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Floquet states of a kicked particle in a singular potential: Exponential and power-law profiles
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It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential
profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite
potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet
states of periodically kicked systems with singularities in the potential would have power-law profile. In this work,
we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential
barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We
map this system to a tight-binding model and show that the nature of decay profile depends on energy band
spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be
inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which
the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the
entire system.
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I. INTRODUCTION

Dynamical localization of Floquet states in time-dependent
and chaotic Hamiltonian systems is a phase coherent effect
arising from quantum interferences. Quantum kicked rotor is a
paradigmatic model for quantized chaotic systems that displays
localization effects. Quantum localization in kicked rotor (KR)
continues to attract attention in a variety of contexts ranging
from metal-insulator transitions [1,2], coherent control [3], en-
tanglement measures [4], quantum resonances [5–8], quantum
ratchets [9,10], to quantum transport [11] and decoherence
effects [12,13]. Most of such studies have focused on KR
as a model for time-dependent potential exhibiting classically
chaotic dynamics and quantum mechanical localization. For
sufficiently strong nonlinearity, KR displays chaotic classical
dynamics and it is associated with diffusive growth of mean
energy with time. In the corresponding quantum regime, this
unbounded energy growth is strongly suppressed by local-
ization arising from destructive quantum interferences [14].
This effect in KR has been shown to be analogous to Ander-
son localization for electronic transport in crystalline solids
[15–17].

One significant property shared by the quantum KR and
Anderson model is the exponential decay of their eigenstates.
In the one-dimensional Anderson model all the eigenstates are
exponentially localized in position representation [18,19], i.e.,
ψ(x) ∼ e−x/xl , where xl is the localization length. In the KR
system, eigenstates are exponentially localized in the momen-
tum representation [20]. The latter has been experimentally
realized in microwave ionization of hydrogen atoms and in
cold atomic cloud in optical lattices [21–23].
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Kicked rotor can thus be regarded as a representative
dynamical system from two distinct points of view. First, in
the classical sense, it belongs to a class of chaotic systems
that obeys Kolmogorov-Arnold-Moser (KAM) theorem [24].
This effectively implies that, upon variation of a chaos pa-
rameter, the system makes a smooth transition from regular
to predominantly chaotic dynamics. Second, in the quantum
mechanical regime, KR is a paradigmatic example of dy-
namical localization and the associated exponential profile of
its Floquet states. In the past decade, many other facets of
chaos and localization in variants of KR have been studied
that have provided results different from this standard scenario
[2,25–28].

One class of important variant is to place the KR in a singular
potential. Presence of singularity in the potential violates one of
the conditions for the applicability of KAM theorem and leads
to a scenario in which abrupt, rather than smooth, transition
from integrability to chaotic dynamics becomes possible. Such
abrupt transition to chaos is a feature of non-KAM systems
and is seen, for instance, in the kicked particle in an infinite
potential well [29,30]. The quantum eigenstates of this system
had been reported to display localization and its profile is not
exponential but was claimed to have power-law-type decay in
the unperturbed basis. A more systematic study in Ref. [2]
incorporated singularity in the KR through a tunable potential
term V (q; α) such that it becomes singular at some special
value of tunable parameter α = αs . It was shown, through
numerical simulations, that if α = αs in the potential, then all
the eigenstates of the system are power-law localized. Indeed,
it was even suggested that KR when acted upon by a singular
potential would display eigenstate localization with power-law
profile in contrast to the exponential profile obtained in the
context of standard KR [30,31]. This suggestion has not yet
been numerically tested in a variety of chaotic Hamiltonian
systems and general analytical results in support for this claim
remains an open question.
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A related question is that of the spectral statistics of
systems with singular potentials. Many earlier results have
shown that Hamiltonians with singular potentials display
“critical” statistics characterized by (i) level spacing distri-
bution that lies intermediate between the Wigner and Poisson
limits and (ii) multifractal eigenvector statistics. Interestingly,
this is also the statistical signature of the Anderson model
in more than two dimensions at the metal-insulator tran-
sition [32]. In the case of a kicked rotor system with a
steplike singular potential, it was shown that the level spacings
s follow semi-Poisson distribution P (s) = 4se−2s [33] and
eigenfunctions exhibit a nontrivial scaling of moments, a
manifestation of its multifractal nature [2]. Similar spectral
statistics occurs for the case of disordered Hamiltonians
with nonanalytic dispersion relation [34], in a near-integrable
generalized kicked rotor with a smooth potential [27] and
in quantum maps which are classically pseudointegrable
[35].

In this paper, we examine the question whether the presence
of nonanalytic potential in a kicked rotor would generically im-
ply power-law profile and other signatures of critical statistics
for its eigenstates in the quantum regime. To address these
questions, we consider the dynamics of a periodically kicked
particle placed in a stationary finite potential well of height
V0. This is primarily a non-KAM system and its unusual
classical and quantum transport properties, reflective of its
non-KAM nature, were recently reported in Ref. [36]. This
system subsumes two limiting cases: it is the standard KR
(a KAM system) in the absence of finite well potential, i.e.,
V0 = 0 and if V0 → ∞, then it becomes a kicked rotor system
placed in an infinite well (a non-KAM system) and has been
studied in Refs. [29,30]. Hence, this is a suitable test bed to
understand the transition in the nature of Floquet states as V0

is varied from the limit of a KR system (analytic potential)
to that of a system with singular potential. Further, this can
lead to a better understanding of the quantum manifestations
of classical chaos non-KAM systems.

Using the context of this system based on KR, we show
in this paper that the presence of singularity in the potential
does not always guarantee power-law localization of Floquet
states. It must be noted that in contrast to Ref. [2], in which
potential can be tuned for singularity, in the present case the
potential always displays singularity. Singular potentials are
associated with power-law localized Floquet states provided
that the Floquet states span an energy band in which the
singularity is effectively felt by the particle. Further, it is
demonstrated that the spectral fluctuations properties such
as the level spacing distributions for this system depends
on the energy range being considered. Hence, spacing dis-
tributions do not characterize the system at all the energy
scales.

In Sec. II, we introduce the model of kicked particle in
a finite barrier. In Sec. III, we report results on the decay
profile of the Floquet states and relate it to the decay of the
Floquet matrix and to the effective singularity “felt” by the
kicked particle at various energy scales. In Sec. IV, we obtain a
tight-binding form for our system to deduce the nonexponential
nature of Floquet state decays. Finally, in Sec. V, we discuss the
manifestation of potential singularity in the averaged quantities
derived from Floquet states.

I I

I

FIG. 1. Schematic of the stationary potential, Vsq(θ ) with V0 as
the potential height, b and w as barrier and well width, respectively. A
and B represent the positions at which periodic boundary conditions
are applied. I and II denotes the regions below and above V0.

II. KICKED PARTICLE IN FINITE BARRIER

The dimensionless Hamiltonian of a periodically kicked
particle in a finite well potential [36] is

H = p2

2
+ Vsq(θ ) + k cos(θ )

∞∑
n=−∞

δ(t − n)

= H0 + V (θ )
∞∑

n=−∞
δ(t − n). (1)

In this, V (θ ) = k cos(θ ) and Vsq(θ ) is the square well potential
shown in Fig. 1 and can be represented as

Vsq(θ ) = V0[�(θ − Rπ ) − �(θ − Rπ − b)],

where V0 is the potential height and b is the barrier width,
R = w/λ is the ratio of well width to the wavelength of the
kicking field, and k is the kick strength. Throughout this work,
we have set λ = 2π, b, and w are constrained by b + w = 2π .
Periodic boundary conditions are applied at positions A and B
shown in Fig. 1.

Let En and |ψn〉 represent the energy and the eigenstate of
the unperturbed system such that H0|ψn〉 = En|ψn〉. Further,
|ψn〉 can be written as a superposition of all momentum states
|l〉, i.e., |ψn〉 = ∑

l anl|l〉, where anl represents the expansion
coefficient. Then any general initial state can be expressed in
the energy basis state representation as |	〉 = ∑

n bn|ψn〉. The
mean energy in the state |	(t)〉 can be obtained as

E(t) = 〈	(t)|Ĥ0|	(t)〉
=

∑
m

Em|bm(t)|2. (2)

The quantum map that connects the state |	(N + 1)〉 at time
N + 1 with the state |	(N )〉 can be obtained by evolving the
Schroedinger equation |	(N + 1)〉 = Û |	(N )〉, where Û is
the Floquet operator,

Û = e−H0/h̄s e−iV (θ)/h̄s , (3)
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and h̄s is the scaled Planck’s constant. In the energy repre-
sentation, the elements of the Floquet operator are given by

Unm =
∑
p,p′

a∗
npamp′ i|p−p′ |J|p−p′ |

(
k

h̄s

)
, (4)

where J|p−p′ |(·) is the Bessel function of order |p − p′|.
The eigenvalue equation governing the Floquet operator is

Û |φ〉 = eiω|φ〉 in which |φ〉 represents a Floquet state and ω

is its quasienergy. The Floquet operator is a unitary operator
and hence the eigenvalues lie on a unit circle. Further the
quasienergy state, |φ〉, can be decomposed as a superposition
of all energy states |ψn〉, i.e., |φ〉 = ∑

n cn|ψn〉, where |cn| is
the probability density of finding the particle in state |ψn〉.

To analyze the localization properties of the Floquet states,
Floquet matrix of order N is numerically diagonalized to
determine the quasienergies and the Floquet vectors. In this
work, N = 10 035 and we have ensured that for the choice
of parameters used in this paper, the system is classically
chaotic (see Appendix A). Floquet states for standard KR are
generally known to be exponentially localized in momentum
space |ψ(p)|2 ∼ exp(−p/ξ ) characterized by a localization
length ξ . In contrast to that, Floquet states of a kicked particle
in a periodic potential well is localized over energy basis state
|ψn〉,n = 1,2, . . . . In the subsequent sections, it is shown that
the system in Eq. (1) exhibits a transition from exponential to
power-law localization as the parameters V0 and k are varied.

III. FLOQUET STATES

In this section, we will mainly focus on the average spectral
properties of the Floquet states which governs the dynamics
in the quantum regime. For the finite well represented by
Hamiltonian in Eq. (1), the nature of Floquet state decay
profile, in general, will depend on the choice of parameters,
namely, kick strength k and potential height V0. Figure 2 has
been obtained by averaging over 10 035 Floquet states |φ〉(=∑

n cn|ψn〉) for each set of parameters. Prior to averaging, each
Floquet state was shifted by nmax, i.e., v = n − nmax, where
nmax corresponds to n for which |cn|2 is maximum.

If V0 > 0, the Hamiltonian in Eq. (1) is a non-KAM
system due to the presence of singularities in Vsq(θ ). Based
on numerical simulations of kicked systems with singular
potentials, it was argued that their Floquet states display

(a) (b)

FIG. 2. Decay of Floquet states over the unperturbed basis
states, averaged over all the Floquet states. The parameters are
b = 1.4π,h̄s = 1.0, (a) (KRIW limit) V0 = 5000.0,k = 0.25, and
(b) (KR limit) V0 = 0.5,k = 4.25. In (a) the black line is a linear
fit and in (b) the black curve corresponds to KR.

power-law decay over the unperturbed basis [2,29–31,37].
Further, a new universality class has been proposed in Ref. [2]
based on the presence of classical singularity and power-law
localization. To discuss the results, in the light of this proposal,
two limiting cases can be identified; (i) 0 < V0 < 1 (KR limit)
and (ii) V0 	 1 [KR in infinite well (KRIW) limit]. In the
KR limit, notwithstanding the singularity in the potential, the
Floquet states can be expected to be qualitatively closer to that
of KR. In particular, if kick strength k 	 1, all the Floquet
states display exponential decay profile. On the other hand, in
the KRIW limit, the potential height is large (V0 	 1) and is
qualitatively closer to the kicked infinite well system [29,30].
In this limit, even for small kick strengths k < 1, it is known
that all the Floquet states show power-law decay over the
unperturbed basis [30,31]. Both these limits are illustrated in
Fig. 2.

In Fig. 2(a), the decay of the averaged Floquet state in
the KRIW limit is shown for V0 = 5000.0 and k = 0.25. It
is consistent with a power-law form P (v) ∼ v−γ , where v > 0
and γ ≈ 2.5, in agreement with the value reported in Ref. [30]
and the deviation observed can be attributed to the finite height
of well. On the other hand, averaged Floquet state in the KR
limit for V0 = 0.5 and k = 0.25 shown in Fig. 2(b) displays ex-
ponential decay, P (v) ∼ exp(−v/l), where l is the localization
length. This is the standard dynamical localization scenario
but is generally not associated with non-KAM systems. Both
these decay profiles in Fig. 2 can be understood if the relation
between singular potential and power-law localization can be
restated in the following manner. For this purpose, let εif =
{Ei,Ei+1,Ei+2, . . . Ef } collectively represent the energies of
a set of states of H0 lying in the energy band (Ef − Ei) between
two states with quantum numbers f and i in the unperturbed
system. The classical singularities are associated with quantum
power-law localization of a set of Floquet states mostly lying in
the energy range εif , provided εif < V0. Thus, Floquet states
will display power-law localization only if they effectively
“feel” the non-smooth potential. This requires that energy scale
εif be less than that of V0.

It must be emphasized that the Hamiltonian in Eq. (1) is
classically a non-KAM system if V0 > 0, for all values of k >

0. Hence, with V0 = 5000.0 and for kick strength as small
as k = 0.25 the system is classically chaotic (Appendix A)
and the corresponding quantized system displays power-law
localized profile of the Floquet states [Fig. 2(a)]. In this case,
most of the 10035 Floquet states used for averaging are such
that εif < V0. On the other hand, in the case of Fig. 2(b), even
though it is still a non-KAM system with singular potential,
the Floquet states mostly straddle energy scales εif larger than
V0 and are not affected by the shallow singular potential and
hence the exponentially localized Floquet states are obtained.

A. Matrix element decay

It is known that exponential localization in the KR is asso-
ciated with the exponential decay of the matrix elements of the
corresponding Floquet operator. Further, from Refs. [29,30],
it is also known that in the case of KR in the infinite well, a
non-KAM system, the matrix elements of Û display a power-
law decay after a bandwidth η ∝ k. Hence, it is natural to
enquire how the decay of matrix elements changes its character
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(a) (b)

(c) (d)

FIG. 3. Averaged decay of the matrix elements of the Floquet
operator Û as a function of m. The parameters are b = 1.4π,h̄s = 1.0,
(a) (KRIW limit) V0 = 5000.0,k = 0.25, and (b) (KR limit) V0 =
0.5,k = 4.25, (c) V0 = 100.0,k = 4.25, (d) V0 = 5000.0,k = 4.25.
nc represents the crossover point from exponential to power-law
profile. All black curves corresponds to KR.

as V0 	 1 approaches the limit V0 → 0. In the unperturbed
basis, the matrix elements are Unm as given by Eq. (4). This is
illustrated in Fig. 3, which shows Mm = 〈|Unm|〉n as a function
of m, with m > n, in log-log plot.

Figures 3(a) and 3(b) show Mn as log-log plot for the same
choice of parameters as in Figs. 2(a) and 2(b). Figure 3(a)
corresponds to KRIW limit and shows a short regime of
exponential decay followed by an asymptotic power-law decay.
In Fig. 3(b), V0 = 0.5 corresponding to the KR limit and the
decay of Mn largely follows that of KR except for n 	 1
where it decays as a power-law. In general, the following
features are observed. In the limit as V0 → ∞, the decay is
of power-law form. In the opposite limit of V0 → 0, the decay
is exponential in nature. In general, for any intermediate V0,
i.e., 0 < V0 < ∞, an initial exponential decay is followed by
an asymptotic power-law decay whose slope is approximately
2.7. If V0 < ∞, the initial exponential decay is always present.
The exponential decay sharply changes over to a power-law
decay at n = nc as shown by dotted vertical lines in Fig. 3. For
any fixed value of kick strength k, as V0 varies from 0 → ∞,
then nc changes from ∞ → 0. It is also to be noted that for
fixed V0, as k increases, nc also increases.

B. Energy scales

In this section, we show how singularity of the potential
and energy scales associated with the Floquet states determine
the localization structure of these states. As discussed in Sec.
II, crj = 〈φr |ψj 〉, where |ψj 〉 is an eigenstate of H0 with as-
sociated energy Ej . Let cmax = max(|cr,1|2,|cr,2|2, . . . |cr,N |2)
represent the largest overlap of rth Floquet state with |ψj 〉. The
energy associated with |ψj 〉, and hence with cmax, is denoted
by Emax. Then, an effective parameter μ = Emax/V0 can be
identified to distinguish two regimes, namely, (i) μ � 1 and
(ii) μ 	 1. Physically, μ � 1 corresponds to Floquet states (in
energy basis) mostly confined to the potential height V0 and

(a) (b) (c)

FIG. 4. Floquet states of Hamiltonian in Eq. (1) with parameters
b = 1.4π, h̄s = 1.0, V0 = 5000.0, k = 4.25. The three figures differ
in how Floquet states were averaged over: (a) averaged over all the
computed states, (b) averaged over states with μ < 1, (c) averaged
over states with μ 	 1. In (a, b) the black curve represents best fit
line, and in (c) the black curve corresponds to KR.

μ 	 1 corresponds to those Floquet states that have significant
overlap with states lying in the energy scales far greater than
V0.

In Fig. 4(a), ln〈cv〉 is shown by averaging over all the
computed Floquet states for V0 = 5000.0 and k = 4.25. As
discussed earlier, the Floquet state profile is a combination
of initial exponential decay followed by a power-law decay.
However, if average is taken only over those states that satisfy
the condition μ � 1, then the resulting profile is shown in
Fig. 4(b). In this case, k = 4.25 and all the Floquet states
are confined to an energy scale well below V0. Hence, this
set of Floquet states can be expected to “feel” the presence
of singularity in the potential. In this regime, we observe a
power-law profile for the averaged Floquet states as displayed
in Fig. 4(b). Based on the results of earlier works [2], this set
of states can be expected to display multifractal properties as
well.

However, if the states are averaged subject to the condition
that μ 	 1, then singularity is not strongly felt by the Floquet
states since the bandwidth of their energy distribution is far
greater than V0. Effectively, at this energy scale, the singularity
becomes insignificant and hence we can expect it to lie in the
KR limit. Indeed, as seen in Fig. 4(c), 〈cv〉 is nearly identical
to that of KR [shown as black curve in Fig. 4(c)] at k = 4.25.

In general, for the Hamiltonian in Eq. (1), the localization
property of a subset of Floquet states in an energy band εif

depends on the effectiveness of the singularity for the spectral
range εif under consideration. In a given energy band εif ,
if the singularity is effective, then power-law localization is
obtained and if singularity is weak or absent then exponential
localization results for the states in εif . As far as localization of
eigenstates of chaotic systems are concerned, it is known that
either all the states are exponentially localized (as in KR) or
power-law localized (as in systems with singular potentials)
but, to the best of our knowledge, combinations of these
localization profiles have not been reported before. In the
next section, we transform the Hamiltonian in Eq. (1) to that
of a tight-binding model and show that V0/E controls the
localization property of eigenvectors.

IV. TIGHT-BINDING MODEL

The dynamical localization in the quantum KR system
was mapped to Anderson model for electron transport in a
one-dimensional crystalline lattice [15]. By implication, the
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exponential decay profile of eigenstates in the Anderson model
translates to exponential profile (in the momentum represen-
tation) for the Floquet states of quantum KR. Following this
mapping technique, in this section, we map the Hamiltonian in
Eq. (1) to a tight-binding Hamiltonian. Since Eq. (1) represents
a time periodic system, using Floquet-Bloch theorem, we can
write the quasienergy state as

φ(θ,t) = e−iωtu(θ,t), (5)

where, u(θ,t) = u(θ,t + 1). In between two consecutive kicks,
the Hamiltonian H0 governs the evolution of the particle and
is given by

φ−
n (t + 1) = e−iEnφ+

n (t). (6)

In this, φ−
n (t + 1) and φ+

n (t) are the quasienergy states just
before the (t + 1)th kick and just after t th kick and En is the
nth energy level of H0. During the evolution it acquires an
extra phase e−iEn . By substituting Eq. (5) in Eq. (6) and using
the periodicity of u(θ,t), we obtain

u−
n (θ,t + 1) = eiωe−iEnu+

n (θ,t). (7)

Now the quasienergy state just after a t th kick can be
obtained using a map φ+(θ,t) = e−iV (θ)φ−(θ,t). By using
Eq. (5), this can be written in-terms of u(θ,t) as

u+(θ,t) = e−iV (θ)u−(θ,t). (8)

Now, e−iV (θ) is expressed in terms of trigonometric function
W (θ ) = − tan ( V (θ)

2 ) as

e−iV (θ) = 1 + iW (θ )

1 − iW (θ )
. (9)

This is used in Eq. (8) to obtain

u+(θ )

1 + iW (θ )
= ū = u−(θ )

1 − iW (θ )
, (10)

where ū is defined as ū = [u+(θ ) + u−(θ )]/2. Using Eqs. (8)
and (9), the evolution of the quasienergy state after one period
is

u+(θ ) = e−iV (θ)ei(ω−En)u+(θ ). (11)

This can be written as

[1 − iW (θ )]ū = ei(ω−H0)ū[1 + iW (θ )], (12)

where ū = u+
1+iW (θ) . Now rearrangement of terms leads to

tan

(
ω − H0

2

)
ū + W (θ )ū = 0. (13)

The quasienergy state can be expanded in the unperturbed
basis as |ū〉 = ∑

m um|ψm〉, where |ψm〉 are the eigenstates of
H0 and um is given by

um =
∫

ūψm(θ )dθ =
∫

1

2
[u+(θ ) + u−(θ )]ψm(θ )dθ. (14)

Taking the inner product of Eq. (13) with |ψm〉, we will
formally obtain

Tmum +
∑

l

Wmlul = 0. (15)

In this, Tm = tan( ω−Em

2 ) represents the on-site energy and Wml

is the hopping strength for a particle to hop from mth site to
lth site and can be written in the energy basis as

Wml = 〈ψm|W (θ )|ψl〉
=

∫ ∑
p,q

a∗
mpe−ipθW (θ )alqe

iqθdθ

=
∑
p,q

a∗
mpalq

∫
W (θ )e−i(p−q)θ dθ

=
∑
p,q

a∗
mpalqWp−q, (16)

where Wn = 1
2π

∫ 2π

0 W (θ )e−inθ dθ is the Fourier transform
of W (θ ). Thus, in energy basis, after simple manipulation,
Eq. (15) takes the form(

Tm +
∑
p,q

a∗
mpamqWp−q

)
um +

∑
p,q,l �=m

a∗
mpalqWp−qul = 0.

(17)

This is the tight-binding model version of the Hamiltonian
in Eq. (1). In this, (Tm + ∑

p,q a∗
mpamqWp−q) represents the

diagonal term and a∗
mpalqWp−q is the off-diagonal term of

the transfer matrix. It does not appear straightforward to
analytically prove power-law profile of Floquet states starting
from Eq. (17), though it appears fair to expect that in this
case the decay of Floquet state profile will be different from
exponential form. As numerical results show, we obtain power-
law localization. Similar results has also been reported in
Ref. [38].

However, using Eq. (17), it is possible to make an infer-
ence about Floquet state profile in the limit μ 	 1. In this
case, En 	 V0 and the singularity in the potential becomes
insignificant. Effectively, the system behaves as a free particle
with energy En = h̄sn

2

2 and the wave function of H0 is just the
momentum eigenstate, |ψn〉 = anne

inθ , with amn = δmn. This
set of conditions, if applied to Eq. (17), leads to

(Tm + W0)um +
∑

l

Wm−lul = 0. (18)

This is just standard KR Hamiltonian transformed to the 1D
Anderson model [15], for which all the eigenstates are known
to display exponential profile. Hence, as seen in Fig. 4(c)
for μ 	 1, the observed localization is exponential in nature.
Thus, even in the presence of singular potentials, eigenstate
localization is not generically of power-law form. We reiterate
the main result of the paper that the association between
power-law profile of eigenstates and singular potentials needs
to take into account the effectiveness of singularity in a given
energy band.

V. SPECTRAL SIGNATURES

Based on the results presented in Fig. 4, a novel scenario
for the spectral signatures can be expected. As the regimes
μ < 1 and μ 	 1 are traversed, by considering Floquet states
in a suitable energy band εif , the decay profile of Floquet state
changes from power-law to exponential form. This would also
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imply that a unique spectral signature for the nearest-neighbor
spacing distribution P (s), such as either the Poisson or Wigner
distributions, may not exist for the system as a whole. Quite
unusually, P (s) would depend on the energy band εif being
considered. Thus, in the same system for a given choice of
parameters, in the limit μ 	 1 (KR limit) we expect Poisson
distribution and in the limit μ < 1 (KRIW limit) we expect
P (s) to display intermediate spacing statistics such as semi-
Poisson distribution (see Appendix B).

The Floquet operator Û being a unitary operator, all the
eigenvalues lie on a unit circle, ωi ∈ [0,2π ). In this case, level
density is constant ( N

2π
) and hence the unfolding of Floquet

levels is not necessary. To compute the spacing distribution,
we have treated the eigenvalues of even and odd parity states
separately. The nearest-neighbor spacing distribution reveals
two different forms: for μ < 1 level repulsion is observed
in the form of semi-Poisson distribution and for μ 	 1
level clustering is seen in the form of Poisson distribution
(Appendix B). The regime of μ < 1 corresponds to KRIW
limit and power-law decay of Floquet states [see Fig. 4(b)]
and is associated with level correlations that are intermediate
between no correlation and random matrix type level repulsion.
Indeed, as shown in the spacings distributions in Appendix A,
the level spacing statistics deviate from Wigner distribution
and is consistent with the semi-Poisson distribution.

On the other hand, the limit of μ 	 1 is KR limit (potential
singularity is ineffective) and levels remain uncorrelated due
to occurrence of dynamical localization resulting in Poisson
spacing distribution (see Appendix A). It must be emphasized
that two different level spacing distributions and level cor-
relations for the same system with identical parameters is a
novel feature not usually encountered in the context of chaotic
quantum systems. This unusual spacing distribution reinforces
the central result of this paper that the relation between
potential singularity and eigenvector profile is conditioned by
energy regime being considered.

This dichotomy is reflected in the eigenvector statistics as
well. This is easily observed by studying the participation ratio
(PR) of the Floquet states that provides information about their
localization properties. For an eigenstate that resides in the
infinite dimensional Hilbert space, participation ratio is defined
as

P =
∞∑
i=1

|ψi |4 (19)

with the condition that
∑

i |ψi |2 = 1.0, where ψi are compo-
nents of a Floquet state. It is a measure of how many basis
states effectively participate in making up the eigenstate. If
P ≈ 1, then the state is strongly localized and implies that one
basis state contributes significantly to the Floquet state while
the contribution from the rest of the basis are almost negligible.
However, if P ∼ 1

N
, then the Floquet state is of extended nature

and all the basis states make equal contribution on an average.
Figure 5 displays P for all the 10 035 converged Floquet
states as a function of energy Emax for the identical choice of
parameters as in Fig. 4. Quite surprisingly, P distinguishes the
two regimes, μ < 1 and μ 	 1. The boundary between the two
regimes is at Emax = V0, the height of potential barriers. For
μ 	 1, exponential localization of Floquet states implies that

FIG. 5. Participation ratio of the Floquet states as a function of
Emax for b = 1.4π, h̄s = 1.0, V0 = 5000.0, k = 4.25 (same set of
parameters as in Fig. 4). The vertical line is placed at Emax = V0

(μ = 1), the height of potential barriers. Horizontal black dotted line
represents the mean participation ratio for μ > 1.

|φ〉 ∼ e−n/l , where l is the localization length. A remarkable
result due to Izrailev [14,39] provides the relation, l ≈ k2

2h̄2
s

. For

our case, this estimate gives l ≈ k2

2h̄2
s

= 9.03 and this represents
the effective number of basis states that goes in constructing
the Floquet states. As participation ratio is the inverse of
the effective number of basis states, it is estimated to be
P ≈ 2h̄2

s

k2 = 0.11. As seen in Fig. 5, this value closely matches
the computed PR in the regime μ 	 1.

For μ < 1, the mean P is larger compared to that for μ > 1
as shown in Fig. 5. The reason can be traced back to the fact
that in the case of infinite well En ∼ n2 and hence levels are
spaced far apart. This implies that the Floquet states for μ < 1
has overlap only with a few unperturbed basis states and this
effectively increases the value of participation ratio for μ < 1.
Ultimately, this results in a more compact localization.

Finally, all the results discussed in this paper can be
summarized in the form of a “phase diagram” displayed in
Fig. 6. For μ < 1, singularity in the potential is effective and

FIG. 6. Summary of the results presented in this work. In all the
cases, the potential Vsq is singular. Power-law decay profile of the
Floquet is obtained whenever μ < 1 (shown as deep red). Stronger
red color represents power-law profile over larger energy scales. For
μ > 1, exponential localization is obtained. Darker gray represents
dominant exponential profile over longer energy scales. White color
represents regimes of transition between these profiles. They cannot
be classified as power law or exponential with definiteness.
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FIG. 7. Stroboscopic sections of kicked particles in a periodic
square well potential for b = 1.4π , (a) V0 = 5000.0, k = 0.25,
(b) V0 = 0.5, k = 4.25, and (c) V0 = 5000.0, k = 4.25.

hence power-law profile of the Floquet states is obtained.
This regime is indicated by red color in Fig. 6. However, if
μ > 1, singularity is not effectively “felt” by the particle, and
hence exponential profile is obtained. This regime is indicated
by black color in the figure. Depending on the choice of
parameters, regimes in which transition occurs between these
two Floquet state profiles are also observed. In Fig. 6, this is
indicated by white color.

VI. CONCLUSION

In summary, we have studied a non-KAM system repre-
sented by the Hamiltonian in Eq. (1), namely a periodically
kicked particle in a finite potential well of height V0, to primar-
ily understand the nature of its Floquet states. This Hamiltonian
can be thought of as representing two limiting cases: (i) the
standard KR for V0 = 0 and (ii) KR in infinite potential well
for V0 → ∞. It is well known that, for sufficiently large kick
strengths, all the Floquet states of the KR are localized with an
exponential profile [14]. Further, it has been suggested that for
kicked systems with singularity in their potential, the Floquet
states display power-law profile [31]. We examine the Floquet
states of the Hamiltonian in Eq. (1) in the light of these results.
To understand its Floquet states, we map this problem to that
of a tight-binding model.

The results presented in this work show that the decay
profile of the Floquet states is not determined by the potential
singularity alone, but by the representative energy band εif

of a set of Floquet states relative to the potential height V0.
Thus, we show that if εif > V0 then the effect of singularity is
weak for the set of Floquet states, and they display exponential
profile. This represents the KR limit of the problem. On the
other hand, the condition V0 > εif represents Floquet states
strongly affected by the singular potential. In this case, we
have shown that Floquet states have predominantly power-law
profile. This is also the regime in which the eigenfunctions
can be expected to display multifractality [2]. We note that the
system presented in this work resides in infinite-dimensional
Hilbert space, which makes it particularly not a straightforward
exercise to interpret multifractal measures such as singularity
spectrum and multifractal dimensions.

In the regime intermediate between the extremes of KR
and KRIW, the Floquet states typically display an initial
exponential decay followed by an asymptotic power-law decay.
The presence of these two contrasting Floquet state profiles
in Hamiltonian in Eq. (1) leaves its signature in the spectral
correlations as well. For an identically same set of parameters,
depending on the reference energy scale εif , the spacing
distribution turns out to be Poisson distribution (εif > V0) or

0 1 2 3 4 5s
0

0.2

0.4

0.6

0.8

1

P(
s)

0 1 2 3 4 5 6s

(a) (b)

FIG. 8. Numerically computed spacing distribution (histograms)
P (s) for b = 1.4π, k = 4.25, V0 = 1 500 000.0 and h̄s = 1.0,
(a) μ < 1, (b) μ 	 1. Solid black line represents Poisson distribution,
dashed (blue) line represents Wigner distribution, and solid (red) line
represents semi-Poisson distribution.

a semi-Poisson distribution (V0 > εif ). Typically, the spacing
distribution is taken to characterize quantum chaos in a system
and it is generally independent of the energy band being
considered provided it is in the semiclassical limit. Quite
surprisingly, the semiclassical limit of the system in Eq. (1)
lacks a unique spacing distribution as it depends on the energy
band εif being considered. KR was experimentally realized in a
test-bed of cold atomic cloud in flashing optical lattices. Using
more than one optical lattice, KR confined to a “potential well”
has also been realized. We believe that the results in this work
are amenable to experiments in a suitable atom-optics set up.

ACKNOWLEDGMENT

S.P. acknowledges the University Grants Commission of
India for research fellowship.

APPENDIX A: STROBOSCOPIC SECTION

In this work, a periodically kicked particle in a periodic
potential well [Eq. (1)] is studied. Figure 7 shows the classical
stroboscopic section corresponding to the parameters used in
Figs. 2 and 4. For the choice of parameters used in this work,
the system is classically chaotic as seen in Fig. 7. The sections
were computed using the map described in Ref. [36].

APPENDIX B: SPACING DISTRIBUTION

In Fig. 8 we show the level spacing distribution for the
following cases: (a) μ < 1 (KRIW limit) and (b) μ 	 1 (KR
limit).

We have used a large value of V0 to obtain a sufficient
number of symmetry decomposed Floquet eigenvalues in the
μ < 1 regime to calculate the spacing distribution. This figure
demonstrates that the spacing distribution for μ < 1 deviates
from Wigner distribution and is consistent with semi-Poisson
distribution. This is to be expected based on earlier works [33]
that have shown that Hamiltonians with singular potentials, in
certain parametric regimes, display intermediate statistics such
as the semi-Poisson distribution. On the other hand, the spacing
distribution in the μ 	 1 regime follows Poisson distribution
which implies uncorrelated eigenvalues. The eigenfunctions
display localization and are similar to the eigenfunctions of
KR system.
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