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Dark gap solitons in exciton-polariton condensates in a periodic potential
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We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC)
in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show
a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and
dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points
of the band center and band edge of the first and second bands, respectively. The excitation energies of dark
gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton
becomes smaller as the pump power is increased.
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I. INTRODUCTION

Solitons are solitary waves [1,2] that preserve their shape
structures during propagating if the nonlinearity compensates
the dispersion-induced broadening. In the past decades, the
experimental and theoretical achievements in Bose-Einstein
condensates (BECs) of atoms [3–6] have led to an attention
on nonlinear matter waves. By tuning the chemical potential
of a BEC in an optical lattice, the bright or dark soliton (DS)
occurring inside the band gap has been predicted and observed
in atomic BECs [7–9]. While interactions between atoms are
repulsive, the matter wave is favorable to form a bright soliton
and DS if the effective mass of a BEC in an optical lattice is
negative and positive, respectively.

Recently, exciton-polariton condensates (EPCs) occurring
in semiconductor microcavities [10] showed some interesting
phenomena not observed in equilibrium BECs. Exciton po-
laritons are bosonic particles arising from the strong coupling
between photons and excitons in semiconductor microcavities.
Owing to its intrinsically out-of-equilibrium nature determined
by the balance between nonlinear interaction, pumping, and
decay [11], the EPC is a nonresonantly pumped and nonequi-
librium system. It is a good system to study the physical
properties of a nonequilibrium quantum fluid. Due to the
nonequilibrium character of an EPC, a DS in a uniform EPC
is unstable and displays an abrupt decay [12–14]. Moreover,
the unstable and decaying DS in an EPC can be stabilized or
pinned by the presence of a defect potential [15].

To create bright (dark) solitons, the mass of an EPC has
to be negative (positive) to balance the nonlinearity from
repulsive interactions between exciton polaritons. The neg-
ative (positive) effective mass is found near the maximum
(minimum) point of the first Brillouin-zone edge (center) of
an EPC in a periodic potential. This exciting soliton research
area is a solitonlike state, called gap soliton, which exists in
periodic media [16]. The EPCs in a static [17,18] or tunable
[19,20] periodic potential have been realized in experiments on
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studying the s- and p-type wave functions which could have
different energies, symmetry, and spatial coherence. Bright gap
solitons have been discovered inside the band gap of an EPC
[21]. Meanwhile, the resonantly excited bright gap solitons in
two-dimensional lattices have been reported [22,23]. However,
no research is focused on dark gap solitons (DGSs) occurring
inside the band gap of an EPC. A recent article reported
the existence of stable DSs in a polariton condensate with
an incoherent periodic pump [24]. The formation of a stable
and regular dark-soliton train due to a local abrupt change of
self-interaction strength of the condensate was theoretically
proposed within experimentally accessible schemes [25]. It is
worth studying the effects of periodicity, pump, and loss on
the formation of a DS in an EPC. In this paper, the effects
of spatial localization of EPCs in a one-dimensional periodic
potential are investigated by illuminating the system in a
homogeneous fashion. Due to the effective mass of polaritons
being positive near the minimum energy points of the band
center and band edge of the first and second bands, respectively,
we demonstrate the existence of spatially localized DSs if the
excitation energies of DSs are below these minimum points
and fall into the band gap. This kind of a dark soliton is named
as the dark gap soliton. There are two kinds of DGSs. One is a
DGS which is occurring below the minimum energy of the first
band center, whose density shows a dip in a periodic density
background. Another is a DGS which is occurring below the
minimum energy of the second band edge, whose density has
a gap in a periodic density distribution.

The present paper is organized as follows. In Sec. II, we
introduce the model to describe the dynamics of the polaritons
in a period potential. Bloch’s theorem is applied to deduce
the linear band structure without pump and loss. In Sec. III,
the effective-mass theory is then used as an intermediate step
to obtain the analytic solutions of DGSs. In Secs. IV and V,
we solve the complex Gross-Pitaevskii equation in a periodic
potential numerically to find the DGSs below the minimum
energy points of the band center and band edge of the first and
second bands, respectively. Finally, conclusions are given in
Sec. VI.
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II. MEAN-FIELD MODEL AND NONLINEAR
BLOCH WAVES

In the theoretical modeling of the polariton matter waves,
we rely on the mean-field complex Gross-Pitaveskii equation
(cGPE) incorporating the trapping potential, interparticle in-
teractions, pumping, and decay [26]:

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ V (x)�

+U |�|2� + i(γeff − �|�|2)�, (1)

where � is the wave function and h̄ and m are Planck’s
constant and polariton mass, respectively. The trapping po-
tential, V (x), here is a one-dimensional periodic potential
given by V (x) = V0sin2(πx/a), with potential depth V0 and
lattice constant a. The third term on the right-hand side of the
equation represents the normalized two-body interaction with
U being the strength of the two-body interaction potential. γeff

represents the linear net gain describing the balance between
the stimulated scattering of polaritons into the condensate and
the linear loss of polaritons out of the cavity. � is the coefficient
of gain saturation. By choosing the length, time, and energy
scales in units of 2/a, ω, and h̄ω = 4h̄2/ma2, respectively,
and further rescaling the wave function � → √

h̄ω/U� with
respect to U , we can obtain

ih̄
∂�

∂t
= −1

2

∂2�

∂x2
+ V0sin2(πx/2)�

+ |�|2� + i(α − σ |�|2)�, (2)

where α is the homogeneous pumping rate in units of h̄ω; σ =
�/U is a factor of the nonlinear effective loss. The sigma term,
i.e., −σ |�|2�, is a nonlinear loss due to the gain saturation. Its
physical origin can be from the depletion of the population of
reservoir polaritons, and may also include an effect due to an
increase of condensate chemical potential reducing scattering
from the reservoir. If no such nonlinear process exists in
the equation, the system would be unstable, which means
any pumping rate α would bring the population to go to
infinity. Therefore, there should be some mechanism whereby
the effective pump strength would decrease as the density
|�|2 increases. When the pump is higher, more population
is generated, but the loss is also increased; eventually a steady-
state solution can be reached when the pumping is equal to
the dissipation. Interested readers can refer to the article by
Szymańska, Keeling, and Littlewood [27] for how Eq. (1) is
obtained. The mean-field theory of the nonequilibrium system
describes a self-consistent steady state which can be written
in terms of the nonlinear complex susceptibility. Making
a gradient and Taylor expansion of the nonlinear complex
susceptibility, a complex Gross-Pitaevskii equation with an
imaginary term like Eq. (1) is then available. Here σ = 0.52 is
chosen in this article so that the energy difference between the
lowest and highest energy of the first band is 1 meV, which is
consistent with Ref. [17]. The steady state solution is shown
by the wave function �(x,t) = ψ(x)e−iEt , where E is the
chemical potential or polariton energy of the system. Then

E1
E2
E3

FIG. 1. (a) Energy dispersion versus V0 at k = π/2 and (b) band
diagram at V0 = 1.

Eq. (2) becomes

Eψ = −1

2

∂2ψ

∂x2
+ V0sin2(πx/2)ψ

+ |ψ |2ψ + i(α − σ |ψ |2)ψ. (3)

The stationary solutions are found by applying Bloch’s
theorem, which states that the wave functions have the form
ψn,k(x) = eikxu

n,k
(x), where k is the quasimomentum and n

indicates the band index. The functions un,k(x) are periodic
with period a, i.e., un,k(x + a) = un,k(x). In the case of an
EPC without interactions, pump, and loss, the condensate
wave function can be presented as a superposition of Bloch
waves, ψn,k(x) = eikx

∑
m Cn

meimGx , where Cn
m are the expan-

sion coefficients of the Bloch wave and G = 2π/a is the
reciprocal-lattice vector. Therefore, the energy spectrum of an
EPC consists of several bands of eigenvalues En(k) in which k

is a real wave number of Bloch waves. The bands are separated
by gaps in which Im(k) �= 0.

Figure 1(a) shows the energy band diagram for different po-
tential depths under the conditions of neglecting the nonlinear,
pump, and loss effects. If we select V0 = 1, the energy band
diagram is shown as Fig. 1(b). Without the periodic potential,
V0 = 0, there is no band gap. The existence of the periodic
potential splits the energy dispersion into multiple bands with
the zone folding happening at k = π/2. Gaps between the
bands are getting wider for a deeper potential depth (larger
V0). The lowest and intermediate energy bands are the first
and second bands, respectively. There are two wide open gaps
below the first band center at k = 0 and the second band edge
at k = π/2.

III. NONEQUILIBRIUM AND NONLINEAR
EFFECTIVE MASS FORMALISM

We assume a wave packet of condensate �(x,t) with a small
momentum distribution centered around k0 in one specific band
n is described by a slowly varying envelope function F (x,t) (on
the scale of several lattice constants) multiplied by the linear
Bloch wave function ψL

n,k0
(x) as

�(x,t) = F (x,t)ψL
n,k0

(x)eiEn(k0)t . (4)

In the case of weakly interacting polaritons and negligible
band mixing (interband transition), a nonlinear Schrödinger
equation for F (x,t) can be derived employing the effective
mass approximation [28,29]. The reduced differential equation
has the same form as the Gross-Pitaevskii equation but with
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modified linear dispersion and nonlinear terms:

i

[
∂F (x,t)

∂t
+ vg

∂F (x,t)

∂x

]

= −1

2m∗
∂2F (x,t)

∂x2
+ En(k0)F (x,t)

+ λ|F (x,t)|2F (x,t) + i(α − σλ|F (x,t)|2)F (x,t), (5)

where m∗(k0) = [ ∂2En(k)
∂k2 |k=k0 ]

−1
is the effective mass of the

polariton and λ = ∫ 1
−1 |ψL

n,k0
(x)|4dx/

∫ 1
−1 |ψL

n,k0
(x)|2dx is a

renormalization factor to renormalize the nonlinear interaction
strength of an EPC in a periodic potential. The periodic
potential also leads to a group velocity of the envelope F (x,t)
determined by the energy band via vg(k0) = ∂En(k)

∂k
|k=k0 . The

effect of the periodicity is manifested by parameters m∗, λ, and
vg at k = k0. Note that the nonlinear effects (nonlinear interac-
tion and saturated loss) are considered as a small perturbation
here. Inserting F (x,t) = F0(x)eiEt with energy eigenvalue E

into Eq. (5), we obtain a time-independent differential equation
of F0:

EF0(x) = −ivg

dF0(x)

dx
− 1

2m∗
d2F0(x)

dx2
+ En(k0)F0(x)

+ λ|F0(x)|2F0(x) + i(α − σλ|F0(x)|2)F0(x). (6)

To find the positive effective mass near the band center at k = 0
or band edge at k = π/2, we know vg = 0 and Eq. (6) becomes

1

2m∗
d2F0

dx2
+ δF0 − λ|F0|2F0 − i(α − σλ|F0|2)F0 = 0, (7)

where δ = E − En(k0) is the energy detuning parameter at the
energy extreme points of the nth band. In order to address the
existence of dark polariton solitons, we first substitute |F0|2 in
Eq. (6) by F̃0

2
. Then the intermediate solution F̃0 of a toy model

of nonequilibrium EPCs can be found through the following
equation:

d2F̃0

dx2
+ 2m∗(δ − iα)F̃0 − 2m∗λ(1 − iσ )F̃0

3 = 0. (8)

A hyperbolic tangent solution F̃0 = C tanh(Bx) with B =√
m∗(δ − iα) and C = √

(δ − iα)/[λ(1 − iσ )] can be found
to satisfy Eq. (8) with a positive effective mass. Using this
analytical F̃0 as the initial trial solution of Eq. (7), we then apply
the Newton-Raphson method to find the numerical solution of
F0 in Eq. (7). Finally, the numerical solution of Eq. (3) can
be obtained by guessing ψ(x) = F0ψ

L
n,k0

(x) as the initial trial
solution of Eq. (3).

IV. DARK GAP SOLITONS UNDER THE FIRST BAND

The effective mass near the first-band center at k = 0 is
positive. There is no abnormal dispersion to balance the re-
pulsive interaction between exciton polaritons. A dark soliton
can form spontaneously due to the defocusing nonlinearity.
There is no stable dark soliton in a pure EPC [12]. However,
the dark soliton pinned by a defect is stable [15]. For an EPC
loaded into a periodic potential, the external periodic potential
provides periodic defects to pin a dark soliton. We believe that
a dark soliton inside the band gap can exist in an EPC in a
periodic potential.

FIG. 2. (a) Numerical (red solid lines) and analytic (blue solid
lines) density distributions of dark gap solitons for pump power
α = 3,5,7 under V0 = 1; (b) numerical (red solid lines) and analytic
(blue solid lines) density distributions of dark gap solitons for pump
power α = 3,5,7 under V0 = 3. The periodic potential is shown by
black dashed line. The energy detuning is δ = −0.25, which is located
below the first band.

To find the steady state of a DGS, we solve Eq. (3)
numerically using the Newton-Raphson method. Figure 2
shows the density distributions of DGSs whose energy is below
the first-band center at k = 0. Only a very low pump power,
α = 0.4 for δ = −0.25, can start generating a density dip on
a periodically modulated density background. The threshold
pump power of generating a DGS is decreasing as the excitation
energy is getting closer from below to the minimum energy
point of the first band and the value of the detuning parameter
|δ| becomes smaller. Nevertheless, changing the value of |δ|
has a minor effect on the density-dip structure of the DGS
in this regime. Therefore, we only show density plots of
DGSs for only one detuning value, δ = −0.25, in Fig. 2. With
increasing the pump power, the nonzero density background is
increased and the width of the density dip of the DGS becomes
smaller and deeper. The periodically modulated strength of
the background keeps approximately 30% of the background
density. The structure of the density dip reveals two humps if
the pump power is strong enough (see density plots for α = 7,
Fig. 2). Moreover, the periodically modulated strength of the
background is bigger as the strength of the external potential
goes stronger. Then we can see that the contrast of the dip
becomes effectively smaller even though the interior structure
is not significantly affected [compare density distributions
shown in Figs. 2(a) and 2(b)].

V. DARK GAP SOLITONS INSIDE THE ENERGY GAP
BETWEEN THE FIRST AND SECOND BANDS

After showing the first kind of DGSs under the first band,
there is another energy gap between the first and second bands.
The effective mass near the second-band edge at k = π/2
is positive. The nonlinearity of an EPC is defocusing. Then
we intend to show the existence of the second kind of DGSs
occurring inside the energy gap between the first and second
band edges at k = π/2. The density distributions of these
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FIG. 3. (a) Numerical (red solid lines) and analytic (blue solid
lines) density distributions of dark gap solitons for pump power
α = 3,5,7 under V0 = 1; (b) numerical (red solid lines) and analytic
(blue solid lines) density distributions of dark gap solitons for pump
power α = 3,5,7 under V0 = 3. The periodic potential is shown by
black dashed line. The energy detuning is δ = −0.25 inside the band
gap of first and second band.

DGSs are shown in Fig. 3. There is a density gap around the
center of the periodic density distribution without a nonzero
density background. A minimum pump strength is required
to obtain the DGS, and the threshold pump power increases
with the potential depth. On increasing the potential depth, the
width of the DGS becomes narrower. However, the periodic
density distribution is not significantly affected. We find that
the density structure of the DGS is strongly affected by the
pump strength. As the pump power is increasing, the width
of the DGS also becomes narrower. By either increasing the
potential depth or pump power, two humps inside the density
gap grow up gradually and the inner density structure of the
DGS becomes narrower.

In contrast to the nonzero density background for the first
kind of DGSs, the background density is changing between
zero and nonzero densities periodically. The second kind of a
DGS here is generated on the top of a p-type (antisymmetric)
Bloch wave function coming from the minimum of the second
band at k = π/2 and this wave function has nodes on the
valleys of the potential. Every π -phase shift of the wave
function near a space point causes a density notch near that
point. In the center of the DGS, the density notch together with
an area of a π -phase change can be observed. A higher pump
power shrinks the area, and thus a narrower DGS width has
happened. Although no typical density and phase structure of
a DS in a uniform system is shown in the system, the localized
nature of a DGS with the distinct phase gradient across its notch
occurs here. The defocusing nonlinearity and phase gradient
tend to reduce and enlarge the width of the notch of a DGS,
respectively. A DGS is formed due to the balance between
the defocusing nonlinearity and phase gradient. Note that, as
we reduce the energy detuning parameter |δ| to the minimum
energy point at the second band edge, the threshold pump
power to find a DGS would be increasing. On the other hand, a
changed |δ| has a minor effect on changing the interior structure
of DGSs.

FIG. 4. Minimum required pump power (αmin) as a function of
the potential depth at δ = −0.05 and δ = −0.25.

The threshold pump power (αmin) for the existence of DGSs
as a function of the potential depth V0 is depicted in Fig. 4. The
DGSs below the first band start forming as the pump power is
larger than �0.4 for δ = −0.25. For a smaller detuning of
δ = −0.05, αmin decreases to �0.1. However, increasing the
potential depth doesn’t affect the threshold power. On the other
hand, the threshold power of the second kind of DGSs increases
with the potential depth. αmin decreases as the excitation energy
of a DGS lies deep inside the band gap.

VI. CONCLUSIONS

The exciton-polariton condensate in a one-dimensional
periodic potential has been studied using the effective-mass
approach. We predicted the existence of dark gap solitons of
exciton-polariton condensates in semiconductor microcavities.
Two kinds of dark gap solitons exist in the system with lower
potential depths. One is the dark gap soliton with a density
dip in a nonzero density background. Another is the dark gap
soliton with a density gap in an oscillating density background.
Both dark gap solitons can exist for various potential depths and
pump powers. Our studies reveal methods for creating and con-
trolling dark solitons in a nonequilibrium and nonlinear system.

We mentioned two kinds of dark gap solitons; the third kind
of dark gap soliton can also be found inside the gap between
the second and third bands at the zone center. It can be excited
from the relaxation of the high-energy exciton polaritons to
the low-energy band. However, the dark gap soliton of the
higher band can be found only at a deeper lattice potential
and higher pump powers. The band gap of the higher band
opens only at a deeper lattice potential as shown in Fig. 1(a).
On increasing the lattice potential depth, the interior structure
of a dark gap soliton is not affected. Furthermore, the width
of a dark gap soliton becomes narrower as the pump power
becomes stronger.

ACKNOWLEDGMENT

We acknowledge the financial support from the Ministry
of Science and Technology of the Republic of China un-
der Contracts No. MOST105-2112-M-034-001-MY3 and No.
MOST105-2112-M-415-009-MY3.

032212-4



DARK GAP SOLITONS IN EXCITON-POLARITON … PHYSICAL REVIEW E 97, 032212 (2018)

[1] G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
[2] J. S. Russell, Report of the 14th Meeting of the British As-

sociation for the Advancement of Science XLVII–LVII, 1845
(unpublished), p. 311.

[3] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,
Rev. Mod. Phys. 71, 463 (1999).

[4] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[5] E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).
[6] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).
[7] B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein,

K. P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 92, 230401
(2004).

[8] B. Eiermann, P. Treutlein, T. Anker, M. Albiez, M. Taglieber,
K. P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 91, 060402
(2003).

[9] P. Meystre, Atom Optics (Springer-Verlag, New York, 2001).
[10] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[11] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489

(2010).
[12] Y. Xue and M. Matuszewski, Phys. Rev. Lett. 112, 216401

(2014).
[13] A. Amo et al., Science 332, 1167 (2011).
[14] M. Sich et al., Nat. Photon. 6, 50 (2012).
[15] T. W. Chen, W. F. Hsieh, and S. C. Cheng, Opt. Express 23,

24974 (2015).
[16] D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg,

Phys. Rev. Lett. 92, 093904 (2004).
[17] C. W. Lai et al., Nature (London) 450, 529 (2007).

[18] N. Y. Kim et al., Nat. Phys. 7, 681 (2011).
[19] E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R.

Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar,
and M. S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010).

[20] D. N. Krizhanovskii et al., Phys. Rev. B 87, 155423 (2013).
[21] D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lematre,

E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech
et al., Nat. Commun. 4, 1749 (2013).

[22] E. A. Cerda-Méndez, D. Sarkar, D. N. Krizhanovskii, S. S.
Gavrilov, K. Biermann, M. S. Skolnick, and P. V. Santos,
Phys. Rev. Lett. 111, 146401 (2013).

[23] J. V. T. Buller, R. E. Balderas-Navarro, K. Biermann, E. A.
Cerda-Méndez, and P. V. Santos, Phys. Rev. B 94, 125432
(2016).

[24] X. Ma, O. A. Egorov, and S. Schumacher, Phys. Rev. Lett. 118,
157401 (2017).

[25] F. Pinsker and H. Flayac, Phys. Rev. Lett. 112, 140405 (2014).
[26] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401

(2008).
[27] M. H. Szymańska, J. Keeling, and P. B. Littlewood, in Quantum

Gases: Finite Temperature and Non-equilibrium Dynamics,
edited by N. P. Proukakis, S. Gardiner, M. J. Davis, and M. H.
Szymańska (Imperial College Press, London, 2013), Part III,
p. 451.

[28] V. A. Brazhnyi, V. V. Konotop, and V. M. Pérez-García,
Phys. Rev. Lett. 96, 060403 (2006).

[29] C. M. de Sterke, D. G. Salinas, and J. E. Sipe, Phys. Rev. E 54,
1969 (1996).

032212-5

https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1126/science.286.5444.1518
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1103/PhysRevLett.91.060402
https://doi.org/10.1103/PhysRevLett.91.060402
https://doi.org/10.1103/PhysRevLett.91.060402
https://doi.org/10.1103/PhysRevLett.91.060402
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1364/OE.23.024974
https://doi.org/10.1364/OE.23.024974
https://doi.org/10.1364/OE.23.024974
https://doi.org/10.1364/OE.23.024974
https://doi.org/10.1103/PhysRevLett.92.093904
https://doi.org/10.1103/PhysRevLett.92.093904
https://doi.org/10.1103/PhysRevLett.92.093904
https://doi.org/10.1103/PhysRevLett.92.093904
https://doi.org/10.1038/nature06334
https://doi.org/10.1038/nature06334
https://doi.org/10.1038/nature06334
https://doi.org/10.1038/nature06334
https://doi.org/10.1038/nphys2012
https://doi.org/10.1038/nphys2012
https://doi.org/10.1038/nphys2012
https://doi.org/10.1038/nphys2012
https://doi.org/10.1103/PhysRevLett.105.116402
https://doi.org/10.1103/PhysRevLett.105.116402
https://doi.org/10.1103/PhysRevLett.105.116402
https://doi.org/10.1103/PhysRevLett.105.116402
https://doi.org/10.1103/PhysRevB.87.155423
https://doi.org/10.1103/PhysRevB.87.155423
https://doi.org/10.1103/PhysRevB.87.155423
https://doi.org/10.1103/PhysRevB.87.155423
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1103/PhysRevLett.111.146401
https://doi.org/10.1103/PhysRevLett.111.146401
https://doi.org/10.1103/PhysRevLett.111.146401
https://doi.org/10.1103/PhysRevLett.111.146401
https://doi.org/10.1103/PhysRevB.94.125432
https://doi.org/10.1103/PhysRevB.94.125432
https://doi.org/10.1103/PhysRevB.94.125432
https://doi.org/10.1103/PhysRevB.94.125432
https://doi.org/10.1103/PhysRevLett.118.157401
https://doi.org/10.1103/PhysRevLett.118.157401
https://doi.org/10.1103/PhysRevLett.118.157401
https://doi.org/10.1103/PhysRevLett.118.157401
https://doi.org/10.1103/PhysRevLett.112.140405
https://doi.org/10.1103/PhysRevLett.112.140405
https://doi.org/10.1103/PhysRevLett.112.140405
https://doi.org/10.1103/PhysRevLett.112.140405
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevLett.96.060403
https://doi.org/10.1103/PhysRevLett.96.060403
https://doi.org/10.1103/PhysRevLett.96.060403
https://doi.org/10.1103/PhysRevLett.96.060403
https://doi.org/10.1103/PhysRevE.54.1969
https://doi.org/10.1103/PhysRevE.54.1969
https://doi.org/10.1103/PhysRevE.54.1969
https://doi.org/10.1103/PhysRevE.54.1969



