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Discretization-dependent model for weakly connected excitable media
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Pattern formation has been widely observed in extended chemical and biological processes. Although the
biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential
equations have been employed frequently. Such approaches are usually justified by the difference of scales between
the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example,
under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for
instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here
we study a model to approach discreteness which permits the computer implementation on general unstructured
meshes. The model is cast as a partial differential equation but with a parameter that depends not only on
heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we
refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates
three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons
of neurons, and concentration waves in chemical microemulsions.
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I. INTRODUCTION

Chemical and biochemical reactions outside of the ther-
modynamic equilibrium are highly nonlinear. In continuum
media and in combination with diffusive transport such non-
linear reactions can produce the formation of spatiotemporal
patterns [1]. A particular example of pattern formation is
traveling waves in excitable media [2]. Such dynamics has
been extensively studied [3,4] due to its relation with important
physiological processes like heart beating [5] and stimulus
propagation in neuronal networks [6]. Excitable waves have
been also observed in diverse chemical systems like the
Belousov-Zhabotinsky reaction [7] and CO oxidation in cat-
alytic surfaces [8].

For the aforementioned models, homogenized continuum
approaches formed by partial differential equations (PDEs)
have been extensively employed. Homogenization techniques
allow continuum models to capture the discrete and small
scale details of the particular system or phenomena in terms of
reaction-diffusion equations:

∂tu
j = F j (uuu) + ∇ · (σ∇uj ), (1)

where uuu is the vector of variables of interest, uj , and σ is the
homogenized or effective diffusion coefficient. This is the case
of cardiac tissue, formed by a discrete grid of cardiac cells, the
brain, formed by a complex discrete network of neurons, and
some chemical reactions that takes place inside droplets that
form a set of weakly connected discrete microscopic reactors
[9]. The corresponding models of such discrete systems have
been transformed into homogenized continuum versions [10]
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with effective parameters [11]. For instance, the differences
among nonlinear reactions can be treated with a mean-field
approach and the heterogeneous diffusion can be homogenized
via the classical Bruggeman’s approximation of effective
medium [12].

However, such homogenized continuum descriptions may
fail when characteristic lengths of patterns are small and close
to the scale of the details of the system. Under such conditions
a detailed and microscopic description is typically employed,
usually based on heterogeneous partial differential equations.
Another possibility is the use of discrete models with effec-
tive parameters mimicking the homogenization performed for
continuum models. Here, a discrete model refers to a discrete
set of equations,

du
j

i

dt
= F j (uuui) +

∑
k

Gj
(
u

j

k

)
, (2)

where i identifies one specific discrete component of the
system (e.g., a cell or a droplet), uuu is the vector of variables
of interest, uj , and the summation over k highlights that
the components are not independent from each other. In the
simple case of a one-dimensional (1D) model this summation
may involve only first neighbors (to represent, for instance,
the discrete Laplacian operator). Nevertheless, it is possible
to use complex networks in this summation term [6,13]. In
summary, the continuum space is replaced by a discrete set of
components, whereas time is still continuous, leading us to a
system of coupled ordinary differential equations.

For instance, for the case of action potential propagation
on cardiac tissue, different microscopic models based on
heterogeneous PDEs [14–18] and on discrete models [18–20]
were proposed to investigate important aspects of cardiac
diseases.
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Unfortunately, both alternatives pose nontrivial computa-
tional challenges. The multiscale nature of complex phenom-
ena leads to a large number of equations when microscopic
or heterogeneous continuum models are adopted. On the
other hand, discrete models demand precise representation
and location of each individual component of the system, a
property that challenges mesh generation. Ideally, we would
like to have a model that (1) captures the complex features
of the phenomena, i.e., behave as well as the microscopic or
discrete models; (2) is computationally less expensive than
the microscopic model; and (3) is able to use general un-
structured meshes as those routinely generated for the solution
of PDEs.

We have recently proposed a new model [21] that, for the
particular case of slow propagation on cardiac tissue, was
able to fulfill all the above requirements. This model can be
seen as an extension of the works on quasicontinuum models
[22–25] that propose PDEs that approach discreteness. Such
quasicontinuum models take into account higher-order terms
for the diffusion operator together with the characteristic length
of the system to approach, in a continuum way, the underlying
discrete nature of the problem, see Ref. [26] for a review. It is
worth noting that similar models were also proposed recently
in the field of phase transitions [27] and in structural mechanics
[28,29].

Classical homogenization techniques and quasicontinuum
models generate PDEs by upscaling some information of
the microscopic or discrete structure of the system, L. This
information is usually embedded in some coefficients of the
generated PDEs. For instance, the coefficient σ in Eq. (1)
would depend on the microscopic features: σ (L). The main
idea of our model is to use also some information of the
mesh or discretization, M. Therefore, the coefficients of the
PDEs depend on both L and M, e.g., we would have σ (L,M)
in Eq. (1). Thus, we call our new model a discretization-
dependent model (DDM).

In this work, we continue previous investigations [21] of
DDM by evaluating its performance for the description of
three different excitable media, cardiac tissue with reduced
conductivity, slow impulse conduction in myelinated axons,
and chemical reaction inside small droplets surrounded by oil.
We chose these phenomena since each one of them presents
very distinct scales of spatiotemporal dynamics. Furthermore,
we show that our new proposed DDM model can behave
as a quasicontinuum model, when the discretization size
of the mesh goes to zero, and as a pure discrete model,
when the mesh M matches the topology of the discrete
system, L.

Our results suggest that our new DDM, for all three prob-
lems, outperforms both the classical homogenized continuum
model as well the quasicontinuum models. In addition, its
performance is similar to the discrete model but with the
advantage of its flexibility in terms of numerical mesh that
does not need to precisely match the topology of the discrete
system.

II. MODELS

We consider here a set of two reaction-diffusion equations
with reaction terms described by the modified Fitzhugh-
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FIG. 1. Snapshot of an excitable traveling wave obtained from a
numerical simulation using the FitzHugh-Nagumo model as reaction
term, see Eqs. (3)–(6).

Nagumo model [30]. Therefore, we take Eq. (1) for two
components, j = 2, to obtain the next system of equations:

∂tu = f (u,v) + ∂x(σ∂xu), (3)

∂tv = g(u,v) + δ∂x(σ∂xv), (4)

where the variables u and v may correspond to chemical
concentrations or action membrane potential depending on the
particular application, and f and g are, in general, nonlinear
functions. Here we consider:

f (u,v) = k[u(1 − u)(u − a) − uv], (5)

g(u,v) = k[ε(bu − v)]. (6)

The model is based on the Fitzhugh-Nagumo model [31,32]
where the term −uv prevents negative values of the variable
u. It is a generic model of excitable medium and after a
proper initial condition it produces the formation of traveling
excitation waves in a 1D system, see Fig. 1, or spiral and scroll
waves in higher dimensions. The corresponding boundary
conditions and initials values are as follows:

∂xu(x,t) = ∂xv(x,t) = 0, ∀x ∈ ∂�,

u(x,0) = u0, v(x,0) = v0 x ∈ �0 ⊂ �.

Next we show different mathematical models that can be
used to describe a heterogeneous reaction-diffusion system,
going from a detailed description to homogenized approxima-
tions of the system.

A. Previous models

First, we perform a systematic study of the different models
employed during the last years in the modeling of heteroge-
neous reaction-diffusion systems. In Fig. 2 there is comparison
among all the approaches under two different conditions.

1. Heterogeneous multiscale model

The most exact description corresponds to the heteroge-
neous general case which is given by the next set of reaction-
diffusion equations for two generic variables u and v with
spatially dependent coefficients:

X (x)∂tu = θ (x)f (u,v) + ∂x(σ (x)∂xu), (7)

X (x)∂tv = θ (x)g(u,v) + δ∂x(σ (x)∂xv), (8)
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FIG. 2. Comparison of the spatial profiles of u among the four models discussed in Sec. II A for two different conditions: normal conduction
at t = 0.5 ms (a) and t = 1.1 ms (b) and weak conduction at t = 2.2 ms (c) and t = 8.3 ms (d). QCM, CM, and HMM were solved using a
fine discretization. The parameter values employed in all simulations are a = 0.2, b = 0.5, k = 36.0, ε = 4.5 × 10−5, θ̄ = X̄ = 1, δ = 0. For
(a) and (b), σ̄ = 6.9 × 10−4 μm2/ms. For (c) and (d) σ̄ = 5.6 × 10−5 μm2/ms.

where σ (x) is the spatially dependent conductivity or diffusion
coefficient. Function θ (x) identifies the spatial location where
the reactions appear, see more details below in Sec. IV.
Function X (x) depends on the particular case considered, see
Table I. Parameter δ is the ratio of diffusion coefficients for u

and v.
We named this model heterogeneous multiscale model

(HMM), and although it is the best approach to the real case,
it is rarely used, because of its high computational costs.

For the excitable dynamics induced by Eqs. (5) and (6), a
wave propagates through a one-dimensional system. See two
examples in Fig. 2 for two different values of conductivities.

TABLE I. Table of values used in Eqs. (7) and (8) to model the
three biochemical systems described in Sec. III.

Parameters Cardiac Neuron Chemical reaction

k (ms−1) 36.0 800.0 80.0 × 10−3

ε 4.5 × 10−5 2.4 × 10−4 1.1 × 10−3

σ0 (cm2/ms) 1.035 × 10−3 3.0 × 10−6 3.2 × 10−9

σ1 (cm2/ms) 1.035 × 10−5 3.0 × 10−3 1.6 × 10−11

�0 (μm) 100 2.0 5.0
�1 (μm) 0.5 200 0.1
τ (ms) 308 2.7 6300
λ (cm) 20 5.1 0.2
Speed (cm/ms) 6.7 × 10−2 1.9 2.3 × 10−6

X 1 9.9 × 10−3 1
θ 9.9 × 10−1 9.9 × 10−3 9.8 × 10−1

δ 0 0 1

For both cases we have X = θ = 1 and δ = 0. The reaction
terms are given by Eqs. (3)–(6). The conductivity σ (x) is
periodic on space with a high value of σ0 for the length l0 =
100 μm that alternates to a low value of σ1 for the length l1 =
0.5 μm. For normal conduction we use σ0 = 1.035 × 10−3

and σ1 = 1.035 × 10−5 μm2/ms; for weak conduction we
decrease the second parameter, σ1 = 2.96 × 10−7 μm2/ms.

2. Homogenized continuum model

If the spatial changes in the functions σ (x), θ (x), and X (x)
are smaller than any characteristic length of the obtained spatial
patterns, then the HMM can be reduced to a homogenized
continuum model (CM). These functions are averaged to
particular homogeneous values σ̄ , θ̄ ,X̄ by upscaling some
important information, L, from the detailed heterogeneous
system to arrive at:

X̄ ∂tu = θ̄f (u,v) + σ̄ ∂2
xu, (9)

X̄ ∂tv = θ̄g(u,v) + δσ̄ ∂2
x v, (10)

which forms a set of homogeneous partial differential equa-
tions.

In Fig. 2 for the CM all the parameters are the same as
those used for the HMM. The homogenized conductivity is
calculated by σ̄ = (�0 + �1)/(�0/σ0 + �1/σ1).

In Figs. 2(a) and 2(b) we can observe that under normal con-
ditions, the CM approximates well the dynamics of the HMM.
However, for weak conduction, the CM fails to reproduce the
slow dynamics [see Fig. 2(c) and 2(d)].
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3. Homogenized discrete model

When the continuum approach fails, an alternative is to use a
homogenized discrete model (DM) with a characteristic length
� that comes from the underlying inhomogeneity of the system,
i.e., it also comes from L, mimicking, for example, the length
of a single cell.

The dynamics of a single element of such discrete system
follows the same nonlinear reactions and the interaction with
the two first neighbors is given by the discrete Laplacian ∂2

� :

X̄ ∂tui = θ̄f (ui,vi) + σ̄ ∂2
� ui, (11)

X̄ ∂tvi = θ̄g(ui,vi) + δσ̄ ∂2
� vi, (12)

where ∂2
� ui = ui+1−2ui+ui−1

�2 , σ̄ , X̄ ,θ̄ are the same homogenized
values of the functions σ (x), θ (x), and X (x) as in Eqs. (9)
and (10).

The computational integration of these equations is fast
and its solutions approximate very well those of the HMM,
under both normal and weak conduction, as shown in Fig. 2.
However, as mentioned before, the downside is that the length
� is fixed, and the model can not be solved on a arbitrary mesh.

4. Quasicontinuum model

To overcome the above-mentioned problem, continuum
models have been proposed in the past with the main goal of
approximating discreteness. These models take into account
the discrete nature of the phenomena, i.e., the characteristic
length �, together with high-order approximations, obtained for
instance via Padé series [25]. Such continuum approximations
are usually called quasicontinuum models (QCM) [22–25].
Applying these techniques to our equations would give us:

X̄ ∂tu = θ̄f (u,v) +
(

σ̄

1 − κ1∂2
x

)
∂2
xu, (13)

X̄ ∂tv = θ̄g(u,v) +
(

δσ̄

1 − κ1∂2
x

)
∂2
x v, (14)

where κ1 = �2

12 .
Figure 2 shows that QCM indeed outperforms CM and

keeps the desired feature of a classical PDE, i.e., can be solved
on any arbitrary mesh. Nevertheless, for the case of weak
coupling, the solution is still far from our gold standard, the
HMM.

B. Discretization-dependent homogenized model

Here we present an alternative homogenized model that
tries to link the continuum and discrete approaches. The main
idea of our model is to use also some information of the mesh
or discretization, M. Here we will use the value of h, which
is the spatial discretization used by the numerical methods.
Therefore, the coefficients of the PDEs depend on both L and
M, e.g., we have coefficients of the PDE that depend on � and
h. Therefore, we call our new model DDM.

To compute the discrete Laplacian at position x we need
the evaluations of u(x + �) and u(x − �). However, after a
continuum model or classical PDE is discretized we may
have only access to u(x + h) and u(x − h), if we consider
a homogeneous mesh with spatial discretization equals to h.

Therefore, to obtain an approximation of the discrete Laplacian
we look for an additive correction term Q± that satisfies:

u(x ± �) = Q± + u(x ± h). (15)

We obtain the function Q+ by the comparing the Taylor’s
expansion of u(x + h) and u(x + �) and, equivalently, for the
function Q−:

Q± = ±(� − h)∂u +
(

�2 − h2

2

)
∂2u ±

(
�3 − h3

3!

)
∂3u

+
(

�4 − h4

4!

)
∂4u . . . . (16)

Knowing Q±, we can use Eqs. (15) and (16) to rewrite the
discrete Laplacian:

∂2
� u = u(x + h) + Q+ + u(x − h) + Q− − 2u(x)

�2
. (17)

Rearranging terms and truncating the series we have

∂2
� u ≈ ∂2u +

(
�4 − h4

12�2

)
∂4u(x). (18)

Finally, we rewrite the series using Padé approximation [21,25]
to obtain:

∂2
� u ≈ ∂2

1 − (
�4−h4

12�2

)
∂2

u. (19)

The reaction-diffusion equations casted as a discretization-
dependent model are as follows:

X̄ ∂tu = θ̄f (u,v) +
(

σ̄

1 − κ2∂2
x

)
∂2
xu (20)

X̄ ∂tv = θ̄g(u,v) +
(

δσ̄

1 − κ2∂2
x

)
∂2
x v, (21)

with κ2 = �4−h4

12�2 , where �2 is the length employed in the DM
and QCM, and h the mesh discretization.

The model DDM has some very important properties:
(1) DDM = QCM when h → 0. Taking h → 0, Eqs. (20)

and (21) are simplified to those of the quasicontinuum model
QCM, since κ2 → κ1.

(2) DDM = CM when �,h → 0. From the above we know
that DDM = QCM when h → 0. In addition, when � → 0
Eqs. (13) and (14) are simplified to those of the homogenized
continuum model CM. This is expected, since by � → 0 we
mean the discrete nature of the phenomena is not relevant and
the classical continuum hypothesis is valid.

(3) DDM=DM whenh → �. When the discretization mesh
coincides with the underlying discrete system DDM equations
correspond to those of the discrete model DM.

Therefore, all the previous presented homogenized models,
CM, DM, and QCM can be taken as particular cases of the new
DDM.

For more details on the numerical discretization of the
models for both cases of uniform and nonuniform meshes see
Appendix.
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(a)

(c)

(b)

FIG. 3. Sketch of the three discrete biochemical systems: Action
potential propagation along active cardiac cells and passive gap
junctions (a), action potential propagation along passive axons with
myelin with active Ranvier nodes (b), and reaction front propaga-
tion in chemical active droplets and passive oil phase (c). Gray
shaded areas of length �0 and σ0 correspond to active regions,
whereas white areas of length �1 and σ1 correspond to passive
regions.

III. DISCRETE BIOCHEMICAL SYSTEMS

In the previous section we have presented five approaches
to model heterogeneous reaction-diffusion systems. Next,
we choose three representative biochemical examples of
heterogeneous reaction and diffusion to apply the different
models.

We restrict our study to excitable systems composed of
two phases, each one with different values for the reaction
and diffusion coefficients. Each system alternates between an
active region, A, of length l0 (gray-colored area), and a passive
one, P , of length l1 (white-colored area), see Fig. 3. We study
three biochemical systems with different underlying structural
organization: the propagation of the action potential through
cardiac tissue, see Fig. 3(a), the propagation of the action
potential through myelinated axons of neurons, see Fig. 3(b),
and the Belousov-Zhabotinsky chemical reaction in aqueous
droplets surrounded by oil, see Fig. 3(c).

These phenomena are modeled by the same general
reaction-diffusion equations, as presented by the equations
of the HMM model, Eqs. (7) and (8). The space-dependent
functions are defined as follows: when x ∈ A we have θ = 1,
X = X0, and σ = σ0, whereas when x ∈ P we have θ = 0,
X = X1, and σ = σ1. In addition, the reaction terms are

modeled by Eqs. (5) and (6):

X ∂tu = θk[u(1 − u)(u − a) − uv] + ∂x(σ∂xu), (22)

X ∂tv = θk[ε(bu − v)] + δ∂x(σ∂xv). (23)

All the parameters of the three biochemical models were
carefully adjusted to obtain the distinct and characteristic
wave propagation speeds and wavelengths as reported in the
literature, see Table I. In particular, we have chosen these three
examples as they present very different temporal and spatial
scales. Figure 4 presents how the solutions depend on time
and space for each of the three models. The neuron action
potential is the fastest and the chemical reaction in droplets is
the slowest system, see Fig. 4(a); in terms of spatial profile,
the cardiac action potential has the longest wavelength and the
chemical reaction in droplets the smallest one, see Fig. 4(b).

For the homogenized models, CM, QCM, and DDM, the
effective coefficients σ̄ , θ̄ ,X̄ are computed as follows: σ̄ =

�
�0/σ0+�1/σ1

, θ̄ = �0/�, X̄ = �0/� for the neuron case, for cardiac

and chemical reaction was X̄ = 1, where � = �0 + �1. The
other parameters are presented in Table I.

A. Tissue of cardiac cells

Membrane action potential in cardiac tissue propagates
among individual cardiac cells, i.e., myocytes, by gap junc-
tions. The propagation of the action potential is much faster
inside the individual cells than through the gap junctions and
therefore at this microscopic scale the tissue is heterogeneous,
where the conduction depends on space σ (x) and the tissue
combines the scale of the myocytes �0 = 100 μm with the size
of the gap junctions �1 = 0.5 μm, see Fig. 3(a). Typically, un-
der normal propagation the continuum approach is employed
giving very good agreement with experimental data. However,
under different cardiac diseases, such as infarct and ischemia,
the effective conductivity of gap junctions decrease, σ1, and
can induce conduction block, and different types of arrhythmia
[33,34].

In these conditions, for reduced gap junction conductivity
the DM was shown to reproduce these features better than the
CM, see Ref. [3].

We employ the modified FitzHugh-Nagumo model, see
Eqs. (22) and (23), where the field u corresponds to a renormal-
ized membrane action potential and v to a generic gate variable.
Here θ = 1 in the myocyte, whereas in the gap junctions
we have only diffusion and θ = 0. See Table I for the other
parameters of the model.

B. Myelinated nerve axons

Membrane action potential propagates along the axons of
the neurons [35]. The accumulation of myelin along large
regions of the axons induces a fast propagation of the impulse
between the Ranvier nodes and short nodes where the electric
impulse is intensified again [36], see Fig. 3(b).

Therefore, this system is heterogeneous and multiscale,
intercalating short nodes of Ranvier (σ0,�0) and long myelin
sheath (σ1,�1) [3]. We employ the modified FitzHugh-Nagumo
model, see Eqs. (22) and (23), where the field u corresponds to
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(a)

(b)

FIG. 4. Comparison of the local temporal evolutionu(t) (a) and the spatial profileu(x) (b) for the three discrete biochemical reaction-diffusion
systems, using the Eqs.(22) and (23) adapted for each case with parameter values from Table I.

a renormalized membrane action potential and v to a generic
gate variable. Table I presents all the parameters of this model.

The lost of the thickness of the myelin sheath reduces the
speed of propagation and may induce conduction block [3]
and disturb the action potential propagation. Such alteration
of the normal thickness of myelin is known to be related with
multiple sclerosis [37].

C. Chemical droplets in oil

The Belousov-Zhabotinsky reaction is a classical chemical
example of excitable media [7]. Excitation pulses and spiral
waves fully develop in extended versions of this chemical
reaction [38] in aqueous conditions. By the use of emulsions
of water, oil, and surfactant the activity of the reaction can be
confined in small reactors formed by water droplets surrounded
by a thin surfactant membrane immersed in the oil phase, see
Fig. 3(c). The size of the droplets can change from some
nanometers [39] to the scale of hundred of microns [40].
Although the oil phase is passive and avoids any reaction, it
permits the diffusion of the nonpolar particles. One can model
such excitable system by the use of activator-inhibitor system
where two concentrations diffuse, and therefore we employ
the same modified FitzHugh-Nagumo model, see Eqs. (22)
and (23), with renormalized concentration in both fields u and
v, and with diffusion taking place in both equations (δ = 1),
see Table I.

IV. RESULTS

We consider excitable waves in one-dimensional media
under weak conductivity between consecutive elements. We
study, for the three systems, propagation failure, i.e., conduc-

tion block, and the dependence of the total activation time
on the distance to the location of the initial stimulus. In
addition, we measure the dependence of the speed of the waves
along the heterogeneous systems on the parameter σ , i.e., the
conductivity or diffusion, and we evaluate the influence of the
numerical discretization h on the solutions for the different
models. For all the three cases we obtained similar results:
The DM is a better approach than the continuous model CM
because it reproduces better the results of the HMM. The DDM
produces also similar speed of the waves as compared to the
HMM and is a good approach even for different values of the
numerical discretization, h. The DDM reproduces a similar
speed of the heterogeneous model until the numerical scheme
becomes unstable, which happens for h > 1.8� as deduced
before in Ref. [21].

A. Tissue of cardiac cells

The study of the speed of propagation of cardiac action
potential is presented in Fig. 5. For different values of σ̄ ,
Fig. 5(a) presents the propagation speed obtained by the HMM
and the homogenized CM with a fine discretization of 0.5 μm
and by the DM with � = 100.5 μm. While the CM does not
give rise to conduction block, both DM and HMM produce
conduction block for a similar value of the parameter σ̄ .

In Fig. 5(b) we fix the discretization to 160 μm for
the homogenized CM, QCM, and DDM when varying the
conductivity σ̄ and compare the results with those of the
HMM with fine discretization. While CM and QCM give
rise to waves with small velocities and premature artificial
conduction block, the DDM shows better accuracy in the
calculation of the wave velocity and in the determination of
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FIG. 5. Speed of propagation of cardiac action potential as
function of the conductivity σ̄ for (a) small discretization value
(h = 0.5 μm for CM and HMM, and h = 100.5 μm for DM) and (b)
large discretization value (h = 160 μm) for CM, QCM, and DDM.
(c) Speed as a function of the discretization h keeping constant σ̄

at a weak conduction 6.5 × 10−5. Conduction block and numerical
instability are shown by squares and cross, respectively.

the conductivity where conduction block occurs, in this case
at σ̄ = 4.2 × 10−5 μm2/ms.

In Fig. 5(c) we fix σ̄ , which produces a speed of 10 cm/s
with the model HMM and compare the homogenized CM,
DDM, and QCM models for different values of discretization,
h. For small discretization, h → 0, the speed obtained with the
CM is artificially high in comparison with the HMM model.
However, the speed obtained with the QCM tends to the one
measured in the DDM, which is relatively close to the speed of
the HMM. The CM and QCM models should not be used with
a discretization larger than 120 μm, since the results suggest a
conduction block that does not occur for this values of σ̄ . The
DDM model allows the use of larger values of discretization
than the others and only stops near 180 μm due to numerical
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FIG. 6. Speed of propagation of action potential along a myeli-
nated nerve axon as function of the conductivity σ̄ for (a) small
discretization value (h = 1 μm for CM and HMM and h = 202 μm
for DM); and (b) large discretization value (h = 300 μm) for CM,
QCM, and DDM. (c) Speed as a function of the discretization h

keeping constant σ̄ at a weak conduction 7.1 × 10−3. Conduction
block and numerical instability are shown by squares and cross,
respectively.

instabilities, denoted by a cross in the figure. With a large range
for h, between 10 μm and 160 μm, the DDM reproduces very
well the velocity obtained with the HMM. The numerical in-
stability occurs because we use a semi-implicit method, as pre-
viously described in Ref. [21] and its supplementary material.

B. Myelinated nerve axon

The resulting speed of action potential propagation along
a myelinated axon of a neuron under different conditions is
shown in Fig. 6. As mentioned before, both temporal and
spatial scales of this phenomenon are very different from the
previous one. Nevertheless, the performance of each tested
model is very similar.
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For small conductivity, waves cannot propagate and pro-
duce conduction block. This phenomenon is observed in
Fig. 6(a) for the HMM and the homogenized DM. However,
CM with fine discretization (1 μm) does not reproduce the
conduction block.

We compare also the HMM with the homogenized CM,
QCM, and DDM when the conductivity σ̄ is varied, keeping
constant the discretization at 300 μm in Fig. 6(b). The DDM
can reproduce with better accuracy than CM and QCM the
conduction block that occurs when σ̄ = 3.8 × 10−3.

In Fig. 6(c) we compare the model HMM with the ho-
mogenized CM, QCM, and DDM with σ̄ = 7.1 × 10−3, cor-
responding to a speed of 628.8 cm/s. For small discretization,
h → 0 the CM is far away from HMM, whereas QCM and
DDM converge to the same value and relatively close to the
speed obtained with the HMM. The CM and QCM cannot be
used with a discretization larger than 250 μm and 230 μm,
respectively. The DDM allows the use of larger discretization
and stops near 380 μm due to numerical instability. Between
1 μm and 350 μm our DDM is very effective in reproducing
the velocity of the HMM.

C. Chemical droplets in oil

Diffusion coupled to the nonlinear chemical reactions can
produce the propagation of reaction fronts. The dependence of
the velocity on the different parameters is shown in Fig. 7.

For small diffusivity, chemical waves cannot propagate and
give rise to propagation block, see Fig. 7(a), for the HMM and
the homogenized DM. However, CM with a fine discretization,
h = 0.1 μm, cannot reproduce the conduction block.

We compared also the HMM with the homogenized CM,
QCM, and DDM when the conductivity σ̄ is varied, keeping
constant the discretization of 7.5 μm in Fig. 7(b). The DDM
can reproduce the conduction block that occurs at σ̄ = 3.6 ×
10−7 with better accuracy than CM and QCM.

In Fig. 7(c) we compare the model HMM with the homog-
enized CM, QCM, and DDM with σ̄ = 4.6 × 10−7, which
corresponds to a speed of 14.5 m/s. We vary the discretization
from 1 μm to 8 μm. For small discretization, h → 0 the CM
is far away from HMM, whereas QCM and DDM converge
to the same value that is relatively close to the speed obtained
by the HMM. The CM and QCM cannot use discretizations
larger than 5.5 μm and 4.5 μm, respectively. The DDM allows
larger values of discretization to be used and stops near 8 μm
due to numerical instability. In the range of 1 μm and 7.5 μm
our DDM is very effective in reproducing the velocity of the
HMM.

D. Transitory dynamics

In the previous section the speed of the waves is calculated
when the excitable wave takes a stationary shape and moves
with constant velocity. However, before the wave adopts the
final stationary shape, velocity and thickness of the wave
changes depending on the initial condition. The local thick-
ness of the excitable pulse, corresponding to action potential
duration (APD) for cardiac cells and neurons and to excitation
time for the chemical reactions, depends on the distance to
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FIG. 7. Speed of wave propagation for the system with chemical
droplets in oil as function of the diffusivity σ̄ for (a) small discretiza-
tion value (h = 0.1 μm for CM and HMM and h = 5.1 μm for DM)
and (b) large discretization value (h = 7.5 μm) for CM, QCM, and
DDM. (c) Speed as a function of the discretization h keeping constant
σ̄ at a weak diffusion 4.6 × 10−7. Conduction block and numerical
instability are shown by squares and cross, respectively.

the source where wave is initiated, see Fig. 8 for two different
examples in each of the three biochemical systems.

Here we observe the main differences among the three
systems. While for normal conditions the action potential
in the cardiac tissue rapidly relaxes to the stationary shape
and all the models reproduce constant APD in the space, see
Fig. 8(a), the action potential in the axon continuously changes
with the distance and the stationary shape is still not achieved,
see Fig. 8(b). The chemical droplets is an intermediate case
where the transitory dynamics occurs along the first 0.03 cm,
see Fig. 8(c).

The behavior of the chemical systems does not depend on
the diffusivity σ , compare Figs. 8(c) and 8(f). In both cases,
Excitation durations (ED) are not correctly computed with the
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Action potential duration (APD) and excitation duration (ED) dependence on the distance to the initial source. APD for the 64
cardiac cells for normal (a) and reduced conductivity (σ = 6.9 × 10−4) (d). APD for the myelinated axons with 100 myelin sheath for normal (b)
and reduced conductivity (σ = 7.0 × 10−3) (e). ED for the 400 chemical droplets for normal (c) and reduced diffusivity (σ = 6.5 × 10−7) (f).

CM, whereas ED distributions obtained with DM and DDM
are close to those of the HMM. In the other two cases, the
change with the decrease of conductivity is more relevant. In
the CM, APD distribution does not change substantially with
the modification of the conductivity. However, with the DM
and DDM the distribution changes and follows closely the one
computed with the HMM.

V. DISCUSSION

We have presented a discretization dependent model for
the integration of discrete biochemical systems which merges
good properties of a discrete model (e.g., velocity dependence
on conductivity, conduction block, dependence on the distance
to the initial condition) with the applicability and cost of a ho-
mogenized continuum model (e.g., integration on unstructured
meshes, analytic calculations).

As a final test of our argument we constructed an
one-dimensional mesh with random discretization, where
we can integrate the continuum, quasicontinuum, and our
discretization-dependent model and compare them with the
standard heterogeneous HMM model, see Fig. 9. It is inter-
esting to point out that the discrete model cannot be solved
on this unstructured mesh, as it requires the exact topology of
the underlying discrete system. Using this nonuniform mesh
the speed obtained with the DDM and the corresponding
conduction block are in good agreement with the results
obtained by the HMM, see Fig. 9(a). In summary, DDM
outperforms CM and QCM, and it is computationally much
cheaper than HMM. As a matter of fact, DDM was shown
to be computationally cheaper than any other tested model
in this work, including the DM, as it can be integrated with
discretization values larger than those used by other models,
see, for instance, Fig. 5(c).

It is interesting to note that both DDM and QCM models
mainly propose modifications on the diffusion term. This is
similar to the modifications proposed in Ref. [41] to deal
with cases of anomalous diffusion. Other techniques that have
also been extensively used are nonlocal diffusion [42] and
fractional diffusion. The DM can be written as a nonlocal
diffusion model. By taking two delta Dirac functions as the
Kernel function of the integro-differential equation, we arrive
at the discrete Laplacian in one dimension. Therefore, our
new model DDM can also be seen as a modified nonlocal
diffusion model. Nonlocal and fractional diffusion models can
be equivalent, see Ref. [43]. Recently, fractional reaction-
diffusion equations were used to model cardiac tissue [44]
where all the information of the microstructure of the tissue
was projected to the fractional diffusion [45]. In particular,
similar APD distributions studied here, see Fig. 8, can be found
in Ref. [44]. Therefore, in the near future we will compare
our new DDM model to these other approaches: nonlocal,
anomalous, and fractional diffusion models. In this direction,
our method can be also extended to more elaborated nonlocal
couplings to study the spread of pathological pulses in the
brain [46].

For small discretization, the discretization-dependent
model gives rise to a quasicontinuum model defined as a
continuum approach to discreteness [23–25]. In turn, quasi-
continuum models give rise to classical continuum model,
when the inhomogeneity length � can be neglected. Also, in the
adequate limit, the discretization-dependent model reproduces
the complete discrete model, which sometimes is a better
description than continuum models. Therefore, all the previous
presented homogenized models, CM, DM, and QCM, can be
taken as particular cases of the new DDM.

We have compared the HMM with the homogenized ver-
sions of the continuous and discrete models. It is known that
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(a)

(b)

FIG. 9. (a) Speed of propagation of the concentration of the
activator in the version of the model adapted to chemical droplets
in oil as function of the diffusivity σ̄ using (b) a nonuniform mesh
with random discretization values between 4 and 7μm with an average
of 5.35 and variance of 1.27. Conduction block is shown by squares.

the homogenized versions of the continuous [11] and the
discrete [10] models are good approaches to HMM only for
certain values of the parameters. If one of the conductivities
is too small and the fraction close to the percolation limit,
then homogenization fails [11,40]. Under such conditions
the excitation waves can break into pieces and produces
irregular dynamics [17,47,48]. It may be interesting to extend
the analysis here presented to two-dimensional systems and
compare the resulting dynamics.

Excitable waves can propagate in more complex topologies
like networks [13,49,50] where all the continuous models
probably fail, and discrete models with complex interactions
have to be considered. However, there are simpler networks
like trees and some random networks where propagation failure
has been also observed, where the DDM may be also applied
[51]. In addition, our model may be applied to study discrete
breather, i.e. temporally periodic and strongly localized in
space nonlinear structures, where the QCM was also applied
with not completely satisfactory results [52,53].

Finally, we note that the proposed discretization-dependent
models are not restricted to pattern formation in excitable
media. They are rather general and can be used for other
reaction-diffusion systems. There are multiple examples of
patten formation in biology that are in the border of continuum
and discrete descriptions, like the Turing mechanism [54],
cell-to-cell communications [55], as well as other biological
contexts at different spatial scales [56].

(a)

(b)

FIG. 10. Scheme of a uniform mesh (a) with discretization h and
a nonuniform mesh (b) with discretization hi .
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APPENDIX: DISCRETIZATION OF MODELS ON
UNIFORM AND NONUNIFORM MESHES

Here we present the numerical schemes for the models for
the cases of uniform and nonuniform meshes. We use operator
splitting to separate the nonlinear part that comes from the
reactions and the linear term that comes from diffusion. More
details of this scheme can be found in Ref. [21]. Here we focus
on the discretization of the diffusion terms. For the classical
CM and HMM models we have

∂tu = ∂(σ (x)∂u). (A1)

Here σ (x) varies on space either because we have the
HMM case or due to changes on the homogenized coefficient
that may reflect nonperiodic or nonregular information of the
microscopic or discrete structure of the system,L. For example,
cells may have different sizes and droplets alignment may
be not regular so that the discrete characteristics may vary
with space and the homogenized coefficient would reflect it:
σ (x) = �(x)

�0(x)/σ0(x)+�1(x)/σ1(x) .
We assume also that our discretization may be nonuniform,

i.e., h varies. We can represent this either using a continuum
approach, h(x) or, equivalently, say that our domain is dis-
cretized on N volumes or elements, each with a size of hi ,
with i ∈ {1, . . . ,N}. Figure 10 presents examples of uniform
and nonuniform meshes. By using the classical finite volume
method to discretize space we have

∂tui = 2

hi

[
σi+1/2

(
ui+1 − ui

hi+1 + hi

)
− σi−1/2

(
ui − ui−1

hi + hi−1

)]
,

(A2)

where ui = u(xi,t), with xi the coordinate of the center of the
volume i as shown in Fig. 10.

In order to simplify the notation we define T σ
i±1:

T σ
i±1 = 2σiσi±1

hi(hiσi±1 + hi±1σi)
, (A3)
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where we have imposed the continuity of fluxes on faces i +
1/2 and i − 1/2 to arrive at this generalization of the harmonic
mean.

Rewriting Eq. (A2) we have

∂tui = [
T σ

i+1(ui+1 − ui) − T σ
i−1(ui − ui−1)

]
. (A4)

To obtain a numerical solution we discretize time using
backward Euler. This generates a tridiagonal matrix that needs
to be solved for each time step of the simulation.

For the special case of uniform mesh and constant σ

we find the classical second-order approximation in space
for the diffusion equation: ∂tui = σ

ui+1−2ui+ui−1

h2 . This is the
discretization used to solve the homogeneous CM on an
uniform mesh or DM, replacing h by �.

For a general nonuniform mesh, we cast DDM basic
equation as

∂tu =
(

1

1 − κ2∂2

)
∂(σ (x)∂u). (A5)

Discretizing the numerator of the right-hand side as before,
and moving the denominator to the left-hand side we have

∂tui − κ2i∂
2(∂tui) = [

T σ
i+1(ui+1 − ui) − T σ

i−1(ui − ui−1)
]
,

(A6)

where κ2i = (�4
i − h4

i )/12�2
i . Here not only the mesh is nonuni-

form (hi), but also the discrete characteristics of the system
may also vary with space, �(x), with discretization also given
by �i .

Using the same spatial discretizaton on the left-hand side
we obtain:

∂tui − [
T

κ2
i+1(∂tui+1 − ∂tui) − T

κ2
i−1(∂tui − ∂tui−1)

]
= [

T σ
i+1(ui+1 − ui) − T σ

i−1(ui − ui−1)
]
, (A7)

where

T
κ2
i±1 = 2κ2i

hi(hi + hi±1)
. (A8)

Finally, using backward Euler for the time discretization we
arrive at the following linear system that needs to be solved at
each time step k:

−(
T

κ2
i+1 + 
tT σ

i+1

)
un+1

i+1

+[
T

κ2
i+1 + T

κ2
i−1 + 1 + 
t

(
T σ

i+1 + T σ
i−1

)]
un+1

i

−(
T

κ2
i−1 + 
tT σ

i−1

)
un+1

i−1

= −(
T

κ2
i+1

)
un

i+1 + (
T

κ2
i+1 + T

κ2
i−1 + 1

)
un

i − (
T

κ2
i−1

)
un

i−1,

(A9)

where un
i is the discretization of u(x,t) = u(ihi,nk), for the

case of a uniform discretization of time, k. The numerical
scheme (A9) is used to integrate the models DDM and QCM.
For QCM we replace κ2 by κ1. Note that Eq. (A9) also generates
a tridiagonal matrix that needs to be solved for each time step
of the simulation. Therefore, the computational cost of the
different models, DDM, QCM, DM, and CM, is the same and
is mainly affected by the spatial discretization used, h.
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