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Exact analytical solution of irreversible binary dynamics on networks
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In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and
nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy
a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching
any final state, given an initial state, and a specification of the transition probability function of each node.
Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we
also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the
equations as efficiently as possible in exponential time.
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I. INTRODUCTION

Irreversible binary-state dynamics model rapid information
transmission in complex systems. In these dynamics, nodes
are in one of two states (inactive, active), and nodes in the
inactive state make an irreversible transition to the active state,
as soon as their precursors satisfy a predetermined condition. In
a popular formulation of the problem [1], transition conditions
are expressed by a set of response functions {Fi(m)}i=1,..,N

that give the probabilities that nodes will make a transition
from an inactive to an active state, based on the number m

of their active precursors. This general formulation, known
as cascade dynamics, encompasses multiple important dy-
namics as special cases [1]. Noteworthy examples are site
and bond percolation [2,3], the Watts model of threshold
dynamics [4], and susceptible-infected models [5]. As a result,
cascade dynamics have relevant applications in fields as di-
verse as epidemiology [5,6], economics [7], and neuroscience
[8–10].

Cascade dynamics present a difficult mathematical chal-
lenge: Predicting its outcome on arbitrary network topolo-
gies is notoriously hard. Only in some special cases do
we know of analytical solutions that are both simple and
elegant. Perhaps the most famous special case is that of
ensembles of treelike networks [11–13], for which probability
generating functions (PGF) [1,3,14–16] and message passing
(MP) [17,18] methods yield exact analytical predictions of
the important observables of the dynamics (e.g., size of
the giant component, critical propagation threshold, etc.). In
fact, their predictions are so accurate that these methods are
routinely applied to real networks, even though the underlying
hypotheses are no longer valid; in many cases, this leads to
surprisingly good approximations of the true outcome [19,20].
However in many important cases, experiment and theory
are at odds. It is now understood that these discrepancies
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can—in part—be traced back to existence of local correlations
in real systems, whose effects are overlooked by tree-based
theory [19].

There are a few promising methods—developed within the
general framework of cascade dynamics—that address this
issue by including local correlations using, e.g., a fixed preva-
lence of cliques on a treelike backbone [21,22] or with fixed
degree-degree correlations [16]. However, the most versatile
proposition to date comes from percolation theory [23–25];
it consists in mixing PGF methods with exact solutions on
arbitrary motifs. The general idea behind this method is simple:
One first decomposes a network in small local subgraphs
(motifs), then solves percolation on these graphs, and, finally,
combines the local solutions to obtain a global solution
[24].

There appears to be no conceptual obstacles to adapting
this method to general cascade dynamics—the clique-based
methods of Refs. [21,22] are in fact special cases of the general
approach. There is, however, a major practical bottleneck:
Exactly solving cascade dynamics on small graphs is, at best,
tedious [22]. This bottleneck becomes a barrier when motifs
are too diverse, or too large. In Refs. [24,26], a costly but
systematic algorithm is introduced to handle enumeration
and averaging of the traversal probabilities in the percolation
problem. The goal of the present paper is to delineate the
equivalent enumeration algorithm in the much more general
context of cascade dynamics.

The paper is organized as follows. We first define cascade
dynamics, and obtain recursive equations for the probability
of every outcome, on arbitrary network topologies and general
cascades (Sec. II). We then discuss the practical aspect of the
formalism in Sec. III, i.e., how to compute the solution of
the recursive equations as efficiently as possible.1 In Sec. IV,
we illustrate the power of the formalism in a case study
of complicated mixed dynamics occurring on small directed

1We also provide a reference implementation of our solver at
github.com/laurencee9/exact_binary_dynamics.
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networks. We gather our conclusions and perspectives in
Sec. V. Three appendices follow. In the first, we prove that
our method is equivalent to the analogous method derived
in the context of percolation theory (Appendix A). In the
second, we work out an explicit example (Appendix B). In
the third and last Appendix, we give a detailed calculations
of the worst-case computational complexity of our algorithms
(Appendix C).

II. CASCADE DYNAMICS ON ARBITRARY GRAPHS

A. Definition of the dynamics

We consider an irreversible binary-state dynamics occurring
on an arbitrary network of N nodes. This dynamic process is
well defined on graphs that contain directed edges [1], and
we therefore encode the structure of the network in a binary-
valued, potentially asymmetric N × N adjacency matrix A.
We adopt the convention that the element aij of A indicates
the existence of an edge going from node j to node i. In the
directed case, the neighborhood of node i, i.e., the set of nodes
that can be reached from i, is hence given by the nonzero
entries on the ith column of A, and the precursors of node
i are the set of nodes having a directed edge to node i. The
undirected case is obtained by placing a directed edge in both
directions.

Following the prescription of Ref. [1], all nodes are initially
placed in the inactive state, except for a (potentially discon-
nected) set of seed nodes, initially active. At each subsequent
discrete time steps t , inactive nodes make a transition to the
active state if their precursors satisfies an activation condition.
The process ends when no further transitions are possible (i.e.,
when the state of each node at time t is identical to the state at
time t + 1).

The transition conditions are encoded in a set of N so-called
“influence response functions” {Fi(m)}i=1,..,N , where m is the
number of active precursors of node i [1]. We define these
functions as the cumulative distribution function (CDF) of the
probability Pi(m) that node i has a hidden activation threshold
precisely equal to m precursors:

Pi(m) = Fi(m) − Fi(m − 1), (1)

or in other words, as the CDF of the probability that node
i will make a transition to the active state, as soon as m of
its precursors reach the active state. For convenience, we also
define the complementary probability

Gi(m) := 1 − Fi(m) (2)

that node i has a hidden threshold greater than m active
precursors—or, equivalently, that it does not make a transition
when it has m active precursors. Under this probabilistic
description, the process ends when every inactive node at time
t fails to make a transition to the active state.

A complete specification of the dynamics thus consists of
the structure of the network, as specified by a N × N adjacency
matrix A; a set of seed nodes; and a response function Fi(m)
for each node. Because our formalism allows it, we will work
with response functions specified on a node-to-node basis.
Note, however, that it is not uncommon to group nodes in
coarser compartments. In fact, response functions F (mi,θi)
that only depend on mi and some local parameter θi—such

as the degree ki of node i—are widely used [15]: Many
well-known dynamics can be recovered as a special case by
choosing specific classes of response functions [1].

B. Special classes of response functions

Let us consider first bond percolation, where a node is part
of an active component if at least one of its incoming edges
percolates. If one denotes by mi the number of in-edges, that
can percolate, of node i, and by p the percolation probability,
then node i remains inactive with probability G(mi,p) =
(1 − p)mi . The response function can therefore be written as
the complementary probability

F (mi) = 1 − (1 − p)mi . (3a)

For site percolation, where a node percolates with probability p

if it has at least a single active precursor, the response function
is simply

F (mi) =
{

0, mi = 0
p, mi > 0 . (3b)

In the Watts cascade model [4], a node of degree ki makes
a transition to the active state when a critical fraction r of
its ki precursors reaches the active state, and the thresholds r

are drawn from a distribution, whose cumulative distribution
is given by C(r). The response function for the resulting
dynamics is therefore

F (mi,ki) = C(mi/ki). (3c)

These are but a few examples, derived in Ref. [1], and
reproduced here to showcase the generality of the cascade for-
malism. Furthermore, there exists many more equivalencies,
inherited from its reduction to the Watts threshold model [see
Eq. (3c)]; the latter can be mapped, with the appropriate choice
of thresholds, to site percolation, k-core percolation, diffusion
percolation [27], and the generalized epidemic process [28].
Our method therefore provides systematic and exact solutions
to a large class of dynamics.

C. Exact recursive solution

The outcome of a cascade dynamics on a network is a
configuration of active and inactive nodes. We encode these
configurations in binary vectors l = [l1, . . . ,lN ]ᵀ of length
N , where li = 1 if node i is active in the configuration and
0 otherwise. Thus, the vector n := [1, . . . ,1]ᵀ refers to the
completely active configuration, and the number of active
nodes in a configuration l is given by the square of its Euclidean
norm, e.g., |n|2 = N .

Cascade dynamics are, by definition, probabilistic pro-
cesses. So fully solving the cascade amounts to computing
the probability of every outcome. Given a fixed initial con-
figuration l0 and a fixed structure A, we define Q(l; A,l0) as
the probability of observing configuration l when the cascade
stops. A solution is therefore a distribution Q = {Q(l; A,l0)}l

over all l ∈ {0,1}N , for a choice of response functions (not
explicitly denoted, for the sake of clarity). Even though
there are exponentially many possible outcomes (|Q| = 2N ),
the calculation of Q is greatly simplified by the structure
underlying the distribution.
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Observe that when a cascade process ends, the nodes can
be partitioned in two subsets defined by their activity status. In
particular, nodes in the inactive subset must have, by definition,
a hidden threshold superior to the number of their active
precursors. The probability of observing any subset of inactive
nodes can thus be written in terms of the complementary
probabilities {Gi(m)}. Specifically, since each activation event
is independent, we can write the stopping probability of the
cascade in configuration l as

Q(l; Au) = Q(l; Al )
N∏

i=1

[Gi(mi(l))]ui (1−li ), u � l, (4a)

where mi(l) = ∑
j aij lj is the number of active precursors of

node i and where u � l is an elementwise inequality ui � li∀i.
The matrix Al denotes the reduced adjacency matrix

Al = L A L,

where L = diag(l) is a N × N diagonal matrix whose entries
are given by the vector l . The reduced adjacency matrix Al is
almost identical to A, except that the values on the j th row and
column are set to zero if lj = 0. It encodes the structure of the
subgraph induced by the set of active nodes in configuration l .
Thus, if l = n, then An = A.

With this in mind, Eq. (4a) is interpreted as follows: It
states that the probability that a cascade taking place on Au

will stop at configuration l is equal to the probability Q(l; Al )
of reaching a completely active subgraph induced by l times
the probability

∏N
i=1[Gi(mi)]ui (1−li ) that the cascade does not

spread to the remaining |u − l|2 inactive nodes.
This essentially solves the problem. The distribution of

outcomes Q can—in principle—be computed by solving the
system of 2(N−|l0|2) equations defined in (4a), recursively,
for configurations with increasing numbers of active nodes.
However, it turns out that this system is not complete: Every
completely active configuration in a reduced subgraph is
associated to a noninformative Eq. (4a), because ui = li = 1 ∀i

yields the tautology

Q(l; Al ) = Q(l; Al ).

Hence, we are dealing with an underdetermined system of
equations. Fortunately, the system can be completed via the
normalization condition

Q(l; Al ) = 1 −
∑

u:u<l

Q(u; Al ), (4b)

where u : u < l means that the sum is taken over all u
respecting the elementwise inequality ui < li∀i. Equation
(4b) states that the probability of reaching the fully active
configuration l on the reduced adjacency matrix Al is given
by the complementary probability of reaching any other state
with fewer active nodes (on Al ). Of course, one also needs to
give an initial condition of the form

Q
(
l0; Al0

) = 1, Q(l; Al ) = 0 ∀ l � l0, (4c)

to complete the system.
Before considering the practical aspect of this formalism,

we note that an analogous derivation leads to almost identical
equations in the case of bond percolation [26]. In fact, we show

in Appendix A that on substitution of the response function
(3a) in the equations, one recovers the formalism derived in
Ref. [26] for bond percolation.

III. ENUMERATION ALGORITHMS

A. General recursive solution method

In practice, and as stated above, Eqs. (4) must be solved
recursively. One must feed the results of Eq. (4a) into Eq. (4b),
and back into Eq. (4a), using the initial condition Eq. (4c) as
a starting point. To make things more concrete, let us follow
through with the first few steps of the computation.

First, we compute the probabilities Q(l0; A) using Eq. (4a)
and the initial condition Eq. (4c). Then we proceed to con-
figurations with one more active node, i.e., configurations l i

such that |l i |2 = |l0|2 + 1. These probabilities, of the form
Q(l i ; A), can be computed from Eq. (4a). But in so doing, we
will need to resort to the normalization condition [Eq. (4b)].
Once the stopping probabilities of all configurations with one
extra active node are computed, it is only a matter of repeating
the process for all configurations with one more active node
(i.e., l i such that |l i |2 = |l0|2 + 2), progressing toward larger
and larger configurations, all the way up to the complete
configuration of |n|2 = N nodes. This scheme obviously
constructs the complete distribution Q (as well as a complete
set of distributions Q′ on every possible subgraph of A).
We work out an explicit example for a small tadpole graph
in Appendix B.

B. Saving time: Culling impossible configurations

The method just discussed is less than optimal, precisely
because it goes through every single configuration of active
nodes and every single induced subgraphs. This is due to
the fact that many response functions and many graphs are
associated with large sets of impossible configurations, i.e.,
sets of configurations l with null probabilities Q(l; Au) = 0.
It is easy to see that a configuration l is necessarily impossible
if it contains at least one node i not connected to a seed (or a
spontaneously activated node) via a path in Al : There is then
simply no possible path for the cascade to have propagated to
node i. Such configurations abound.

If we can find and avoid these impossible configurations
more efficiently than through brute-force enumeration of l ∈
{0,1}N , then we will have accelerated the calculation of Q
by completely ignoring large portions of its support. This can
be done in most practical cases by using a breath-first search
(BFS) over the configurations that accounts for the presence
of spontaneously activated nodes [i.e., Fi(0) > 0] and discon-
nected seeds, see Fig. 1. In this modified BFS, nodes can be in
one of two states: either discovered or undiscovered. We seed
the search with the initial condition l0, i.e., by labeling the |l0|2
seed nodes as discovered. We then enumerate all neighboring
configurations containing |l0|2 + 1 discovered nodes, i.e., all
configurations with |l0|2 + 1 discovered nodes that are either
neighbor of an initial seed node or a spontaneous active node.
We then repeat the process, expanding outwards. Importantly,
every new configuration is constructed by taking one of the
previous configurations and converting one undiscovered node,
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FIG. 1. Example of a breath-first exploration of all configurations.
The configurations are explored by rows, i.e., by the number of
discovered (active) nodes. Nodes are labeled as discovered (blue) or
undiscovered (white). Blue arrows indicate possible transitions.

adjacent to either an already-discovered or a spontaneously
activating node.

By carrying this process recursively, we mimic the cascade
and only generate possible configurations. When there are
no undiscovered nodes adjacent to a discovered node and
no undiscovered spontaneous nodes, we therefore have enu-
merated all possible final configurations, and the algorithm
terminates.

The advantage of using this search is that we can intertwine
the enumeration procedure and the recursion of Eqs. (4). As
soon as the number of active nodes increases by one in the BFS,
say, from m to m + 1, we know that we have encountered all
possible active configurations with m′ � m nodes. We can thus
set the probability of all the missing configurations of less than
m + 1 nodes to 0. At best, we will have saved vast amount of
unnecessary calculation. At worst, the complexity of the whole
calculation will remain more or less the same—the BFS will
only have ordered the enumeration of configurations.

C. Saving more time: Dropping intermediary distributions

For most graphs, carrying out the full recursive solution of
Eqs. (4) is impossible, because too much information must be
held either in memory or because the calculation is simply too
long—even with the help of the BFS strategy.

Besides the obvious exponential size of the solution, this
slowdown can be traced to another important bottleneck: The
evaluation of Eq. (4b) requires a complete knowledge of the
distribution for all u with u < l , i.e., all {Q′} over induced
subgraphs. In fact, one can show that |{Q′}| ∼ N ! (see Ap-
pendix. C). If we could do without the information contained in
{Q′}, then the limiting factor would become the (exponential)
size of the solution Q rather the (factorial) complexity of

the algorithm—an appreciable speedup. This would of course
come at the price of dropping the distributions {Q′} on smaller
subgraphs. One should therefore stick to the BFS enhanced
recursion method of Sec. III B if this information is needed.

However, provided that {Q′} can be dropped, it is possible
to compute Q directly. The strategy consists in combining the
recursive equations and using BFS to enumerate the elements
of the distribution Q in an orderly manner. We build on the
observation that two configurations that share a common core
of active nodes have related probabilities. Specifically, the
probability Q(u; Al ) can be computed from the probability
Q(u; A) by considering the contribution of the inactive nodes
absent from the subgraph Al :

Q(u; Al ) = Q(u; A)

[
N∏

i=1

Gi(mi(u))(1−li )(1−ui )

]−1

. (5a)

[we merely “factor out” complementary probabilities hidden
in Q(u; A).] Inserting Eq. (5a) into Eq. (4), we can then write
the elements of Q directly as

Q(l; A) = [1 − Z(l,A)]
N∏

i=1

[Gi(mi(l))](1−li ), (5b)

where

Z(l,A) :=
∑

u:u<l

Q(u; A)∏N
i=1 Gi(mi(u))(1−li )(1−ui )

. (5c)

This transformation is useful because Eqs. (5b) and (5c) ex-
plicitly include the normalization condition and can be solved
without recursion. The procedure is simple. We start by listing
and ordering all possible configurations of the complete graph
using BFS. It is important to keep the discovery order. Then
we solve Eq. (5b) from the smallest configuration to the largest
configuration (i.e., the discovery order). At each evaluation,
every Q(u; A) appearing in Eq. (5c) is already calculated and
memorized—as imposed by the discovery order. Under this
systematic method, the previously calculated information is
reinjected in the set of equations. All intermediate distributions
are thus simply dropped, which considerably reduces the
computational complexity of the algorithm (see Appendix C).

IV. RESULTS AND APPLICATIONS

Our main motivation in deriving recursive equations is to
elaborate methods that combines exactly solved motifs on a
treelike backbone, in the spirit of Refs. [24,25]. However,
for small graphs, the method can also be useful in itself.
For instance, one can marginalize Q to obtain the individual
activation probabilities of each node, and these probabilities
can then be used for diagnosis purposes, e.g., the importance
of a node with regard to spreading [29]. With this in mind, we
give two practical examples in the next section to illustrate the
power of exact solutions on small graphs.

A. Calibration: Special cases on a directed graph

To calibrate the method and verify its validity, we first use
the algorithm of Sec. III C to obtain cascade results on a known
network: The directed network of 20 nodes and 54 directed
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FIG. 2. (a) Size distribution of the active components under different dynamic processes: bond percolation, site percolation, and the Watts
threshold model. Symbols are the results of 107 Monte Carlo simulations, and curves show the exact probability given by our approach [Eq. (6)].
(b) Exact mean size [Eq. (7)] of the final active component for bond and site percolations as a function of the occupation probability p. The
graph has N = 20 and 54 directed edges.

edges appearing in Ref. [26]. We compute the solutions for
three special cases of cascade dynamics, previously introduced
in Sec. II B: bond percolation [see Eq. (3a)], site percolation
[see Eq. (3b)], and the Watts cascade model [see Eq. (3c)].
Furthermore, we compare the predictions of the formalism with
Monte Carlo simulations.

For site (bond) percolation, the Monte Carlo simulations are
done by randomly selecting a seed node and then occupying
the neighbors (adjacent edges) with a probability p. This step
is then repeated for the new neighborhood (adjacent edges)
until the process stops or until the network is exhausted. For
the Watts threshold model, the simulation follows the standard
description of a cascade process [4]. We first assign a threshold
Ci between 0 and 1 to each node i, drawn from a uniform
distribution. A randomly chosen node—the seed—is then
activated. We then enter the propagation phase: If the threshold
Ci of node i is lower or equal to the fraction of its precursors that
are active mi/ki , then the node makes a transition to the active
state. This process is repeated until no transitions are possible.
For all these Monte Carlo simulations, the estimator Q̂(l; A,l0)
of the outcome probability is computed as the frequency of the
final configuration l; standard results tell us that the variance
of Q̂ will decrease as the square root of the number of trials.

Note that because we seed Monte Carlo simulations at
random, we compare against results computed using exact
probabilities Q that are marginalized over every initial con-
figuration |l0|2 = 1, i.e.,

Q(l; A) =
∑

l0:|l0|2=1

Q(l; A,l0).

This is consistent with the typical way in which Monte Carlo
simulations are carried out.

The graph contains 20 nodes, meaning that there are roughly
106 different configurations—we cannot possibly visualize the
complete distribution Q. Thus, we will focus on summary
statistics, the size distribution [Fig. 2(a)], and the mean size
[Fig. 2(b)]. Using the distribution Q, we calculate the proba-
bility ps that a cascade will reach s nodes as

ps(A) =
∑

l∈{0,1}N
Q(l; A)I(|l|2 = s), (6)

where I(·) is an indicator function equal to 1 when its argument
is true and 0 otherwise. We also compute the mean size of the
active component,

S(A) =
N∑

s=1

sps(A) =
∑
{l}

Q(l; A)|l|2. (7)

Figure 2(a) shows the size distribution for different dynam-
ics and occupation probabilities. The perfect fit of the exact
results and the Monte Carlo simulations confirms the validity
of the equations and the algorithm. In the case of the selected
graph (see Ref. [26]), roughly half of the 220 = 1 048 576
possible configurations go into the calculations of the size
distributions. Notably, computing these distributions is trivial
once the recursive procedure of Sec. III has been carried out:
The equations yield a large polynomial in {Gi(x)}, which
can be evaluated easily and many times by specifying the
response functions and parameters. Thus, generating a family
of distributions is not significantly more costly than generating
a single one. Another important aspect, also raised in Ref. [26]
is the irregularities of the size distributions (in the case of bond
percolation), which indicates that the solution is nontrivial
and depends on the intricacies of the structure of the graph.
This tells us that any close form solution will necessarily
be just as complex. Furthermore, we see in Fig. 2(a) that
bond percolation behaves, in fact, quite simply in comparison
with the other dynamics (site percolation, Watts model); exact
solutions on small graphs therefore appear even more useful in
the case of general cascade dynamics than in the special case
of bond percolation.

Figure 2(b) shows the theoretical mean size component
for two dynamics. Again, we benefit from the fact that the
corresponding polynomial can be evaluated at will once the
recursive procedure has been completed: Our approach allows
us to zoom-in on any point of the curve and to investigate spe-
cific regions of the parameter space at little extra computational
costs.

B. Mixed dynamics

In the previous case study, the network had a global response
function, independent of the node identity. In real situations, it
is fair to assume that nodes of different types do not respond
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FIG. 3. Individual response function and activation probabilities.
The colors of the nodes are used to show their activation probability,
summed over all possible outcomes. Square nodes can make a
spontaneous transition [with response function Fs(p,q), see Eq. (9)],
while round nodes need active precursors to make a transition [they
have the response function Fw(p,τ ), see Eq. (8)]. The parameters
of the spontaneously activating nodes are p = 0.4 and q = 0.3 for
nodes 1, 5, and 11 and p = 0.6 and q = 0.1 for nodes 0, 6, and 9.
The parameters of the threshold nodes are p = 0.6 and τ = 2 for
node 2, 4, 8, and 12 and p = 0.7 and τ = 1 for nodes 3, 7,
and 10.

identically to stimuli. Thus, it is natural and perfectly general
to consider a mixed dynamics that stems from diverse response
functions. As highlighted in Sec. II, our formalism can handle
this generalization without any additional complexity.

We consider a mixed dynamics where nodes are associated
with one of two types of parameterizable response function,

Fw(p,τ ) =
{

0 m � τ − 1
p m � τ

, (8)

Fs(p,q) =
{
p m = 0
1 − (1 − p)qm m > 0 . (9)

The function Fw(p,τ ) describes a threshold dynamics, where
τ is the activation threshold and p is the activation probability
once the threshold is exceeded. The function Fs(p,q) describes
a node that can either activate spontaneously, or through
contagion; p is the probability that the node will spontaneously
activate (at time t = 0), whereas q controls its sensitivity
to active precursors. We assign these response functions to
the N = 13 nodes of a handmade small network, shown in
Fig. 3. The network is constructed to showcase heterogeneous
patterns of activation.

Because we have introduced random seeds, we will no
longer sum the probabilities over all seeds; instead, we al-
ways begin the process in the inactive configuration l0 =
[0,0, . . . ,0]ᵀ and let spontaneous activations determine the
outcome. In Fig. 4, the probability Q(l; A) is displayed for
the complete set of possible outcomes l . Since the network
is relatively sparse and small (N = 13), these results can be
computed extremely quickly (less than a minute on a modern
personal computer).

In Fig. 3, we have colored nodes with their probability
of being active by summing over all possible outcomes.
Combining the information given by both of these graphs, we
see that the fully active configuration is impossible, because

Configurations
10−4

10−3

10−2

P
ro

b
ab

ili
ty

FIG. 4. Complete distribution Q for the every possible config-
urations of the network, using the dynamics described in Fig. 3.
Configurations are grouped together according to the number of active
nodes (from 0 to 12) and then ordered with ascending probabilities.
Since node 8 is always inactive, the completely active configuration
(13 active nodes) has a zero probability and, consequently, is not
shown. Gray lines are placed where the number of active nodes
increases.

node 8 has a degree smaller than its threshold. Similar and
much more in depth analyses could obviously be carried out
on real small networks, e.g., on a power grid.

V. DISCUSSION

In this paper, we have derived a new set of recursive
equations that solve cascade dynamics on arbitrary networks,
and we have introduced two practical strategies to manage the
complexity of solving such a large set of equations. These
developments are inspired by analogous methods, introduced
within the framework of percolation theory [26].

Due to the generality of the cascade dynamics formulation
[1,28], our method leads to exact solutions for a wide range
of dynamics, including well-known examples such as site and
bond percolation and the Watts threshold model. But its power
goes beyond such simple cases; it also generates exact solution
for many exotic dynamics and connectivity patterns, e.g., di-
rected, self-referencing edges, weighted graphs, disconnected
active components, spontaneous activity and disconnected
initial seeds activation. Furthermore, the exact solution is valid
in the much more general context of individual activation
functions (i.e., each node can have a different activation
function). To the best of our knowledge, our framework is the
only one able to do so.

We cannot understate the fact that our formalism solves a
problem whose solution grows exponentially with N . As such,
the method is, by necessity, intractable.2 On the other hand, the
usual methods for solving numerically cascade dynamics,
the tree-based theory and the message-passing framework
[18,20,30], are surprisingly accurate for sparse networks and
are commonly used on real large networks [19]. Our con-
tribution is therefore not designed for computing ensemble
statistics in the large-N limit, where Monte Carlo simulations

2In the worst-case scenario of a complete graph, our implementation
is able to handle roughly 20 nodes on a modern single-CPU computer.
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or approximations schemes would be more appropriate if the
specifics of the configurations do not matter. Instead, our
method is designed to yield exact solutions for small graphs,
where the exponential dependency is still manageable. This is
useful in at least three scenarios: (i) on small graphs where
accurate configuration probabilities are needed (cf. Ref. [29]),
(ii) in formalisms where motif distributions are specified and
traversal probabilities must preferably be computed in closed
form (cf. Refs. [23,24,26]), and (iii) on graphs with mixed
dynamics. In all cases, our formalism involves calculations
that are no more complex than Monte Carlo simulations, with
the added advantage of producing exact probabilities as well.

In summary, despite the unwieldiness of the calculations
involved, our results open the way to new theoretical predic-
tions, since it solves cascades on small motifs, both exactly
and systematically.
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APPENDIX A: EQUIVALENCE WITH
BOND PERCOLATION

An exact solution to bond percolation is given in Ref. [26],
in the form of a set of recursive equations. We show that our
equations generalize these equations. As stated in Sec. II B,
bond percolation can be mapped to a cascade dynamic process
by setting F (mi) = 1 − (1 − p)mi and G(mi) = (1 − p)mi for
all nodes. We insert these relations in Eqs. (4a) and obtain

Q(l; Au) = Q(l; Al )
N∏

i=1

[(1 − p)mi ]ui−li u � l. (A1)

Next, writing out the number of active precursors of i as
mi(l) = ∑

k aiklk , we get

N∏
i=1

(1 − p)
∑

k aik lk l̄i = (1 − p)
∑

k,i aik lk l̄i ,

= (1 − p)lT Al̄ ,

where l̄i := ui − li . Substituting back into Eq. (A1), we find,
for u = n,

Q(l; A) = Q(l; Al )(1 − p)lT Al̄ , (A2)

i.e., Eq. (3) of Ref. [26]. The normalization condition is
simply generalized since it does not depend on the specifics

of the cascade dynamics. This completes the proof of
equivalence.

APPENDIX B: EXPLICIT EXAMPLE ON
A TADPOLE GRAPH

In this Appendix, we work out several of the first steps of
the full recursive procedure on a small tadpole graph of four
nodes, i.e., the graph whose adjacency matrix is given by

A =

⎛
⎜⎝

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

⎞
⎟⎠. (B1)

We choose an initial configuration where every node is inactive,
l0 = [0,0,0,0]ᵀ. To keep the response function as general as
possible, we will not further specify the dynamics. There-
fore, spontaneous activation [Fi(m) > 0] is assumed to occur;
otherwise, the only possible outcome is l0. To simplify the
demonstration, we suppose identical response functions for
each node, i.e., Fi(m) = F (mi)∀i.

There exists 24 different configurations of the cascade
dynamics. We start with the initial configuration and Eq. (4a)
to yield

Q(l0; A) = Q(l0; Al0 )G(0)4 = G(0)4,

since Q(l0; Al0 ) = 1 by definition [see the initial condition in
Eq. (4c)]. Moving to configurations with one more active node,
we begin with l1 = [1,0,0,0]ᵀ and follow the same procedure,

Q(l1; A) = Q(l1; Al1 )G(1)2G(0)

= [1 − Q(l0; Al1 )]G(1)2G(0)

= [1 − Q(l0; Al0 )G(0)]G(1)2G(0)

= F (0)G(1)2G(0), (B2)

where we have used the definition F (m) = 1 − G(m) at the
last step. Notice how the normalization (4c) intervenes and
how Q(l0; Al1 ) and Q(l1; Al1 ) are computed as a by-product
of this step, producing the complete distribution of outcomes
Q′ for a cascade taking place on Al1 . Further steps will generate
similar distributions.

Completing our calculations for the other 1 node config-
urations, we observe that the symmetry of the graph leads to
Q(l2; A) = Q(l1; A) = F (0)G(1)2G(0) with l2 = [0,1,0,0]ᵀ,
while

Q(l3 = [0,0,1,0]ᵀ; A) = F (0)G(1)3 ,

Q(l4 = [0,0,0,1]ᵀ; A) = F (0)G(1)G(0)2 ,

following the procedure of Eq. (B2).
For configurations with two active nodes such as l5 =

[1,1,0,0]ᵀ, two steps of recursions are required. First, we use
Eq. (4a)

Q(l5; A) = Q(l5; Al5 )G(2)G(0)

and apply Eq. (4b)

Q(l5; Al5 ) = [1 − Q(l0; Al5 ) − Q(l1; Al5 ) − Q(l2; Al5 )].
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None of these terms are a priori known. We must use Eq. (4a)
again for each of them

Q(l0; Al5 ) = Q(l0; Al0 )G(0)2 = G(0)2,

Q(l1; Al5 ) = Q(l1; Al1 )G(1) = F (1)G(1),

Q(l2; Al5 ) = Q(l2; Al2 )G(1) = F (1)G(1).

This leads to

Q(l5; A) = [1 − G(0)2 − 2F (1)G(1)]G(2)G(0).

This process can obviously be carried out systematically for
the five other configurations with two active nodes. We then
proceed to larger configurations until we reach l = n, which
requires a special treatment. Rather than using Eq. (4a), we
directly use the normalization (4b) to find Q(n; A). This
completes the calculation ofQ on A, and all other distributions
Q′ < Q have been computed in the process.

APPENDIX C: COMPLEXITY CALCULATION

In the main text, we mention that the exact recursive solution
of Eqs. (4) is much more computationally complex than the
accelerated solution, found using Eqs. (5b), since the latter
skips the computation of Q′ on the induced subgraphs. This
Appendix clarifies and quantifies this statement. We consider
the worst case: An undirected complete graph of N nodes, with
an undefined dynamics and no initial activation, i.e., |l0|2 = 0.
In this setup, the number of possible configurations is 2N and
the BFS is unnecessary. We assume that the complexity of the
process is well represented by the number of Q(l; Au) required
to obtain a solution.

We begin with the analysis of the complexity of the
algorithm of Sec. III C (the accelerated solution). For a config-
uration l , we count the number of terms N|l|2 involved in the
evaluation of Q(l; A) from Eq. (5b),

N|l|2 = O

⎡
⎣ ∑

|u|<|l|
Q(u; An)

⎤
⎦. (C1)

For each |u|2 of the sum, there exists ( |l|2
|u|2 ) different configu-

rations, meaning that

N|l|2 =
|l|2−1∑
|u|2=0

( |l|2
|u|2

)
∼ 2|l|2 . (C2)

For a configuration l , roughly 2|l|2 terms are needed to obtain a
solution to Eq. (5b). To obtain the complexity of the complete
distribution {Q(l; A)}l , we sum up the complexity of all 2N

equations,

Ntotal =
∑

l

N|l|2 , (C3)

=
N∑

|l|2=0

(
N

|l|2
)

2|l|2 = 3N . (C4)

We conclude that the total number of operations scales ap-
proximately as 3N for a complete set of configurations for an
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FIG. 5. Worst-case complexity of a brute-force solution of the
Eqs. (4), and of the accelerated solution Eq. (5b). The complexity
is assumed to be proportional to the number of Q(l; Au) required to
obtain a solution. The worst case corresponds to an arbitrary dynamics
with spontaneous activation on a complete graph of N nodes.

arbitrary dynamics on a complete graph, using the algorithm
of Sec. III C.

Next, we analyze the complexity of the naive recursion
algorithm (see Sec. III A) in the same manner. We call this
method the brute-force method, since it does not use any
shortcuts. Again, the complexity is represented by the number
of Q(l; Au) required to obtain a solution. The dominant
contribution to the complexity comes from Eq. (4b), i.e., the
normalization which needs to be evaluated for every Q′ on all
the induced subgraphs. We denote by M|l|2 the complexity of
the brute-force calculation of Q(l; Au). The complexity can be
written as a recursive equation:

M|l|2 = O

⎡
⎣ ∑

|u|<|l|
Q(u; Al )

⎤
⎦, (C5)

M|l|2 =
|l|2−1∑
|u|2=0

M|u|2
( |l|2

|u|2
)

, (C6)

since the normalization must be invoked all the way down
to the initial condition. Finally, summing M|l|2 over each
configuration to obtain the total complexity for a complete
set of outcomes, we find

Mtotal =
N∑

|l|2=0

(
N

|l|2
)
M|l|2 . (C7)

For large |l|2, the last element of the series, i.e., |u|2 = |l|2 − 1,
is dominant and M|l|2 ∼ |l|2! [see Eq. (C6)]. Thus, Mtotal ∼
N ! for large N .

Figure 5 compares Eqs. (C4) and (C7) for different graph
sizes. It is clear that the brute-force method becomes imprac-
tically much faster than the accelerated method.
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