated on
the plot. The lines and markers correspond to Eq. (13) with n(τ ) given
by Eq. (15). N = 104 and β̃ → ∞.

D. Finite-size effects

The agreement between the theoretical predictions and the
numerical simulations demonstrates it is indeed possible to
reproduce any degree distributions with an appropriate choice
of μ̃(τ ). There are some limitations, however. It is possible for
the ordered sequence of expected degrees to be such that Eq. (9)
yields n(τ ) > 1, meaning that node τ would have to create
more links than the number of already existing nodes at the
moment of its birth (time τ ). In the case of scale-free networks
with an ordered degree sequence of the form of Eq. (14), this
happens for all nodes τ < τ ∗ where

τ ∗ =
[

αν

N (α + 1) − ν

] 1
α+1

, (16)

which corresponds to the plateau seen in Fig. 3, and implies that
all nodes τ < τ ∗ will form a connected clique of hubs. Limiting
n(τ ) such that n(τ ) < 1 further implies that some links will
be missing, and consequently that the degree sequence will
differ from the one given by Eq. (14). This discrepancy can
be investigated through the average degree which, without this
correction, is equal to 〈k〉 = ν

1−α
. Considering the clique of

connected hubs yields instead

〈k〉 =
∫ 1

0
κ(τ )dτ = τ ∗κ(τ ∗) +

∫ 1

τ ∗
κ(τ )dτ

� ν

1 − α
(1 − ατ ∗1−α), (17)

which holds for α � 1. Thus, the difference between the
two values for the average degree scales as O(N− 1−α

1+α ), which
vanishes in the limit N → ∞. One possible way to circumvent
this effect would be to allow multilinks and self-loops, but this
is left as a future improvement of the model.
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IV. NETWORK HISTORY

The degree sequence can take many forms: choosing
Eq. (14) for the degree sequence yields scale-free networks.
Yet, this is only one example of a degree sequence capable
of generating networks with a power-law degree distribu-
tion. Another example of such degree sequence would be to
choose all the entries of κ(τ ) at random from a distribution
P (k) ∝ k−γ . However, these two growth processes, despite
having the same degree distribution, have different μ̃(τ ) which
in turn affect the structural organization of the generated
networks.

Reordering the degree sequence amounts to changing the
history of the network. We define a history by a set H = {τi} of
the birth time, where τi is the birth time of a node with label i

of fixed final degree ki . For a specific history, the final expected
degree of node i is simply

κ(τi) = ki. (18)

A network where the degree sequence {ki} is known can have
different histories. Unlike most network growth models, in HA
the degree sequence is preserved even if the network history
is changed. This particularity makes HA a unique alternative
to model growing networks because it induces a specific
correlation between nodes born at a different times. In other
words, the change of network history affects the correlation
between nodes.

A. Degree-degree correlations

To quantify the impact of the history on the resulting net-
work structure, we consider the degree-degree correlation. This
measure is fully characterized by the conditional probability
that a node of degree k is connected to another node of degree
k′ denoted by P (k′|k).

We express the degree-degree correlations in terms of the
birth times as the conditional probability p(τ ′|τ ) that node τ

is connected to node τ ′ given by

p(τ ′|τ ) = N

κ(τ )
[�(τ − τ ′)n(τ ) + �(τ ′ − τ )n(τ ′)]. (19)

However, it is usually more convenient to calculate the average
degree of nearest neighbors (ANND) denoted by κnn(τ ) and
defined by

κnn(τ ) =
∫ 1

0
κ(τ ′)p(τ ′|τ )dτ ′

= N

[∫ τ

0

κ(τ ′)n(τ )

κ(τ )
dτ ′ +

∫ 1

τ

κ(τ ′)n(τ ′)
κ(τ )

dτ ′
]
. (20)

From this expression, the degree-dependent ANND, denoted
k̄nn(k), can be obtained via the hidden variable framework

k̄nn(k) = 1 + 1

P (k)

∫ 1

0
g(k|τ )κnn(τ )dτ, (21)

where g(k|τ ) = e−κ(τ )κ(τ )k

k! [39]. Having this analytical expres-
sion in hand, we can now investigate the effect of different
histories on the degree-degree correlations.

B. Decreasing order of degrees

As we have seen in Sec. III, scale-free degree sequences
can be written as κ(τ ) = ντ−α . This implies a specific type
of network history where the degree sequence is a decreasing
order of the degrees: hubs are old while low degree nodes are
young. The birth time correlations can then be calculated using
Eqs. (14) and (15):

κnn(τ ) = κ(τ )

2(1 − α)
[1 + τ 2α], (22)

which is well approximated, for τ � 1, by κnn(τ ) � κ(τ )
2(1−α) .

Then, the k̄nn(k) can be calculated and is given, for large k, by

k̄nn(k) � k

2(1 − α)
. (23)

Since k̄nn(k) is essentially a linear function of k, it shows
that choosing a history ordered by degree yields assortative
networks. Figure 4(a) confirms these predictions.

C. Increasing order of degrees

We now consider an ordering in which the old nodes are
assumed to be the low degree ones and the young nodes are

FIG. 4. Degree-degree correlations for different histories: (a) decreasing degree order (Sec. IV B), (b) increasing degree order (Sec. IV C),
and (c) random order (Sec. IV D). In each plot, the results from Monte Carlo simulations are indicated by the squares and the analytics are
indicated by the circles. The degree distributions are also displayed in the inset and are power laws with γ = 2.25 (dashed lines). The average
degree assortativity coefficients 〈r〉 are (a) 〈r〉 � 0.68, (b) 〈r〉 � −0.12, and (c) 〈r〉 � −0.11. For each simulation, α = 0.8, 〈k〉 = 10, N = 104,
and β̃ → ∞ [Eq. (1) as the connection probability]. The results have been averaged over 96 instances.
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the hubs. To generate scale-free networks with an increasing
degree order, we use

κ(τ ) = ν(1 − τ )−α, (24)

which yields

n(τ ) = ν

N

[
(1 − τ )−α

τ
−

∫ 1

τ

(1 − τ ′)−α

τ ′2 dτ ′
]
. (25)

As illustrated in Fig. 4(b), an increasing degree history im-
plies a decreasing k̄nn(k) which corresponds to disassortative
networks. This can be explained by the fact that, since all
the low degree nodes are created early in the history, when
the time comes for the hubs to be born, they will connect more
frequently to them. Combined with the results of Sec. IV B,
these results show how the degree-degree correlations can be
tuned simply by changing the history we consider.

D. Random order

Our last example is when the set H is random. The network
history is then composed of birth times τi that are random
variables distributed uniformly between [0,1). From the point
of view of the degree sequence, this means that κ(τ ), and
consequently any function of τ , is also a random variable
but drawn, in the case of κ(τ ), from the degree distribution.
Because of this, κ(τ ) is no longer a continuous function and
Eqs. (12) and (20) can no longer be used. Instead, we use the
following discrete form:

n(τ ) = 1

N

[
κ(τ )

τ
−

N∑
i=t+1

κ(τi)

τ 2
i

�τi

]
, (26)

where t ≡ τN is the number of nodes when τ is born, τi is
the birth time of the ith node to arrive in the network, and
�τi = τi − τi−1, with τi = 0 if i � 0, is the time step between
two birth events. In a similar way, the ANND can be adapted
as well:

κnn(τ ) = N

⎡
⎣ t∑

i=1

κ(τi)n(τ )

κ(τ )
�τi +

N∑
j=t+1

κ(τj )n(τj )

κ(τ )
�τj

⎤
⎦.

(27)

These expressions can be obtained by evaluating the in-
tegrals in Eqs. (12) and (20) in the form of Riemann sums.
Therefore, in the thermodynamic limit, �τi → 0 for all i and
the continuous and discrete forms are totally equivalent.

As before, to generate scale-free networks under this pro-
cess, we would have to first determine the degree sequence
κ(τ ) ∼ P (k) ∝ k−γ and then determine the corresponding
μ̃(τ ). With that procedure one generates networks with a
random history.

As we can see in Fig. 4(c), similarly to the increasing
degree history, k̄nn(k) is a decreasing function and the networks
show disassortativity with 〈r〉 = −0.11 according to Fig. 4.
However, the disassortativity observed here is entirely due
to structural constraints imposed by the degree sequence: the
degree sequence forces the hubs to connect more frequently to
the low degree nodes.

V. EFFECTS OF GEOMETRY

The conclusions drawn so far are general, whether the
networks are geometric or not. The effect of the geometry
becomes manifest at the level of the three-node correlations
where the triangle inequality of the underlying metric space
implies a nonvanishing clustering coefficient 〈c〉 in the thermo-
dynamic limit. The choice of p[ξ ,ξ ′; μ̃(τ ),β̃] as a Fermi-Dirac
distribution [Eq. (2)] allows us to adjust the level of clustering
by changing the inverse temperature β̃.

The average clustering coefficient C is the fraction of
triplets—three nodes connected in chains—actually forming
a triangle. Adapting this coefficient to each node instead of the
whole network yields the local clustering coefficient c, where
c corresponds to the fraction of a node’s neighbors that are
connected. For node τ , this fraction yields

c(τ ) = 2N2ρ2

κ2(τ )

[∫ τ

0
τ ′
(τ,τ ′,τ )dτ ′ + τ

∫ 1

τ


(τ,τ ′,τ ′)dτ ′

+
∫ 1

τ

∫ τ ′

τ


(τ ′,τ ′,τ ′′)dτ ′dτ ′′
]
, (28)

where 
(τ,τ ′,τ ′′) is the probability that nodes τ , τ ′, and τ ′′
form a triangle and is given by


(τ,τ ′,τ ′′) =
∫
M

∫
M

p[0,ξ ; μ̃(τ ),β̃]p[ξ ,ξ ′; μ̃(τ ′),β̃]

×p[ξ ′,0; μ̃(τ ′′),β̃] dξdξ ′. (29)

Unfortunately, Eq. (28) cannot be solved analytically for any
β̃ and D. However, the limiting cases consisting of the cold
(β̃ → ∞) and hot (β̃ → 0) limit withD = 1 have closed forms
for c(τ ).

A. Cold limit β̃ → ∞
In this regime, the connection probability p[ξ ,ξ ′; μ̃(τ ),β̃]

takes the form of a Heaviside step function centered at μ̃(τ ),
which maximizes the clustering coefficient, 〈c〉, when μ̃(τ )
does not depend on τ [16]. Equation (13) then yields

μ̃(τ ) � n(τ ). (30)

Additionally, with D = 1, 
(τ,τ ′,τ ′′) can be calculated ge-
ometrically from the area of a truncated parallelogram (see
Fig. 5). It yields


(τ,τ ′,τ ′′) �
{

∗(τ,τ ′,τ ′′), μ̃(τ ′) < μ̃(τ ) + μ̃(τ ′′)
4μ̃(τ )μ̃(τ ′′), otherwise

, (31)

where


∗(τ,τ ′,τ ′′) � 2[μ̃(τ )μ̃(τ ′) + μ̃(τ ′)μ̃(τ ′′) + μ̃(τ ′′)μ̃(τ )]

− [μ̃2(τ ) + μ̃2(τ ′) + μ̃2(τ ′′)]. (32)

From Eqs. (12) and (30), we know that μ̃(τ ) = O(N−1), which
implies that 
(τ,τ ′,τ ′′) = O(N−2) and thus, recalling Eq. (28),

〈c〉 =
∫ 1

0
c(τ )dτ = O(1). (33)

Similar scaling arguments will show that 〈c〉 is also indepen-
dent of 〈k〉 in this cold limit as displayed in Fig. 6.
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FIG. 5. Geometrical representation of Eq. (29) with D = 1 in the
limit β̃ → ∞. The constraints of the domain are illustrated in shaded
parallelograms and the overlapping area corresponds to the resulting
value of Eq. (29). In this illustrative case, μ̃(τ ) > μ̃(τ ′) and μ̃(τ ′′) >

μ̃(τ ′).

Let us examine the effect caused by a specificκ(τ ). Consider
the case of homogeneous degree sequence κ(τ ) = 〈k〉. Then,

μ̃(τ ) � 〈k〉
N

, (34)

corresponding to the connection threshold for standard RGGs
in the one-dimensional Euclidean space and therefore 〈c〉 = 3

4
[1,16]. For a heterogeneous degree sequence such as Eq. (14),
〈c〉 differs from 3

4 only slightly as seen in Fig. 6. Note
the remaining discrepancy between the analytical solution

FIG. 6. Average clustering coefficient 〈c〉 as a function of α in the
cold regime [β̃ → ∞ with Eq. (1) as the connection probability]. The
solid line corresponds to the numerical integration of Eq. (33) and the
squares correspond to data from Monte Carlo simulations. N = 104

and the results have been averaged over 96 instances.

and the numerical results for small 〈k〉 as α is increased.
This is due to increasing sampling difficulties in this regime
[40] where fluctuations in 〈k〉 are growing rapidly as α → 1
(γ = 2). Figure 6 indicates that this difference is indeed
reduced considerably with increasing values of 〈k〉. It can also
be avoided altogether with a less constraining degree sequence
than the one given by Eq. (14).

B. Hot limit β̃ → 0

We start by evaluating μ̃(τ ) β̃ � 1:

μ̃(τ ) � − 1

β̃
ln

[
1 − n(τ )

n(τ )

]
, (35)

which tends to −∞ in the hot limit. Since μ̃(τ ) takes on
negative values, it cannot be interpreted as a connection
threshold anymore. While this may seem counterintuitive, it
is a necessary condition to preserve the degree sequence. Now,
reinjecting Eq. (35) in Eq. (2) yields, neglecting d(ξ ,ξ ′) since
d(ξ ,ξ ′) � −μ̃(τ ),

p[ξ ,ξ ′; μ̃(τ ),β̃] � 1

exp[−β̃μ̃(τ )] + 1
= n(τ ). (36)

Interestingly, in the hot limit, the connection probability
becomes independent of the position ξ and ξ ′ and is therefore
independent of the embedding space M. Equation (29) can
then be easily evaluated and we obtain


(τ,τ ′,τ ′′) � n(τ )n(τ ′)n(τ ′′). (37)

This illustrates that triangle formations are uncorrelated in the
hot limit.

Recalling that n(τ ) = O(N−1), Eq. (37) informs us that

(τ,τ ′,τ ′′) = O(N−3), and therefore, together with Eq. (28),
one is left with

〈c〉 =
∫ 1

0
c(τ )dτ = O(N−1). (38)

This result is validated by Monte Carlo simulations displayed
in Fig. 7 for κ(τ ) = 〈k〉.

As the average clustering coefficient vanishes in the ther-
modynamic limit and the connection probability loses its
geometry dependence, the networks have also lost their ge-
ometric nature. In fact, this network ensemble is a generaliza-
tion of Erdös-Renyi random graphs ensemble G(N,p) where
p ≡ n(τ ) is dependent upon the birth time of nodes. For
κ(τ ) = 〈k〉, we recover the result 〈c〉 = p as in the standard
G(N,p).

C. Phase transition

By varying β̃, we observe a phase transition between
the random and geometric phases independently from the
heterogeneity of the degree sequence. That is what is shown
in Fig. 8. Interestingly, the clustering varies between a critical
interval β̃ ∈ [β̃c,δ], where δ ∼ N

2πR̃
= N

2 is the density of nodes
on the 2 ball, independent of the degree sequence (see shaded
region on Fig. 8). That 〈c〉 reaches the cold limit when β̃ > δ

is due to the saturation of 〈c〉.
In the thermodynamic limit, the critical threshold β̃c is

approximately equal to 1, such that 〈c〉 = 0 for β̃ < β̃c,
whereas 〈c〉 tends asymptotically to the cold limit as δ → ∞.
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FIG. 7. Average clustering coefficient 〈c〉 as a function of the
number of nodes N in the hot regime (β̃ � 1). The solid line
corresponds to the numerical integration of Eq. (38) and the square
corresponds to data from Monte Carlo simulations. The scaling of 〈c〉
is indicated by the black dashed line. Other parameters are α = 0,
〈k〉 = 10, and β̃ = 10−3. The results have been averaged over 96
instances.

VI. CONCLUSION

In this paper, we have defined a geometric network growth
process in which the newly created links attach homoge-
neously to the existing nodes. A correspondence between
our model and a hidden variable framework has allowed us
to determine analytical expressions for the most important
structural properties, the degree sequence, the degree-degree
correlations, and the clustering coefficient. Most importantly,
we have shown that the parameter μ̃(τ ), the network chemical
potential characterizing its geometric evolution, can be used

as an adjustable function to reproduce just about any degree
sequence.

Additionally, we have found that the birth time of nodes
in the network, characterized by its network history H , has a
strong influence on the form of the degree-degree correlation.
This is perhaps one of the more distinctive features of our
model, a result that has not been obtained by existing growth
processes.

Moreover, we have shown that the other parameter β̃, the
network inverse temperature, allows us to interpolate between
a random regime, where the connections are not influenced by
geometric constraints, and a geometric regime, where these
constraints dominate the connection occurrences. The average
clustering coefficient 〈c〉 varies between two extreme values:
the hot limit (β̃ � 1) corresponding to the random phase
and the cold limit (β̃ � 1) corresponding to the geometric
phase. Notably, the phase transition between the random and
geometric phases with a critical threshold β̃c � 1 is similar to
the one found in Ref. [18] in hyperbolic geometry.

Some questions remain open, however. First, a problem
with certain degree sequences where links are missing when
generated by our approach has been identified (see Sec. III). We
have discussed that the allowance of multilinks and self-loops
would solve the problem, but this implementation is still
ongoing.

Second, it is reasonable to ask whether the ensemble of a
network generated by our model with given degree sequence
and equal weights on all histories yields the network ensemble
of the configuration model. This correspondence would be
important in a number of ways. On the one hand, it would
establish an equivalence with the so-called S1 model of
Ref. [15] and, in turn, with hyperbolic geometry [18] and
spatial PA [12,41]. On the other hand, the ensemble of networks
generated by HA would be a generalization of the configuration
model network ensemble where an appropriate distribution on
the histories can be chosen to reproduce the degree-degree
correlations while preserving the degree sequence.

Third, a further tantalizing question is the possible control
of assortativity in the generated networks. While the analysis

FIG. 8. Transition between the hot and the cold regime for different degree sequence heterogeneities: (a) homogeneous degree sequence,
α = 0, 〈k〉 = 10, and N = 104 and (b) heterogeneous degree sequence, α = 0.5, 〈k〉 = 10, and N = 104. The dashed lines (above) correspond
to the cold limit theoretical result while the dotted lines (below) correspond to the hot limit one. The data from Monte Carlo simulations are
denoted by squares. The results have been averaged over 96 instances.
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presented in Sec. IV has shown that the assortativity coefficient
is changing with the type of histories considered, its precise
effect on degree-degree correlations has yet to be determined.
A better understanding of the role of history on the network
structure would allow for a suitable definition of a control
parameter of the assortativity coefficient.

In the analysis of the history impact on the structure, one
could go even further: inferring an (effective) network history.
Although real networks grow or evolve over time according
to their own specific dynamics, our model could nevertheless
be used to generate random ensembles of surrogates by
reconstructing their effective growth history. This could be
achieved by inferring the model’s parameters through, for
instance, the maximization of the likelihood that the model has

adequately generated the real network structure. This would
yield a network ensemble with similar structural properties
(degree sequence, correlations, clustering coefficient). Our
preliminary work on this aspect has led to promising results,
but much remains to be done on this front. We expect to report
on this venture in the near future.
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