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Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
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Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the
algebraic expressions for determining the stability of their fixed points remain the Achilles’ heel. Typically, the
approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable
and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and
their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent
time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained
from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component
dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for
the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions
to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators
or the regions of amplitude death in identical coupled oscillators.
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I. INTRODUCTION

Systems with two independent delays are ubiquitous in
many areas of science and engineering, including electronics
[1], photonics (e.g., optoelectronic oscillators (OEOs) [2,3]),
collective behaviors [4], and many others [5–13]. In network
of coupled oscillators, for example, two independent delays
arise due to both the communication delay between the in-
dividual elements [14–17] and processing delay required for
handling input information or to respond to sudden changes
of parameters [4]. Dual-delay feedback loops also can be
implemented deliberately in dynamical systems for stabilizing
unstable periodic orbits or unstable fixed points [18]. In
communication systems, radars, sensors, metrology, and OEOs
with two time-delay feedback loops are excellent sources for
generating ultrapure microwaves. In all cases, however, the
construction of analytical solutions to analyze their stability
is very challenging although characteristic equations can be
easily formulated. This difficulty is due to the fact that the
presence of delay even in the simplest mathematical model
brings the system to an infinite dimension although only a
finite number of dynamical variables is involved. Even for
the stability of basic solutions such as the origin or nontrivial
steady state solutions, it is extremely difficult to derive general
algebraic expressions for their stability.

Alternatively, the determination of Hopf bifurcation lines of
the steady state solutions is sufficient to draw the boundaries
separating the stable regions from the unstable ones. For sys-
tems with single time delay, the stability condition for defining
the primary Hopf bifurcation lines can be found [1,19,20]. For
example, the stability analysis of pure microwaves generated
by single delay OEOs has been analytically derived either
under some assumptions [21] or in a parametric form [22,23].
Also, for nonlinear coupled oscillators with single delay, there
are analytical expressions which can be efficiently used to
identify the parameter regions for some interesting dynamical
regimes such as amplitude death (AD) [24–27].

For systems with two independent delays, however, most
of comprehensive bifurcation analyses for determining the
stability of the steady states have been studied numerically
rather than purely algebraic [1,4,9,10,18,28]. A geometric
approach also has been proposed [29]. A few attempts for
algebraic expressions to determine eigenvalues in such cases
have consisted in expanding eigenvalue in orders of the inverse
of the time delay [30]. But, the latter approach cannot be
applied to the dual feedback cases for which the order of
magnitude of the second time delay can vary in comparison
to the first.

The present work is devoted to further investigations on the
algebraic generic expressions for identifying the boundaries
between stable and unstable parameter regions of a given fixed
point of nonlinear systems with two independent time delays.
A parametric approach is used to construct the time-delay
expressions from which such boundaries can be drawn. This
parametric approach has been applied to several one-delay
systems [22,23]. Here, we extend this method to the case of
nonlinear systems with two time delays. A special attention
is paid to the application of the obtained results to real-world
systems. In particular, we consider several diffusively coupled
oscillators with two time delays and dual-delay loop OEOs,
and use the constructed expressions to identify the parameter
regions in which either stable microwaves or amplitude death
can be found.

II. ALGEBRAIC FORMULAS FOR IDENTIFYING
BIFURCATION LINES

In most of the nonlinear systems with two time delays, the
characteristic equation to ascertain the stability of their fixed
points has the form [1–6,8–10]

R1(λ)e−λT1 + R2(λ)e−λT2 = Q(λ), (1)
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where λ ∈ C denotes the zeros of Eq. (1), T1 and T2 are
independent time delays; R1(λ),R2(λ) ∈ C and Q(λ) are
complex functions independent of time delay. The explicit
expressions of these complex functions depend on the physical
system under study. They can be polynomials in λ or any
arbitrary complex function of λ independent of time delays.
The considered characteristic equation corresponds either to
the case of scalar delay differential equations, one-component
delay feedback, or to delay differential equations that can be
reduced to a scalar case. Because of the exponential terms, it is
extremely difficult to find all the roots of Eq. (1). Despite this
fact, the potential values at which the stability of the fixed point
may change are obtained when λ crosses the imaginary axis.
Hence, to find the bifurcation points at which the change in
the stability occurs, we insert λ = iω into Eq. (1). Considering
R1(iω) = R1(ω)eiθ1(ω), R2(iω) = R2(ω)eiθ2(ω), and Q(iω) =
Q1(ω) + iQ2(ω), and by separating the real and imaginary
parts, we obtain

R1 cos
(
ωT cr

1 − φ1
) = Q1 − R2 cos

(
ωT cr

2 − φ2
)
,

(2)
R1 sin

(
ωT cr

1 − φ1
) = −Q2 − R2 sin

(
ωT cr

2 − φ2
)
,

where T cr
1 and T cr

2 are the critical time delays for which
the system loses its stability or instability. Equation (2) can
be parametrically solved with respect to the parameter ω to
determine the expression of ωT cr

2 :

ωT cr
2 = ± arccos

⎛
⎝Q2

1 + Q2
2 − R2

1 + R2
2

2R2

√
Q2

1 + Q2
2

⎞
⎠

− arctan

(
Q2

Q1

)
+ φ2 + 2kπ, (3)

where k is integer. The sign (±) in Eq. (3) indicates that two
possible expressions of ωT cr

2 can be obtained. While any value
of k can be used, we are only interested in the smallest possible
value of k for which ωT cr

2 is a nonnegative value. However,
it should be noted that there is no value of ωT cr

2 when the
following inequality is not satisfied:

∣∣∣∣∣∣
Q2

1 + Q2
2 − R2

1 + R2
2

2R2

√
Q2

1 + Q2
2

≡ U

∣∣∣∣∣∣ � 1. (4)

This means that the values of ω to be considered are those for
which the condition given in Eq. (4) is satisfied. Since the sum
Q2

1 + Q2
2 is a positive quantity, condition (4) can be rewritten

as

(R1 − R2)2 � Q2
1 + Q2

2 � (R1 + R2)2. (5)

Several scenarios are possible depending on R1 and R2. If
R1 and R2 are such that there is no value of ω verifying the
inequality given in Eq. (5), the concerned steady state is always
stable or unstable. Condition (5) is important as it allows one
to identify the value range in which ω should be scanned to
find the appropriate values of T cr

2 . This simplifies the scan as
compared to the case for which the critical time delays are
found numerically from the characteristic equation.

Similarly, ωT cr
1 also can be determined from Eq. (2). One

obtains

ωT cr
1 = ± arccos
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√
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− arctan

(
Q2

Q1

)
+ φ1 + 2pπ, (6)

where p is integer. It must be emphasized that Eq. (6) should
satisfy the same existence condition (5). Under the condition
that both Eqs (3) and (6) satisfy condition (5), Eqs. (3) and (6)
yield

T cr
1 (ω) = φ1

ω
± 1

ω
arccos
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, (7)
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. (8)

The pair of expressions (7) and (8) are the key formulas for
determining the bifurcation lines delimiting the stable and
unstable regions for any fixed point whose stability can be
ascertained from Eq. (1). However, it should be noted that,
among the values of T cr

1 and T cr
2 obtained from Eqs. (7) and (8),

only those satisfying the relations in Eq. (2) are of interest
since expressions (7) and (8) have been obtained by squaring
the terms in Eq. (2). It also should be noted that because of the
sign (±) in Eqs. (7) and (8), stable and unstable regions can be
bounded by up to four curves for some systems. One important
result of this paper is that the critical values of T cr

1 and
T cr

2 are algebraically determined simultaneously. In addition,
expressions (7) and (8) are valid even when the coefficients
of the transcendental terms (i.e., R1 and R2) are complex
nonpolynomial functions in ω. Next, we consider various wide
studied physical systems and apply the formulas (7) and (8) to
ascertain the stability of their fixed points.

III. STABILITY ANALYSIS OF NONLINEAR SYSTEMS
WITH TWO TIME DELAYS

A. Stability of dual-delay loop optoelectronic oscillators

In usual delay OEOs, a laser beam with constant power
is used to seed an electro-optic modulator [typically a Mach-
Zehnder modulator (MZM)] that is polarized and modulated
in its radio-frequency (rf) electrode by a periodic signal. The
output signal of such MZM is subsequently purified traveling
through a long optical fiber delay line and/or an optical
resonator with a high quality factor. Then, the output of the fiber
or resonator is detected using a photodetector and converted
back to electrical signal. Finally, the signal at the output of
the photodetector is either launched into a rf filter to select
the microwave frequency of interest before being applied back
to the rf electrode of the MZM or it can be directly applied
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back to such electrode if the microwave frequency has been
selected by the resonator. In the case of dual-loop OEOs, the
output of the resonator or fiber is usually split into two parallel
optical branches with different delay lengths. Each branch is
detected separately and the detected signals are then combined
before being applied back to the rf electrode of the MZM.
Complicated configurations also have been proposed (e.g., see
Ref. [3]). In the modeling of OEOs generating microwaves,
the system is assumed weakly nonlinear so that the microwave
dynamics described by a dimensionless variable x(t) can be
found in the form x(t) = 1

2A(t)ei�0t + 1
2A∗(t)e−i�0t , where

A(t) is the slowly varying complex amplitude (∗ indicates
the complex conjugate) of the microwave while �0 is its
frequency. As such, pure microwaves are signals x(t) for which
the amplitude A is a stable fixed point. These fixed points and
their stability analysis can be completely investigated from
the integrodifferential equations describing the slowly varying
complex amplitude A(t) of the microwave. For ultrapure
microwave generation using single or multiple delay OEOs,
two types of integrodifferential equations are commonly used
for modeling OEOs depending on whether or not a high
quality-factor resonator is also inserted in the delay loop.

For dual-loop OEOs without resonator, the two time delays
are implemented from two different parallel optical delay paths
[3,21]. The microwave frequency is selected using a narrow
bandpass rf filter inserted in the electrical branch. Assuming
that the slowly varying complex amplitude of the microwaves
can be written as A = Aeiϕ , the dynamics of such a system
can be studied by [3]

Ȧ + μA = μγ1JC1
(
2AT1

)
AT1 + μγ2JC1

(
2AT2

)
AT2 , (9)

where FTj
= F (t − Tj ), γj is the effective gain in the delay

branch j (with j = 1,2), while μ is the half-bandwidth of the
narrow-band filter used in the microwave branch. Jc1(x) is the
Bessel Cardinal function defined as Jc1(x) = J1(x)/x, Jn(x)
being the nth-order Bessel functions of the first kind with n

as an integer. For Ȧ = 0, there is a trivial fixed point Ast = 0
which exists for every value of the loop gain. Its linear stability
can be determined by the following characteristic equation:

λ + μ
(
1 − γ1e

−λT1 − γ2e
−λT2

) = 0. (10)

From Eq. (10), one can deduce the parameters in Eqs. (7)
and (8) as φ1 = 0, φ2 = 0, R1 = γ1, R2 = γ2, Q1 = 1, and
Q2 = ω/μ. It turns out that the condition in Eq. (4) is fulfilled
if and only if

(γ1 − γ2)2 � 1 + z2 � (γ1 + γ2)2, (11)

where z = ω/μ. From Eq. (11), it is seen that T cr
1 and T cr

2 do not
exist for (γ1 + γ2) < 1. This means that there is no value of T1

and T2 for which λ crosses the imaginary axis. The fixed point
Ast = 0 remains stable as it is already the case in the absence of
any time delay. For (γ1 + γ2) � 1, we find from formulas (7)
and (8) that the fixed point Ast = 0 is always unstable.

For (γ1 + γ2) > 1, Eq. (9) also has, in addition to the trivial
fixed point, a nontrivial steady state solution:

Ast = 1

2
J−1

c1

[
1

2(γ1 + γ2)

]
. (12)

The characteristic equation for the growth rate of such fixed
point is given by [22]

λ + μ(1 − R1e
−λT1 − R2e

−λT2 ) = 0, (13)

whereRj = γj [J0(2Ast) − J2(2Ast)]. It is worth noting thatRj

are real values. The main difference between Eqs (10) and (13)
is that the Rj are positive reals in the former, while they can be
positive or negative reals in the latter, depending on the value of
Ast. From Eq. (13), it turns out that Q1 = 1 and Q2 = ω, Rj =
γj |[J0(2Ast) − J2(2Ast)]|, φj = 0 if Rj � 0; otherwise, φj =
π . Letting z = ω/μ, Eqs. (7) and (8) degenerate to

μT cr
1 = φ1

z
± 1

z
arccos

(
1 + z2 + R2

1 − R2
2

2R1

√
1 + z2

)

− 1

z
arctan(z) + 2pπ

z
,

μT cr
2 = φ2

z
± 1

z
arccos

(
1 + z2 − R2

1 + R2
2

2R2

√
1 + z2

)

− 1

z
arctan(z) + 2kπ

z
. (14)

Equation (14) gives a family of solutions for different values
of z, p, and k. For a system with single time delay (i.e., γ2 = 0),
the stability analysis has been carried out in Ref. [22]. Our
main contribution here is to use Eq. (14) for investigating a
potential change in the stability of this fixed point which may
be caused by an additional time delay (i.e., T2). Since Eq. (14) is
z dependent, only the minimum values of μT cr

1 and μT cr
2 are of

interest as they give the effective boundary curves separating
the stable regions from the unstable ones. These minimum
values are found for min{μT cr

1 } � 0 and min{μT cr
2 } � 0:

μT1 < min
{
μT cr

1

}
,

(15)
μT2 < min

{
μT cr

2

}
.

Figure 1 depicts the bifurcation lines separating the stable
regions from the unstable ones for different values of Rj .
No-colored regions correspond to that in which the generated

FIG. 1. Necessary and sufficient conditions for asymptotic sta-
bility of the nontrivial solution using Eq. (15). The white regions for
which (γ1 + γ2) > 1 are those in which the microwave amplitudes are
asymptotically stable: results for (a) T1 and (b) T2. The color scale
indicates μT1 = min{μT cr

1 } and μT2 = min{μT cr
2 }.
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microwaves are unconditionally stable independent of the
time-delay lengths, while the color scale indicates the min-
imum values of μT1 and μT2 above which the time-delay
modulated microwaves are generated. Compared to the bi-
furcation line shown in Ref. [22] for single time delay, our
results show that the unconditional stability region does not
significantly change although the presence of an additional
time delay. The latter can even slightly enlarge it. Through
numerical simulations of Eq. (9) (not shown here), we have
evidenced a good agreement between analytical and numerical
predictions of such stability regions.

For dual-loop OEOs with resonator, an optical resonator
with a high quality factor is inserted in the delay loop as well
in order to filter out the spurious ring-cavity peaks arising in
the radio-frequency spectrum. In such a scheme, the microwave
frequency is selected by the resonator instead of the rf filter as
in the case of OEOs without resonator. The relevant variables to
describe pure microwaves are the slowly varying amplitudes of
the complex electric field Gn(t) attached to different resonator
modes and the microwave amplitudeA(t). For resonator-based
OEOs with single time-delay loop, the differential equation
to describe the dynamics of the slowly varying complex
amplitude has been formulated [22,31,32]. In this work, this
model is modified such as to account for the second delay loop.
One obtains

Ġn = −(τ−1 + iσ )Gn + γn(φ)Jn(A)einϕ, (16)

A(t) = 2
+∞∑

n=−∞

(
β1Gn+1,T1G∗

n,T1
eiv1 + β2Gn+1,T2G∗

n,T2
eiv2

)
,

(17)

with Gn,T = Gn(t − T ). τ is the overall photon lifetime in the
resonator; σ = ωL − ω0 is the detuning frequency between the
laser frequency ωL and the central frequency of the pumped
mode ω0; βj (j = 1,2) is the optoelectronic gain in the path
j when the effect of the resonator is not taken into account;
vj represents the overall microwave round-trip phase shift
accumulated in the path j, γn(φ) is the effective gain for the
mode n, φ being the static phase of the nonlinear element
used (typically a MZM). To work properly and also to achieve
low phase noise performance, the laser frequency ωL must be
tuned and locked to the central frequency ω0 of the pumped
mode of the WGMR [32,33]. Typically, this is turned such
that σ � τ−1. In our previous work on single delay OEO with
resonator, we have shown that the stability of the system does
not change when σ � τ−1 [22]. Since this condition should be
satisfied even for dual-delay OEOs with resonator, the stability
analysis of the fixed points can be ascertained assuming σ ≈ 0.
Hence the nontrivial steady state of Eq. (17) is also given by
Eq. (12) with γj = (4βjτ

2| sin(2φ)|)/(τeτd (1 + σ 2τ 2)), and its
linear stability is determined by Eq. (13) with μ = τ−1, Rj =
γj [J0(2Ast) − J2(2Ast)] [22]. The calculation details for ob-
taining such characteristic equation are given in the Appendix.
It is evident that, despite the different structure of the equations
describing the dynamical features of the two subclasses of
OEOs, their stability analysis can be studied using the same
Eq. (13). Hence the bifurcation lines separating the stable and
the unstable regions are also given by Eq. (14) and the results
obtained from these formulas are those in Fig. 1.

B. Stability of coupled oscillators with two time delays

In a network of coupled oscillators, several topologies have
been proposed. In some of them, the two time delays emerge
naturally (i.e., the processing delay δ and the propagation time
T ) although most of the previous studies only have considered
the transmission time T . However, both time delays have been
found to play a role for the occurrence of the AD [4]. In other
models, the two time delays are implemented deliberately for
the control purposes [18]. In these two cases, the boundaries
delimiting the AD regions have been found by solving the
characteristic equation numerically [4,18]. Here, we illustrate
that such numerical results can be analytically obtained from
Eqs. (7) and (8). For N -diffusively delay-coupled oscillators
having the same natural frequency ω0, the model is given by
[4,24]

Żj = (1 + iω0 − |Zj |2)Zj

+ K

dj

N∑
s=1

gjs[Zs(t − δ − T ) − αZj (t − δ)], (18)

where Zj (j = 1,2, . . . ,N) is the complex amplitude of the
oscillator j ; K quantifies the strength of coupling; dj denotes
the degree of oscillator j : gjs = gsj = 1 (with s 	= j ) if
oscillators j and s are connected and gjs = gsj = 0 otherwise.
α is a factor in the coupling recently introduced in the model
for better modeling of the real situations [24]. Performing
a standard linear stability analysis of Eq. (18) around the
homogeneous steady state (HSS) solution (i.e., Zj = 0) yields
the following N characteristic equation:

λ − iω0 − 1 + αK e−λδ − Kρje
−λ(T +δ) = 0, (19)

where ρj ’s are eigenvalues of the network matrix M =
(gjs/dj )N×N which are ordered as ρ1 = 1 and ρ1 � ρ2 �
· · · � −1/(N − 1) � ρj � −1. If all the real parts of the
eigenvalues are negative, and the HSS Zj = 0 is linearly stable,
then AD occurs. It is known that the boundaries of AD island
are defined by only two extreme eigenvalues: ρ1 = 1 and ρN .
Equation (19) can be matched to Eq. (1) with Q(λ) = 1 − λ +
iω0, R1 = αK, R2 = −Kρj , T1 = δ, and T2 = T + δ. This
leads to Q1 = 1, Q2 = ω0 − ω, R1 = αK, φ1 = 0, R2 =
K|ρj |, and φ2 = π for ρj > 0 or φ2 = 0 for ρj < 0.

For T1 	= T2 	= 0 (i.e., for δ 	= 0), no theoretical prediction
has been previously reported for coupled nonlinear oscillators,
even for N = 2. Fortunately, our approach allows successful
analytical prediction of the boundary curves for the death
island regions. Using Eqs. (7) and (8), we show in Fig. 2 the
analytical predictions of such boundary curves in (T ,K) plane
considering (a) ρN = −1 and (b) ρN = −0.96 for T1 = 0 (i.e.,
δ = 0) and T1 = 0.02 (i.e., δ = 0.02) with α = 1. These values
of ρN are those of 2-coupled oscillators (N = 2) [4,24] and a
ring network of 11-coupled oscillators (N = 11), respectively
[4]. In Fig. 2(a), the AD islands are in perfect agreement
with those previously found using alternative theoretical (for
δ = 0) or numerical (for δ 	= 0) approaches [4,24]. Also, the
analytical results shown in Fig. 2(b) are in good agreement
with the numerical predictions in a ring network of N -coupled
oscillators (see Ref. [4]). The AD islands of a network of
N -coupled oscillators with two time delays can be fully
analytically predicted.
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(a)

δ = 0

δ = 0.02
Death
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T

K

(b)
δ = 0

δ = 0.02 Death

Death

0 0.1 0.2 0.3

T

FIG. 2. Destabilizing the stable homogeneous steady state in a
network of delay-coupled oscillators, Eq. (18) for (a) N = 2 (i.e.,
ρ1 = 1 and ρN = −1) and (b) N = 11 (i.e., ρ1 = 1 and ρN = −0.96)
considering α = 1. ω0 = 10 for δ = 0 (i.e., T1 = 0 and T2 = T ) and
for δ = 0.02 (i.e., T1 = 0.02 and T2 = T + 0.02).

While previous studies have focused on the cases for which
α = 1 (see Refs. [4,34–37]) or α � 1 (see Ref. [24]), we further
use Eqs. (7) and (8) to search the boundaries of AD when α

is slightly greater than 1. This case corresponds to that for
which the flow of information from the oscillator j is slightly
smaller than that to oscillator i. Figure 3 depicts the spread of
the stable HSS (AD) in the (T ,K) space for δ = 0 and δ = 0.02
considering α = 1.05. For δ = 0 (i.e., T1 = 0), it is seen that a
small variation of α above 1 leads to a significant broadening
of the AD region both for N = 2 and N > 2. Above a certain
value of K (i.e., K ≈ 20), AD always occurs for any value of
T (i.e., T2 = T ) [Fig. 3(a)]. This is not surprising as, for α > 1,
all the individual oscillators are in a nonoscillatory state in the
absence of any processing time delay. However, our results also
provide the evidence that small values of δ are able to revive
oscillations even for α > 1 [Fig. 3(b)]. In particular, AD is no
longer observed for large values of T (e.g., T = 3) for δ 	= 0.

To substantially corroborate the above analysis for α > 1,
we have performed numerical simulations of Eq. (18) for N =
2. For α = 1.05, Fig. 4 shows in color scale the values of |Z1|2
where they are constant over time after the transient for δ = 0
(a) and δ = 0.02 (b). We have considered that |Z1|2 is constant
when the difference between the extrema in the time series is
less than 10−5. The AD corresponds to zero amplitude of |Z1|2
(i.e., |Z1|2 = 0). Both for δ = 0 and δ = 0.02, it is seen that
the regions of AD are in excellent agreement with analytical
predictions in Fig. 3.

For further showing the generality of our parametric ap-
proach, we now consider coupled oscillators with two delays,
but with a different coupling topology:

Żj = (μ0 + iω0 − |Zj |2)Zj + K

dj

N∑
s=1

gjs

× [Zs(t − T1) + Zs(t − T2)] − 2KZj (t). (20)

(a)

δ = 0

δ = 0.02

Death
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0 0.1 0.2 0.3
0
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50

T

K

(b)
δ = 0

δ = 0.02

Death

Death

0 0.1 0.2 0.3

T

FIG. 3. Same as in Fig. 2 with α = 1.05.

FIG. 4. Numerical simulations of Eq. (18) for N = 2 considering
α = 1.05 for δ = 0 (a) and δ = 0.02 (b). The color scale shows the
values of |Z1|2.

This model is that of multiple-delay feedback control proposed
by Ahlborn and Parlitz [38–40]. The model has been used to
show how diffusive connections with two long-time delays
can induce the stabilization of a steady state (i.e., the origin) in
network oscillators [18]. The advantage of this control is that
the stabilization can be achieved even if the delay times are
long. For N = 2, the characteristic equation to ascertain the
stability of the origin is given by

λ − iω0 − μ0 + 2K − K(1 − ρj )[e−λT1 + e−λT2 )] = 0. (21)

The bifurcation points can be found analytically in the absence
of time delay or when only one time delay is considered.
In contrast, Eq. (21) has been solved numerically to deter-
mine the stability boundaries for two-delay feedback control
for N = 2 [18]. For this specific case, we note that the
values of ρj of interest are ρ1 = 0 and ρ2 = 2. Using our
approach, one therefore identifies the parameters of Eqs. (7)
and (8) as Q1 = 2K − μ0, Q2 = ω − ω0, R1 = R2 = K|1 −
ρj |, and φ1 = φ2 = 0 for ρ1 and φ1 = φ2 = π for ρ2. Fig-
ure 5(a) shows the marginal stability curves estimated using
formulas (7) and (8), while Fig. 5(b) shows the numerical
results obtained from direct simulations of Eq. (20) in the
parameter (T1,T2) space. Once again, an excellent agreement
between analytical and numerical results is found. This further

FIG. 5. (a) Marginal stability curves for the origin z = 0 of the
pair of oscillators using formulas (7) and (8) for ρ1 = 0 and ρ2 = 2.
The bifurcation lines surround the unstable regions. (b) Amplitudes,
i.e., |z1|2, numerically obtained by integrating Eq. (18). The parame-
ters are N = 2, μ0 = 0.0584, ω0 = 3.0470, and K = 2μ [18].
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provides evidence to the utility of Eqs. (7) and (8) for analytical
predictions of stability boundaries of coupled oscillators with
two time delays. Note that, in some systems of multiple hierar-
chical long time delays, once the fixed points are destabilized,
the spectrum can split into a pseudocontinuous part and another
finite set of exponents [41]. In such a case, the number of Hopf
bifurcation lines may become very large. But, the “first” Hopf
line is of particular importance as it describes the moment
when the whole pseudocontinuous set of eigenvalues becomes
unstable. This first Hopf bifurcation line in such cases is
obtained for large values of p and k in expressions (7) and (8).

IV. CONCLUSION

We have provided parametric expressions to determine
critical time delays (i.e., bifurcation points) above which the
stability of a given fixed point can change in nonlinear systems
with one or two time delays. The concerned nonlinear systems
are those for which the stability of their fixed points can
be analyzed by a characteristic equation corresponding to
that of scalar delay differential equations or one-component
delay feedback. These parametric expressions also can be used
for nonscalar differential equations with two delays provided
that the characteristic equation for the stability analysis can
be reduced to that of a scalar case. While such parametric
expressions have been found previously for single time-delay
nonlinear systems, our main contribution has been to extend
such a study to the case of nonlinear systems with two time
delays. The main obtained results have been applied to the
paradigmatic models of dual-loop optoelectronic oscillators
to draw parametrically the stability boundaries of stable
microwaves. They also have been applied to identify the
parameter regions of amplitude death in identical coupled
oscillators with two time delays. In each case, an excellent
agreement has been found either between the numerical and the
analytical results or with the previously numerically reported
results. Our results also have allowed for providing further
evidence that processing delay in coupled oscillators is capable
of reviving oscillations even when the individual oscillators are
in nonoscillatory states.
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APPENDIX

For studying the stability of the nontrivial fixed point in the
case of dual-loop OEOs with resonator, we introduce the small
perturbations δA and δGn satisfying A = Ast + δA and Gn =
Gst

n + δGn, where |δA| � Ast and |δGn| � Gst
n . The first-order

Taylor expansion of a perturbation of the amplitude can be
determined as

|Ast + δA| � Ast + 1
2 [δA + δA∗]. (A1)

Introducing these expressions into Eqs. (16) and (17) yields

δĠn(t) = −(τ−1 + iσ )δGn + 2√
τdτe

δEn(t), (A2)

δA(t) = 2
2∑

j=1

βj

+∞∑
n=−∞

(
Gst

n+1δG∗
n,Tj

+ δGn+1,Tj
G∗st

n

)
, (A3)

where the prime denotes the derivative of the Bessel function
with respect to its argument Ast, while

δEn(t) = 1
2γn(φ)J′

n(Ast)[δA + δA∗]. (A4)

Note that we have set the phase factor eivj = 1 because the
existence of a stationary state requires this phase factor to
be real, and equal to ±1 such that γj is real and positive.
This round-trip phase matching condition corresponds to the
necessity of a constructive interference between successive
round-trip replicas of the microwave (Barkhausen condition
for the phase). Since Gst

n = 2E st
n /(

√
τdτe(τ−1 + iσ )), Eq. (A3)

can be rewritten as

δA = 2
2∑

j=1

βj

+∞∑
n=−∞

(
T E st

n+1δG∗
n,Tj

+ T ∗δGn+1,Tj
E∗st

n

)
,

(A5)

where T = 2/(
√

τdτe(τ−1 + iσ )). Here, the index j refers to
the branch j in the feedback loop. Let us first delay Eq. (A2) in
time T1 and multiply it by 2β1T ∗E∗st

n . Second, we also delay
the same Eq. (A2) in time T2 and multiply it by 2β2T ∗E∗st

n .
Then by adding the two resulting equations and summing over
all the mode indices n, one obtains

δȦ+ = −
[

1

τ
+ iσ

]{
δA+ − R1

4

[
δAT1 + δA∗

T1

]

− R2

4

[
δAT2 + δA∗

T2

]}
,

δȦ− = −
[

1

τ
− iσ

]{
δA− − R1

4

[
δAT1 + δA∗

T1

]

− R2

4

[
δAT2 + δA∗

T2

]}
,

δȦ∗
+ = −

[
1

τ
− iσ

]{
δA∗

+ − R1

4

[
δAT1 + δA∗

T1

]

− R2

4

[
δAT2 + δA∗

T2

]}
,

δȦ∗
− = −

[
1

τ
+ iσ

]{
δA∗

− − R1

4

[
δAT1 + δA∗

T1

]

− R2

4

[
δAT2 + δA∗

T2

]}
, (A6)

where δATi
= δA(t − Ti) and δA = δA+(t) + δA−(t) with

δA+(t) = 2
2∑

j=1

βj

+∞∑
n=−∞

G∗st
n−1δGn(t − Ti), (A7)

δA−(t) = 2
2∑

j=1

βj

+∞∑
n=−∞

Gst
1−nδG∗

−n(t − Ti). (A8)

Assuming σ ≈ 0, the variational Eq. (A6) degenerates to

δȦ + c.c. = −τ−1{δA − R1δAT1 − R2δAT2

} + c.c., (A9)
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where “c.c.” denotes the complex conjugate. In order to
perform the stability analysis, we assume that the perturbation
δA is proportional to eλt , where λ ∈ C. This leads to the

characteristic equation:

λ + τ−1[1 − R1e
−λT1 − R2e

−λT2 ] = 0. (A10)
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