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This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-
dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass
chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized
modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which
are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency
shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The
case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is
also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of
the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response
transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface
mode of the first example studies, this occurs both for hardening and softening springs. The results of this study
provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically

protected wave modes through nonlinear interactions and amplitude tuning.
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I. INTRODUCTION

Wave propagation in periodic media is an active field of
research with applications in diverse areas of science and
engineering. Phononic crystals allow superior wave manip-
ulation and control compared to conventional bulk media,
since they present directional band gaps and highly anisotropic
dynamic behavior. Potential applications include vibration
control, surface acoustic wave devices, and wave steering [1].
Recently, the achievement of defect-immune and scattering-
free wave propagation using periodic media has received
significant attention. The advent of topological mechanics
[2] provides an effective framework for the pursuit of robust
wave propagation, which is protected against perturbations
and defects. Topologically protected edge wave propagation
was originally envisioned in quantum systems and it has been
quickly extended to other classical areas of physics, including
acoustic [3], photonic [4], optomechanical [5], and elastic [6,7]
media. The unique properties achieved in these media, such as
immunity to backscattering and localization in the presence
of defects and imperfections, are a result of band topology.
These properties allow for lossless propagation of information,
or waves confined to a boundary or interface. Therefore, they
may be part of a fundamentally new mechanism for wave-based
transport of information or energy.

There are two broad ways to realize topologically protected
wave propagation in elastic media. The first one uses active
components, thereby mimicking the quantum Hall effect.
Changing the parity of active devices or modulating the physi-
cal properties in time have been shown to alter the direction and
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nature of edge waves [8,9]. Examples include magnetic fields
in biological systems [10], rotating disks [11], and acoustic
circulators operating on the basis of a flow-induced bias [12].
The second way uses solely passive components and relies on
establishing analogs of the quantum spin Hall effect. These
media feature both forward- and backward-propagating edge
modes, which can be induced by an external excitation of
appropriate polarization. The concept is illustrated in several
studies by way of both numerical [6,7,13,14] and experimental
[15,16] investigations, which involve coupled pendulums [15],
plates with two scale holes [6] and resonators [7], as well
as electric circuits [16]. Numerous studies have also been
conducted on localized nonpropagating deformation modes at
the interface of two structural lattices [7,17,18]. These modes
depend on the topological properties of the bands, and in
one-dimensional (1D) lattices they are characterized by the Zak
phase as the topological invariant [19]. In 2D and 3D lattices,
several researchers have investigated the presence of floppy
modes of motion due to nontrivial topological polarization
and exploited these modes to achieve localized buckling and
directional response [20-23].

While most studies consider systems governed by linear
interactions, there is growing interest in the investigation of the
effect of nonlinearities in topological materials. Nonlinearities,
for example, enable tunable wave motion, which in turn may
lead to nonreciprocal wave propagation [24,25]. This finds
potential applications in acoustic switching [26], diodes [27],
and delay lines [28]. Nonlinear effects have been investigated
to demonstrate self-induced topological phase transitions in
the Su-Schrieffer-Heeger (SSH) model [29]. In the field of
photonics, several studies have considered topological effects
in nonlinear media. Included in these studies are solitonlike
topological states, which exist on the edges of weakly nonlinear
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photonic systems [30-32]. These solitons arise in systems
that can be described by a nonlinear Schrodinger (NLS)
equation [30-33] and coupled nonlinear SSH equations [34],
all obtained from a Kerr-like optical nonlinearity.

This work investigates the effect of nonlinearities on two
types of topologically protected localized modes in phononic
lattices. Specifically, we study the robustness and frequency
content of localized modes in 1D and 2D lattices. In the 1D lat-
tice, we illustrate the amplitude-dependent resonant behavior
of an interface mode, which can lead to its shifting into the bulk
bands. In the 2D case, the perturbation approach of [35,36] is
applied to predict the amplitude-dependent frequency of edge
modes for both hardening and softening springs. In both cases,
the predictions are verified through numerical simulations on
finite lattices excited by forces of increasing amplitude.

The outline of this paper is as follows: Sec. II presents
a discrete 1D lattice (chain) with an interface and explicit
expressions for the frequency and mode shapes of modes
localized at the interface. The corresponding tunable nonlinear
chain version is discussed in Sec. II B. Then in Sec. III we show
how the lattice response can switch from bulk to edge waves
at a fixed frequency by varying the amplitude in a 2D lattice.
The 2D designs are verified by a combination of dispersion
analysis and numerical simulations on finite lattices. Finally,
Sec. IV presents the conclusions of this study.

II. INTERFACE MODES IN A 1D LATTICE

We begin our investigations by illustrating the existence
and behavior of interface modes in a 1D spring-mass chain.
The linear case is presented first in order to briefly describe
the existence of localized modes at the interface of chains that
are characterized by distinct topological invariants, which in
this case is the Zak phase [19,37]. The analytical derivation
of the interface mode frequencies is presented in Appendix A,
and details of the topological properties of the linear chain are
provided in Appendix B. Next, the behavior of an interface
with nonlinear interactions is investigated in detail through its
representation as a simple, single degree of freedom oscillator.
This approach enables the study of the effect of nonlinearities
in relation to the existence of the interface mode as a function
of the excitation amplitude, and specifically to its tendency to
enter the bulk spectrum based on the parameters defining the
nonlinear interactions.

A. Linear chain: Analytical and numerical results

The spring-mass chain model considered is displayed in
Fig. 1. It consists of two sublattices, each with identical masses
and having alternating springs with stiffness k; and k, and of
an interface (or defect) mass connecting them. The interface
mass is connected to springs with stiffness k; on both sides.
The unit cells on the right and left of this interface are inverted
copies of each other. This discrete lattice was investigated in
[7], where the existence of two types of localized modes was
discussed.

The governing equation for the free vibration of interface
mass is

miico + ki Quco — upo — up,1) =0. (D

1
: Interface
Sub-lattice A : Sub-lattice B
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FIG. 1. Two sublattices (A and B), which are inverted copies of
each other, are joined together. The interface supports a localized
mode in the band-gap frequencies.

Similarly, the governing equations for a unit cell p of the
sublattice on the left of the interface are

mi’ia,p + k2(”a,p - ub,p) + kl(”a,p - ub,pfl) =0, (23)

mi/ib,p + k2(ub.p - ua,p) + kl(ub.p - ua,p+l) = 07 (Zb)

while for a unit cell p on the right sublattice they are

mi’ia,p + kl(”u,p - ub,p) + k2(ua,p - ub,pfl) = 0, (Sa)

ml;ib,p + kl(ub.p - ua,p) + k2(ub,p - ua,p+1) =0. (3b)

The above equations are normalized by writing the spring
constants as k; = k(1 + y) and k, = k(1 — y), with y being
a stiffness parameter and k being the mean stiffness. A nondi-
mensional time scale T = /k/mt is introduced to express the
equations in nondimensional form.

In the present work, explicit expressions for the frequency
of the localized modes at the interface are derived by using
a transfer-matrix approach. The derivations can be found in
Appendix A. These expressions allow us to identify and inves-
tigate the parameters affecting the frequency and mode shapes
in a systematic way. They also shed light on the amplitude
dependence (for y < 0) and independence (for y > 0) of the
localized modes in chains with weakly nonlinear springs. Our
theoretical predictions are verified through a combination of
frequency domain analysis and transient numerical simulations
on a finite chain with an interface.

The following are the solutions for the frequencies that
support localized solutions:

y <0:

symmetric mode,

y>0: Q=+/3++1+8y2, antisymmetric mode.
“)

Here 2 is the dimensionless frequency obtained by nor-
malizing with the reference frequency +/k/m. The detailed
derivations of these frequencies along with their associated
mode shapes are presented in Appendix A. Note that the first
and second solutions give frequencies that are localized in the
band gap between the acoustic and optical branches, while the
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FIG. 2. (a) Natural frequencies of a finite chain exhibiting inter-
face modes (red circles) in the band-gap frequencies. (b) Frequency
response function [solid (red) line] showing the interface mode within
the band gap, in agreement with analytical predictions [dotted (blue)
line]. Interface modes are absent in a regular chain with all identical
unit cells [dashed (black) line].

third frequency is above the optical branch. Furthermore, the
first and third frequencies are associated with antisymmetric
mode shapes where the unit cells on both sides of the interface
are in phase, while the second frequency is associated with a
symmetric mode shape, with the interface mass being at rest,
while the unit cells on both sides have a phase difference of 7.

We verify our analytical predictions by numerically com-
puting the modes of oscillation of a finite chain having 60 unit
cells with an interface at the center; see Fig. 1. The stiffness
parameter is set to y = 0.4. The governing equations for our
lattice may be written in matrix form as M¢q(t) + Kq(t) =
f(r). We seek the forced vibration response of the linear
chain when subjected to an external force f cos 2t. Imposing
a solution ansatz of the form g(t) = ge¢'®*", the governing
equation reduces to

(K — QZM)q = f. (3)

Figure 2(a) displays the natural frequencies €2 of this chain,
obtained by solving the eigenvalue problem that arises by

setting f = 0. Itillustrates the presence of a band gap between
the acoustic and optical modes. Furthermore, there is an
interface mode in the band gap at frequency = /2, which
matches exactly with the analytical solution of €2; for y > 0
in Eq. (A8). Analogous results are obtained for the chain
with y < 0, consistent with the analytical expressions for the
localized mode frequencies and shapes.

To illustrate the dynamic behavior of this chain, we compute
the frequency response function by imposing a displacement
up 30 = cos(€27) on the mass at the left boundary. The other end
of the chain is free and the frequency response is normalized
with the excitation amplitude, which is unity in our study. We
also consider a chain that has no interface and comprises 60
identical unit cells (regular chain), in which edge modes are
not expected. Figure 2(b) displays the displacement amplitude
of the center mass for both chains obtained by solving Eq. (5)
with appropriate displacement boundary conditions (f = 0)
over a wide frequency range. In the band-gap frequency range,
the regular chain with all identical unit cells does not support
any resonance mode. The chain with an interface mass has
a resonance mode, consistent with the analytical solution
[Eq. (A8)].

1. Reduced model for forced response

We now seek the forced vibration response of a chain com-
prised of N unit cells on each side of the interface. The interface
mass is subjected to an external forcing f at frequency 2. We
consider the antisymmetric mode that arises when y < 0, for
which we derive areduced order model when the interface mass
is subjected to the external force. As shown in Eq. (AS8), the
interface mode is antisymmetric, i.e., up o = up,—;. Since the
wave number is 77 in the band gaps and there is no propagation,
this displacement relation is valid for frequencies in the band
gap when y < 0. The relation uy = T"u, can be inverted to
get the relation uy = T Nu,. We reduce the chain to a single
degree of freedom system that governs the behavior of the
interface mass, and we obtain an expression for the effective
stiffness on the interface mass. Fixing the first and last masses
of the chain (u, y = up _n = 0), the relation ug = T Nuy
simplifies to the equation uy/Si12 = uc0/S11, where §;; are
the components of § = T~". The governing equation of the
interface mass is [2(1 4+ y) — Q*Juco — 2(1 + Y)upo = f.
Eliminating u,, o from these two relations yields the following
expression for the effective behavior of the interface mass:

[2(1 + y)(l — %) - Qz]uc,o = f. (6)

11

Explicit expressions for the terms S1; and S,; in terms of the
excitation frequency €2 and y are presented in Appendix C.
The results for the interface frequency can be further
generalized to the case of springs adjacent to the interface
different from k| through a parameter y . The springs connected
to the interface mass are changed to yk; while the stiffness
of all the other springs in the chain remains unchanged.
Figure 3(a) illustrates a schematic of this modified interface.
The governing equation for the interface mass now becomes

—Q%uco+ x(1+y)Quco — upo + up 1) = 0.
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FIG. 3. (a) Schematic of an interface having springs with mod-
ified stiffness xk;. All other spring stiffnesses remain unchanged.
(b) Variation of the interface frequency as a function of y for the
three distinct values of x listed in the legend. Dashed curves show
frequencies bounding the band gap.

Numerical analysis is performed to determine the natural
frequencies of this modified interface using a chain of 60 unit
cells by solving the eigenvalue problem [ f = 0 in Eq. (5)].
The interface mode frequency is located by examining its
corresponding mode shape. Figure 3(b) displays the interface
mode frequency for three distinct x values: 0.7, 1, and 2
over a range of stiffness parameter values y. Also shown by
dashed lines are the frequencies bounding the band gap. We
observe that only the antisymmetric mode (y < 0) frequency
shifts, while the symmetric mode (y > 0) frequency remains
unchanged. This surprising observation can be explained by
examining the mode shape of the edge mode when y > 0. For
this mode shape, the interface mass (c,0) has zero displacement
as the forces acting on its either side are equal and opposite.
Thus changing the stiffness of the spring connecting (c,0)
from both sides does not affect the dynamic behavior of this
mass. The displacements of the adjacent masses u;, o and up,
change due to the increased stiffness. However, the remaining
mode shape and the corresponding frequency do not change
with x.

B. Analysis of the nonlinear interface

Based on the above observations, we seek to achieve a
tunable response in our chain by using nonlinear springs whose
stiffness depends on the amplitude. An effect similar to the
frequency shift due to springs with stiffness x k| in the above
linear chain may be obtained by varying the excitation force
amplitude. We consider a chain identical to the above linear
chain with an interface, but we replace the two interface
springs having stiffness yk; with weakly nonlinear springs,
whose restoring force varies with relative displacement Au

as F =k Au 4+ I'(Au)®. Adding a cubic nonlinearity leads
to an amplitude-dependent frequency of the interface mode.
Viscous damping with coefficient ¢ is applied to the mass
at the interface so that a steady-state can be reached in our
numerical simulations. We show how the nonlinear chain
behaves essentially as a Duffing oscillator using a reduced
order model for the interface mass, similar to Eq. (6). Our
analytical results thus provide the opportunity to apply known
results on Duffing oscillators to the investigation of edge modes
in nonlinear regimes.

We investigate the forced vibration response of this nonlin-
ear chain subjected to an external excitation force f applied at
the interface mass. The governing equation for the mass at the
interface and its adjacent masses may be written as

miico + ctico + k1 Queo — upo — up,—1)

+ Dluteo — upo)’ + Tlueo — up—1)° = f cos(Q),
miip o + ki(upo — te0) + k2(Upo — Ua.1)

+ T (upo — teo)’ =0,
miip 1+ ki(up -1 — uco) + ka(up -1 — g, —1)

+ Ly, -1 — ue0)’ =0. )

The governing equations for all the other masses on both sides
of the interface remain the same as in the linear case [Egs. (2)
and (3)]. Again, we consider a chain with stiffness parameter
y < 0, and we derive the equivalent behavior of the interface
mass in the band-gap frequencies.

To now get an equivalent equation for the interface mass,
we need to eliminate u;, ¢ from the governing equation of the
interface mass. Let us assume an approximate solution for the
displacement of the masses in the chain to be of the form

veiQt

2

u =

M
+ € Z(wnei”gf) +c.c., ®)
n=2

with € being a bookkeeping parameter and c.c. denoting the
complex conjugate. Recall that e; and e, are the components
of the eigenvector corresponding to the localized mode in
the linear chain [Eq. (A9)]. The nonlinear force term may be
approximated as

€2

8

3
e)|wm%wam+emhx
1

&)

where h.h. denotes higher harmonics. Note that the above
approximation is valid for small displacements when the term
up,0/u. 0 can be approximated by the linear solution (z¢ = se).

We perform a harmonic balance on the linear parts of
the chain by considering only the terms of frequency S2.
The displacements in the linear parts of the chain can be
related using the transfer-matrix approach. Observe that the
structure of the chain results in exactly the same relation as
Eq. (A2) holding between (vp, p—1,Vq,p) and (Vp, p, Vg, p+1) under
the transformation y — —y . Thus, defining the corresponding
quantities S(y) = S(—y) = T~V (—y) leads to the following
relation:

5 3
C(ueo —upo)” = T 11—

S120p,0 — S11v4,1 = 0. (10)
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Imposing Eq. (8) and again performing a harmonic balance,
the equation for the displacement vy, o of the mass adjacent to
the interface mass now becomes

—Q%vp0 + (14 y)(Wp0 — ve0) + (1 — ¥)(Wpo — Va1)
3T 3
- —<1 - e—2> [ve.0|*ve0 = 0.
4 el

Eliminating v, ; from the above equation using Eq. (10), it may
be rewritten as

S
[2 —Q? (- y)g—”}vb,o

11

ar (%) 3 2
= —(1 - —) [ve,0l"ve,0 + (1 + Y)veo.  (11)

4 (4]

We may write an equation similar to Eq. (11) for the
displacement u;, _; of the mass at the left of the interface
mass and use an approximation similar to Eq. (9) to simplify
its cubic nonlinear term. Indeed, for the case y < 0, recall
that the zeroth-order solution is an antisymmetric mode and
thus v o = vp, ;. Substituting Eq. (11) and its counterpart for
up, 1 into the governing equation for the interface mass and
performing a harmonic balance again leads to the following

equation:
1
_szc,o + iQ(SUc,O + (] + V)(z - ks )/)Uc',O
8
r 1+ 2%
+ —<1 - —y) (1 - —2> lveol*veo = £, (12)
4 8 el

where ¢ =2 — Q2 — (1 — 9)S12/S11, and 8 = c/2/km is
the nondimensional damping parameter. Decomposing vy . =
vg + iv; into its real and imaginary parts leads to two equa-
tions. Squaring and summing them leads to the following
frequency amplitude response [38]:

2
[(92 —k, — %Feu2> + (69)2]u2 =/ (13

with u = |vp .| being the displacement amplitude and

1
ko= (1+ y)<2— %)

1 3
re:r(1——+’/)(1—e—2> .
g el

The above frequency amplitude response is similar to that of a
Duffing oscillator with linear stiffness k, and nonlinear force
', excited near the resonant frequency [38].

Let us first consider a chain with strain-hardening springs
(I' > 0) connected to the interface mass. The dynamic re-
sponse of the chain is investigated using the amplitude-
response predicted by the reduced order model [Eq. (13)] and
transient simulations of the full nonlinear chain, performed
using the Verlet algorithm [39]. We compare the frequency
response function predicted by the reduced order model with
numerical simulations on a finite chain. The numerical sim-
ulations are performed until the chain attains a steady state.
The damping coefficient and the linear and nonlinear stiffness

{100'

1073}

10°

1.26 1.28 1.30
Q

(b)

FIG. 4. Frequency response of the interface mass normalized by
excitation force f. (a) Both the finite chain numerical simulations
(red curve) and the analytical solution of the reduced model (black
circles) show an interface mode for small forcing amplitude f = 1.
(b) Numerical (markers) and analytical (curves) solutions for various
force amplitudes f = {1,4,10,25}. Curves shift to the right and the
chain behaves as a Duffing oscillator for frequencies near the interface
mode.

parameter values are set to 6 = 0.01, y = 0.4, and I' = 0.1,
respectively. The interface mass is subjected to an external
force f cos(Q2t). The frequency response is computed by
normalizing the displacement u. o of the interface mass by
the excitation force amplitude f as A; = u.ok/f.

Figure 4(a) displays the frequency response of a finite linear
chain (red curve) over 2 € [0, 2] along with the response
observed from simulations of the finite nonlinear chain (black
circles) for frequencies in the vicinity of the interface mode
frequency when subjected to low-amplitude excitation ( fy =
1). The linear chain response is obtained by solving the forced
vibration response at steady state using Eq. (5). Since the
excitation force amplitude is low, nonlinear effects are seen
to be negligible, and the predictions of the linear model are in
good agreement with the numerical simulations for frequencies
near the interface mode frequency.

032209-5



PAL, VILA, LEAMY, AND RUZZENE

PHYSICAL REVIEW E 97, 032209 (2018)

10 - 10 10
75} 75 75}
< 5 < 5 < 5
251 25 J 25}
0 0 0 : : :
1 1.8 1 12 14 16 18 1 1.2 14 16 18
Q Q

(b) (c)

FIG. 5. Analytical (curve) and numerical (circles) responses of a nonlinear chain excited at the interface with force amplitude f. The
responses for various excitation amplitudes (a) f = 0.001, (b) f = 0.06,and (c) f = 0.2 are normalized by f and are distinct due to nonlinearity.

Figure 4(b) displays a closeup view of the frequency
response computed from simulations of the finite nonlinear
chain (markers), along with the response given by Eq. (13),
the nonlinear reduced order model (solid curves), for various
force excitation amplitudes f = {1,4,10,25}. An excellent
agreement is obtained between them, which confirms the
validity of our reduced order model. The peak force shifts
to the right with increasing force amplitude and displays a
backbone curve. This behavior is typical of a Duffing oscillator
[38] and demonstrates the amplitude-dependent behavior of the
interface mode.

Let us now exploit the amplitude-dependent behavior to
migrate the localized mode into the bulk bands. By varying
the amplitude, the localized mode can be eliminated from
the band-gap frequencies. The damping coefficient and the
linear and nonlinear stiffness parameter values are set to
8§ =0.01, y = —-0.4, and I = —1, respectively. Notice that
strain-softening springs (I" < 0) are used for this purpose. The
interface mass in the chain is subjected to the same excitation
as in the previous strain-hardening case. Figure 5 displays
the frequency response function for the displacement of the
interface mass predicted by Eq. (13) for three levels of forcing
amplitude: (a) f = 0.006, (b) f = 0.06, and (c) f = 0.2. The
solid vertical lines depict the frequency bounds of the band
gaps, while the dashed (blue) vertical line shows the frequency
of the interface mode when the chain is linear (I' = 0). The
markers denote the numerical solution obtained by solving the
transient problem of an equivalent single degree of freedom
Duffing oscillator until steady state (with stiffness parameters
ke and I',), while the solid curves denote the frequency
amplitude response of Eq. (13). The interface mode frequency
and the normalized amplitude both decrease with increasing
force amplitude, which is consistent with the behavior of a
Duffing oscillator. As the amplitude increases, the frequency
associated with the interface mode moves into the bulk bands
from the band gaps.

Having demonstrated how to shift the localized mode
frequency into the bulk bands using a reduced single degree of
freedom model, let us finally show how this shifting leads to a
reduction in the response of a finite chain. We consider a chain
of 20 unit cells with an interface mass at the center and subject

the mass at the left end to a harmonic displacement, while the
mass at the right end is free. Figure 6 displays the normalized
frequency response in the band-gap frequencies for two values
of excitation force amplitude: f = 0.001 (solid curves) and
f = 0.06 (dashed curves). Figure 6(a) displays a closeup of
the frequency response near the interface mode frequency
;. The frequency response is similar to the linear case, and
nonlinear effects are negligible for small-amplitude excitations
(f £0.001), while moderate amplitudes (f > 0.01) lead to
a reduction in the displacement amplitude by an order of
magnitude. The interface mode frequency shifts toward the
lower end of the band gap, decreasing the response at the
interface. Thus the frequency-shifting behavior is demon-
strated by first showing its analogy with a Duffing oscillator
using our reduced model and then verifying these predictions
with numerical simulations on a finite chain. In summary,
amplitude-dependent behavior and multiple stable solutions
are observed for chains with stiffness parameter y < 0. This
behavior is predicted analytically by showing the equivalence
of the edge mode with a Duffing oscillator. Furthermore, the
edge mode frequency is independent of the wave amplitude for
y > 0. This unexpected observation is explained by examining
the analytical solution of eigenmodes associated with this edge
mode.

III. TUNABLE EDGE MODES IN 2D LATTICES

We now extend the ideas presented in the previous section
to 2D lattices. We consider the 2D lattice in Pal er al. [13],
which implements a mechanical analog of the quantum spin
Hall effect and supports topologically protected edge modes.
An amplitude-dependent response is obtained by using weakly
nonlinear springs. We present a dispersion analysis of a unit
cell and of an extended unit cell computed using an asymptotic
analysis. In contrast to the interface mode in the 1D lattice, we
show the ability of the considered lattice to undergo transitions
from bulk-to-edge mode-dominated by varying the excitation
amplitude both for hardening and softening springs. Finally,
we present numerical simulations on finite lattices to illustrate
the amplitude-dependent nature of wave propagation due to
nonlinearities.
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FIG. 6. Transient response of a nonlinear chain with I' <0
excited at one end. The normalized amplitude response in the band
gaps at high excitation amplitudes (dashed red line, f = 0.06) is an
order of magnitude lower than at low amplitudes (solid black line,
f =0.001).

A. Lattice configuration

The lattice consists of two layers of a hexagonal lattice span-
ning the xy plane, and its lattice vectorsarea; = (—1/2, V3/2)
and a, = (1/2,+/3/2). Figure 7(a) displays a schematic of a
single hexagonal cell. Each node is a disk that rotates about the
z axis, perpendicular to the plane of the lattice. Two kinds of
springs—normal and chiral—connect the disks. The in-plane
springs [gray color in Fig. 7(a)] are linear and they provide a
torque k(6; — 6;) on disk i due to rotations ; and 6; of the two
nearest-neighbor disks connected to the spring. A combination
of normal [n, green color in Fig. 7(a)] and chiral [ch, red color
in Fig. 7(a)] springs connect the second nearest neighbors
on adjacent layers in our lattice. These springs are weakly
nonlinear, and the torque-rotation relations between two disks
i,j are, respectively,

]‘in = kn(9] — 61) + Gn(ej - 91')37
T = —ken(0; + 6;) — €n(0; + 6,)°.

(14a)
(14b)

Unit cell

(a) (b)

= -0.5 0 0.5 1
Kpd/m

(©)

FIG. 7. (a) A hexagonal cell of the lattice, having two layers with
normal in-plane springs and a combination of normal and reverse
springs between the two layers. (b) Finite strip with fixed boundaries.
The nodes with filled (red) circles are free, while the others are
fixed. (c) Dispersion diagram of the finite strip showing edge modes
spanning the two sets of bulk modes.

B. Dispersion analysis of linear and nonlinear lattices

Dispersion studies are conducted both for a single hexag-
onal unit cell having four degrees of freedom (two in each
layer) and for a unit cell of a strip that is periodic along
one direction, as illustrated in Fig. 7(b). Let us set u as the
vector whose components are the generalized displacement
for all the degrees of freedom in a unit cell, which in our case
would be the rotation of disks at each lattice site. In [13], the
authors show that this lattice has a band gap for bulk modes.
Furthermore, there are topologically protected edge modes
in this band gap that propagate along the boundaries of the
lattice. We seek to investigate how weak nonlinearities affect
the edge modes in our lattice. To get the dispersion relation
of a nonlinear lattice, we use a perturbation-based method to
seek corrections to the linear dispersion relation w = w(p),
with u being the two-dimensional wave vector. Based on the
method of multiple scales, the following asymptotic expansion
for the displacement components in a unit cell and frequency
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is imposed:
u=uy+ecu; + 0(62),
w = wy+ €w + 0(62).

The asymptotic procedure we follow is similar to that of
Leamy and co-workers [35,36], and its details are presented
in Appendix D.

We first present the dispersion behavior of a finite strip
of a linear lattice to illustrate the existence of localized edge
modes. Then, two kinds of nonlinear springs, namely strain
hardening and strain softening, are considered to demonstrate
the amplitude-dependent nature of these edge modes. The
equations are normalized using the time scale /k/I, with
being the rotational inertia of the disks. In nondimensional
form (with superscript k), both the normal and chiral springs
connecting adjacent layers are chosen to have a linear stiffness
component k, = ks, = 0.1, and their nonlinear components
are equal (€ = €, = €y).

1. Dispersion analysis of a strip

To illustrate the presence of edge modes in our lattice,
let us consider a finite strip of 20 unit cells as illustrated in
Fig. 7(b). The strip is periodic in the a; direction and has
a finite width in the a, direction. The nodes with red (filled
circle) markers are free to move, while the nodes with unfilled
circles and squares at either boundary are fixed nodes. A
dispersion analysis is conducted on this finite strip, which is
periodic in the a; direction, and the dashed rectangle shows
the unit cell. By imposing a traveling-wave solution of the
form u = u(k, )e' ¥ ") on the lattice, an eigenvalue problem
is obtained for each wave number «,. Note that the x axis is
oriented along the a, direction.

Figure 7(c) displays the dispersion diagram for the finite
strip under study. The wave number «; is projected onto the
x axis. There are two sets of wave modes: the first set spans
[0.78, 1.75] and the second set spans [2.03, 2.55]. These two
sets correspond to bulk modes, and the two modes between
them are edge modes. The eigenvectors corresponding to these
frequencies are localized at the edges. We remark here on
the choice of boundary conditions as shown in Fig. 7(b).
Note that allowing the nodes with square markers to be
free results in a different type of edge mode than the one
illustrated in Fig. 7(b). The work in [13] presented the band
diagrams when the nodes having square markers were not
fixed. There are two overlapping bands at each point in the
dispersion diagrams in Fig. 7(c). The lattice supports two
traveling waves at the edge of the lattice: one in the clockwise
and the other in the counterclockwise direction. Furthermore,
these modes are topologically protected: they span the entire
band gaps and they cannot be localized by small disorders or
perturbations [40].

2. Strain hardening springs

Having demonstrated the presence of edge modes in a
linear lattice, we now investigate the effect of introducing
nonlinear interactions between the interlayer springs. Figure 8
displays the dispersion diagram when the nonlinearity is of
the strain-hardening type (¢ = 0.05) with amplitude of the

WA
AL

1.6

(b)

FIG. 8. Dispersion diagram for both linear (¢ = 0) and strain-
hardening springs € = 0.05 over (a) a strip and (b) the irreducible
Brillouin zone. The edge modes traverse the band gaps and the optical
band shifts upward near point B in the nonlinear lattice.

waves Ay = 0.6. The first-order correction is computed using
an asymptotic analysis [Eq. (D8) in Appendix D] at each
two-dimensional wave vector u for both a unit cell in the bulk
and a unit cell comprised of a finite strip. Figure 8(a) displays
the bulk dispersion surface projected onto the x axis along with
the edge modes computed from the finite strip. A comparison
with the dispersion diagram of the finite strip in the linear case
shows that the lower band remains unchanged while the lower
surface of the upper band shifts upward.

Figure 8(b) displays the dispersion curves along the bound-
ary of the irreducible Brillouin zone for both the linear
(dashed curves) and nonlinear (solid curves) lattices. Since the
hexagonal lattice has a sixfold symmetry, the IBZ is a triangle
and we choose it to span the points O : (0,0), A : (0,7), and
B : (27 /3,27 /3) in the reciprocal-lattice space. The presence
of interplanar springs leads to a band gap for bulk waves, as
shown in Fig. 8(b), and the existence of edge waves in this
band gap. We see that the lower band does not get significantly
affected due to the nonlinear springs. However, the upper band
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in the vicinity of point B gets shifted upward and the band gap
widens as a consequence. Note that the edge modes continue
to span the band gaps, and they do not localize (group velocity
is nonzero) in the presence of nonlinear interactions.

We now elaborate how the above observations can be
exploited to achieve amplitude-dependent edge waves using
our nonlinear lattices. At small amplitudes, the dynamic
response is similar to a lattice with no nonlinear springs,
and it corresponds to the ¢ =0 case in Fig. 8. However,
as the amplitude increases, nonlinear effects come into play
and the behavior resembles the nonlinear case, illustrated by
€ = 0.05 in Fig. 8. Thus exciting at a frequency at the tip
of the lower surface of the Brillouin zone near point B will
result in amplitude-dependent edge waves. At small ampli-
tudes there will be no edge waves, while at high amplitudes
the band widens and one-way edge waves propagate in the
lattice.

3. Strain-softening springs

We now turn attention to the study of nonlinear springs of
the strain-softening type having € < 0. A similar dispersion
analysis is conducted on both a strip and a single unit cell with
nonlinear stiffness parameter ¢ = —0.5 and wave amplitude
Ao = 0.6. Figure 9(a) displays the dispersion surface of both
the bulk and edge modes projected onto the x axis. Similar to
the earlier case with € > 0, the lower band does not change
significantly due to the nonlinear springs. The lower surface of
the upper band shifts downward, which is consistent with the
behavior for the € > 0 case, since the first-order correction
€w; is linearly proportional to €. Figure 9(b) displays the
dispersion curves along the boundary of the IBZ. In contrast
with the strain-hardening case, here the dispersion curves shift
downward near point B while remaining relatively unaltered
away from this point. Similar to the strain-hardening case,
these softening springs can be exploited to get an amplitude-
dependent response of the lattice. The lattice behavior can be
changed from edge waves at low amplitudes to bulk waves at
high amplitudes. We thus illustrated the amplitude-dependent
nature of the dispersion curves for the strain-softening nonlin-
ear springs.

C. Numerical simulations of wave propagation

We now conduct numerical simulations to demonstrate
the effect of nonlinear interactions on wave propagation in
a finite lattice. The numerical results are interpreted using
the dispersion diagrams for linear and nonlinear lattices
that were presented earlier in Sec. IIIB. All our numerical
simulations are conducted on a lattice of 30 x 30 unit cells
using a fourth-order Runge-Kutta explicit time integration
scheme. The boundary nodes of our lattice are fixed similar
to that illustrated in Fig. 7(b). The lattice is subjected to
a point excitation at a specific frequency on a boundary
node lying at the center of the lower left boundary. Two
examples are presented: the first one demonstrates edge wave
propagation at high amplitudes, while the second example
demonstrates the decaying of edge waves with increasing
amplitude.
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FIG. 9. Dispersion diagram for lattices with linear (¢ = 0) and
strain-softening springs € = —0.05 over (a) a strip and (b) the
irreducible Brillouin zone. The edge modes traverse the band gaps
and the optical band shifts downward near point B in the nonlinear
lattice.

1. High-amplitude edge waves

In this example, the lattice is comprised of nonlinear springs
of the strain-hardening type with € = 0.05. Two numerical
simulations are conducted: one at low (A = 6 x 107%) and the
other at high (A = 6 x 107") force excitation amplitudes. A
boundary lattice site is subjected to a harmonic excitation at
frequency 2 = 2.045. The dispersion analysis in Fig. 8 shows
that this frequency lies in the lower part of the top band and
the linear lattice supports bulk waves and no edge waves. As
discussed earlier in Sec. III B 2, at higher amplitudes, the band
gap widens and edge modes exist at higher frequencies. The
top and bottom layers are subject to the excitation

Fiop = Acoswt, Fyoom = Asinwt. (15)

Figure 10 displays the angular displacement of the disks
at the various nodes. The color scale ranges for the two
cases are [0,8 x 1073] and [0,8 x 10~!]. The colors show
the magnitude (I, norm) of the displacement vector at each
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FIG. 10. Displacement magnitude at each lattice site at two
time instants (v = 200,400) for a lattice with € = 0.05 subjected to
two force amplitudes (a,b) A =6 x 1073, (c,d) A =6 x 107!, and
excitation frequency 2 = 2.045. The lattice supports bulk and edge
waves at low and high amplitudes, respectively.

lattice site. Note that there are two disks (one at the top and
one at the bottom layer) at each lattice site, and the displace-
ment vector thus has two components denoting the angular
displacement of these two disks. Figures 10(a) and 10(b)
display the displacement magnitude for the low-amplitude
excitation at times v = 200 and 400. It is observed that the
wave propagation is isotropic from the point of excitation into
the lattice, and this behavior is consistent with the predictions
of the dispersion analysis as there are no edge waves at
the excitation frequency. Figures 10(c) and 10(d) displays
the displacement magnitude for high-amplitude excitation
at the same time instants. Edge waves are observed to propagate
in the counterclockwise direction, which is indeed consistent
with the behavior predicted in the dispersion analysis in
Sec. III B 2.

2. Bulk waves at high amplitudes

Our next example involves strain-softening springs having
€ < 0. Again, the lattice is subjected to a point excitation at
a frequency 2 = 2.02 with the top and bottom disks at the

53 % 1

() (d)

FIG. 11. Displacement magnitude at each lattice site at two time
instants (tr = 400,1000) for a lattice with € = 0.05 subjected to
two force amplitudes (a,b) A =2 x 1073, (c,d) A =2 x 107!, and
excitation frequency 2 = 2.02. The lattice supports edge waves at low
amplitudes and bulk waves at high amplitudes. The color scale has a
range (a,b) [2.4 x 1073, 3 x 1073] and (c,d) [2.4 x 107!, 3 x 107'].

node having a phase difference of 7 /2 as in Eq. (15). At
this frequency, there are no bulk modes in the linear lattice,
and edge waves traverse through the lattice. As discussed in
Sec. III B 3, nonlinear interactions lead to shortening of the
band gap, and edge modes do not propagate at high amplitudes.

Figures 11(a) and 11(b) display the displacement magnitude
in the lattice for the low-amplitude excitation case with A =
2 x 1072 at two time instants T = 400 and 1000. The color
scale has a maximum value 3 x 103 and a minimum value
1.6 x 1073, We observe edge waves propagating through the
lattice in the clockwise direction. Figures 11(c) and 11(d)
display the magnitude of the displacement vector at each
lattice site for the high-amplitude force excitation case with
A =2.0x 107" at the same time instants. The color scale
has a maximum value 3 x 107! It is observed that energy
propagates into the lattice, and the amount of energy concen-
trated on the edge is lower than in the low-amplitude case.
However, note that the waves propagate into the interior only
until the amplitude of the edge wave is higher than the threshold
required to have bulk modes. Note that as the amplitude
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keeps decreasing, it will reach a value where edge modes
are supported. Edge waves at or below this threshold keep
propagating, and the lattice could be seen as a low-amplitude
pass filter for edge waves at this particular excitation frequency.
Thus we observe that, in contrast to the low-amplitude case,
there is no wave propagation along the boundary. There are
compact zones of energy localization where the displacement
is high. These zones are attributed to energy localization as a
consequence of multiple reflections of bulk waves. Indeed, as
the dynamics evolves, these localized zones arise at different
parts of the lattice boundary. Note that these are not compactly
supported solitons that traverse a boundary. In conclusion,
introducing nonlinearity provides a means to achieve tunability
by varying the wave amplitude. Thus for a given frequency, we
illustrated binary behavior: edge waves at one amplitude and
bulk waves at another amplitude, by careful design of the lattice
properties and loading conditions.

IV. CONCLUSIONS

This work illustrates how localized modes can be induced at
the interface or boundaries of both one- and two-dimensional
lattices. In the one-dimensional case, we consider a lattice of
point masses connected by alternating springs. We showed that
a mode exists in the band-gap frequencies and it is localized
at the interface between two lattices that are inverted copies of
each other. We derive explicit expressions for the frequencies
of the localized modes for various interface types and their
associated mode shapes. This localized interface mode can be
made tunable by using weakly nonlinear springs at the interface
of the two masses. We showed that the behavior of the interface
mass is equivalent to a Duffing oscillator in the vicinity of this
interface mode frequency, and we demonstrated how varying
the force amplitude can lead to a frequency shift of the interface
mode. By choosing the parameters carefully, one can control
the existence of interface modes and move them from the
band gap to the bulk bands by varying the force excitation
amplitude.

In the second part, we investigate tunability using weakly
nonlinear springs in a lattice that supports edge waves. We
show how the dynamic response of the lattice can be varied
from bulk to edge waves at a fixed frequency by varying
the excitation amplitude. We use an asymptotic analysis to
derive dispersion relations for both strain-hardening and strain-
softening springs, and we demonstrate that the optical band can
be shifted upward or downward. Finally, numerical simulations
are presented to exemplify the theoretical predictions and
illustrate the tunable nature of our lattices. This work illustrates
how exploiting nonlinearities can lead to tunable lattices and
mechanical structures supporting localized modes at interfaces
and boundaries, and it opens the door for future research in
tunable engineering structures and devices.
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APPENDIX A: INTERFACE MODES

We seek the frequencies for which the above linear chain
admits a localized mode solution at the interface, and we derive
explicit expressions for their corresponding mode shapes. Let
us consider a finite lattice having N unit cells on either side of
the interface, with N large enough such that boundary effects
are negligible in the dynamics of the interface mass. The unit
cells are indexed from p = —N to N so that the interface
mass lies in the unit cell p = 0. To investigate the dynamics of
this lattice in the band-gap frequencies, we impose a solution
of the form u () = u,e'*" for all the lattice sites, where p
denotes the cell index. A similar solution is also imposed on the
interface mass. To relate the displacements in two neighboring
cells p — 1 and p on the right of the interface (p > 0), we
rewrite the governing equations for the masses at the lattice
sites b, and a,, as

Q2 — g, — A+ Yy, — (1 —yup p1 =0,
(Ala)

2 — My p1 — (1 =Ygy — (L + g p1 = 0.
(AlDb)

Rearranging the terms in the above equation yields a relation
between the displacements of adjacent unit cells on the right
side of the interface. In nondimensional form, this relation is
expressed using a transfer matrix T as

y+1 2-?
Ug _ y—1 1-y Uq
<Mb>p - (_% W) <Mb>p—1
_ T(%) .
Uup p—1
Using the above relation, the displacement at unit cell p = N
may be written in terms of the displacement at the interface
unitcell (p =0) asuy = TNu,. Note that the vector u, has
components #g = (Uc.0, Up0)” -

We now solve for the frequencies and corresponding mode
shapes at which this chain has localized modes. We seek
solutions that are localized at the interface and decay away from
it,i.e., [[uy|| — Oas N becomes large. The solution procedure
involves seeking eigensolutions of the transfer matrix 7' that
satisfy the decay condition. For a mode localized at the inter-
face, the displacement should decay away from the interface,
ie., [luy]l > 0 as N — oo. To make further progress, we
use the following proposition: Let T' be diagonalizable and
let (A;,e;) be its eigenvalue-vector pairs. Then, ||T Null— 0
as N — oo with a nontrivial solution u # 0 if and only if
u is in the subspace spanned by the eigenvectors e; whose
corresponding eigenvalues satisfy |A;| < 1. To prove this state-
ment, let us denote by f; the subset of eigenvectors of T with
associated eigenvalues |A;| < I, and by g; the eigenvectors
with [A;| > 1. If u = Y o; f;, then TVu = ;1N f; and
hence its norm goes to zero as N increases. We prove the
“only if” part by contradiction. Assume that  is not in the f;
subspace as required. We may writeu =, o f; + >, B, 8-
Then TVu =3, ;0" f; + 3, Bj*;" g;. Since there is a

(A2)
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nonzero B; by assumption, the norm of this vector does not
converge to 0 as N — oo, which completes the proof.

Note that the product of the eigenvalues of the transfer ma-
trix T is unity since det(T') = 1. In the band-gap frequencies,
the eigenvalues of T are real and distinct, hence exactly one
eigenvalue satisfies |1;| < 1. The eigenvector corresponding
to this eigenvalue is

_ 22— 221 + )
T\@ -4y /DR 2 —47])
(A3)

The proposition above implies that a localized mode arises
if the displacement u is a scalar multiple by the eigenvector e,
i.e.,e = su, with s being a scaling factorand uy = (.0, Up0)
having the displacement components of the unit cell at the
interface. Let us now derive an expression for uy from the
governing equation of the interface mass. It may be rewritten
as

92
21— ——— Juco = —1)- A4
< 2 _H/))M 0 = (Up,o + up—1) (A4)
Since the localized mode is nonpropagating and the lattices
on either side of the interface mass are identical, symmetry
conditions lead to the following relation between the masses
adjacent to the interface mass:

(AS)
The above condition may be rewritten as u; | = e*%u, .
Substituting this into Eq. (A4), the displacement uy may be

written as
e cos
uy = 1 _ Q2 .
2(14+y)

Note that the chain has band gaps in the frequency ranges
Q € [V2(1 — |y]),+/2(1 + |y])] and > 2; see Appendix B
for details. Hence, the argument of the square root in Eq. (A3)
is positive when Q is in the band-gap frequencies and the
components of e are real. The condition e = cu implies 6 =
nmw/2,n € Z and €% cos® € {0,1}. Applying this condition
(e1/uco = ex/upp = c) to the two cases separately allows
us to solve for the frequencies £2; of the localized modes.
0 =m/2leadsto Q2 = ﬁ, while 6 = 0 leads to the following
equation:

[Q2 —2(1 + Q% — 2(1 — PR — 4) = 492Q%. (A7)

lupol = |up,—1].

(A6)

Note that 8 = 0 implies uj o = up,;. From the transfer-matrix
expression, we note that the mode shape is indeed antisym-
metric about the interface mass. In contrast, 0 = 7 /2 leads
to up o = —up,—1 and u.o = 0. In this case, the mode shape
is symmetric about the interface mass. Equation (A7) leads
to the following expressions for the frequencies that support
localized solutions:

y<0: Q=+/3—1+438y2

y>0: Q=42

y>0: Q=+/3+1+38y2

antisymmetric mode,

symmetric mode, (A8)

antisymmetric mode.

1

1 1

Up j-1 { Ua, Up,j :

ke, k, i_ mok "
Unit cell §

FIG. 12. Unit cell of an infinite spring mass chain having springs
of alternating stiffness k; and k.

Substituting the frequencies 2 into the eigenvectors in
Eq. (A3), taking appropriate signs under the square root, and
checking the condition e = cu( show that the first solution is
valid when y < 0 and the other two solutions are valid when
y > 0. The displacement components of the interface unit cell
for these localized modes are given by

e u
e — 1 — c,0 ,
) Up,0

from which the displacement u, of unit cell p can be obtained
by using the relation u, = T"u,.

(A9)

APPENDIX B: BAND INVERSION IN A LINEAR CHAIN

We consider a spring mass chain with springs of alternating
stiffness k; and k, connecting identical masses as illustrated
in Fig. 12. The unit cell is chosen as shown by the dashed
box in Fig. 12. To normalize the governing equations, we
express the spring stiffness as k; = k(1 4+ y) and ky = k(1 —
y). Introducing the nondimensional time scale t = t+/k/m,
the governing equations for the masses in a unit cell may be
expressed in nondimensional form as

laj+2us;—(+yup;— (1 —yupj1=0,
ipj +2upj — (1 +Yua; — (1 —yug j11 =0.

We first study the dynamic behavior of the lattice using
a dispersion analysis. Imposing a plane-wave solution of
the form u; = (ug j,up ;) = A(u)e' ™1, where Q is the
frequency and p is the nondimensional wave number, leads
to the following eigenvalue problem:

2-° —(1+y) = (L =y ™\ (A,
—(I4+y) = (1 —ye" 2-@° Ap

A,
=Q? ( A;,)' (B1)

The eigenvalues lead to two branches with frequencies

Q= /24 /24 2y2 + 2(1 — y)cos i, with the minus and
plus signs for the acoustic and optical bands, respectively.
The lattice has a band gap over the frequency range 2 €
(V2(1 =y D21+ [yD).

Figure 13(a) displays the dispersion diagrams for stiffness
parameters y = 0 (green dotted curves) and y = 0.4 (black
solid curves). Figure 13(b) displays the frequencies bounding
the band gap between the acoustic and optical branches as
the stiffness parameter y varies. Note that these bounding
frequencies are at the wave number u = 7. The frequency
on the dashed (red) curve has an eigenvector (A,,Ap) =
(1/+/2, 1/4/2)T while that on the solid (blue) curve has
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FIG. 13. (a) Dispersion relations for lattices with y = 0 (dotted) and y = —0.5 (solid). (b) Limits of the band gap showing band inversion
as y varies. Component 2 of eigenvector AP (w) as w varies from —7 to . (¢) y = —0.5 has a Zak phase 7 while (d) y = 0.5 has a zero Zak

phase.

an eigenvector (1/ V2, —1/4/2)T for all nonzero y values.
Note that the modes get inverted, i.e., the antisymmetric
(1/4/2, =1/+/2)T mode has a higher frequency than the
symmetric (1/+/2, 1/+/2)" mode as y increases beyond zero.
This phenomenon is called band inversion and has been previ-
ously exploited in electronic systems [40—42] and continuous
acoustic ones [19] to obtain localized modes. These modes are
localized at the interface of two lattices: one with ¥ > 0 and
the other with y < 0.

To shed additional light on the topological properties of
the eigensolutions, we examine the eigenvectors of lattices
with y > 0 and y < 0. In particular, we study how they vary
with wave number & over the first Brillouin zone. Observe
that the matrix in Eq. (B1) gives the same eigenvalues under
the transformation y — —y but the eigenvectors are different.
Indeed, note that the transformation y — —jy may be achieved
by simply reversing the direction of the lattice basis vector. An
alternate way is to simply translate the unit cell by one mass
to the right or left and relabel the masses appropriately. Both
these changes correspond to changes in gauge and they change
the eigenvectors, thereby changing the topology of the vector
bundle associated with the solution of the above eigenvalue
problem. We characterize the topology of this vector bundle
using the Zak phase [43] for the bands. This quantity is a
special case of the Berry phase [19,43] to characterize the band
topology in 1D periodic media. It is given for the band m by

Z= f ’ (A" () - 3, A™ (w)dk,

T

(B2)

where (A" (1) is the conjugate transpose or Hermitian of
the eigenvector A" (). For numerical calculations, we use an
equivalent discretized form of Eq. (B2) given by [19]

0% — _Im Ail In [A”(Lr) A (” + 1;1)} (B3)
- n=—N " N ! N .

The Zak phase of both the acoustic and optical bands takes
the values Z = 0 and Z = & for the lattices with y > 0 and
y < 0, respectively. Indeed, it should be noted that since the
Zak phase is not gauge-invariant [44], the choice of coordinate
reference and unit cell must remain the same for computing
this quantity.

To understand the meaning of the Zak phase, we show the
behavior of the acoustic mode eigenvector for both y > 0
and y < O lattices. For consistent representation, a gauge
is fixed such that the eigenvector has magnitude 1 and its
first component is real and positive, i.e., at zero angle in the
complex plane. The second component A(bl) of the eigenvector
is displayed in the complex plane for x varying from — to 7;
see Figs. 13(c) and 13(d). This component of the eigenvector
will form a loop as the wave number p is varied from —m to 7.
When y > 0, this eigenvector loop does not enclose the origin
and it leads to a Zak phase equal to 0. On the other hand, the
acoustic band of a lattice with y < OhasaZak phaseof Z =«
and its eigenvector loop A,(w) encloses the origin.

APPENDIX C: EFFECTIVE STIFFNESS
OF INTERFACE MASS

We consider a finite lattice with an interface where
the masses at both ends are fixed. Using the transfer-
matrix relations, we derived the following expression in
Appendix A for the equivalent stiffness of the interface
mass:

[2(1 + y)(l - &) - szz}uc,o = f.
St

where S = T~V Let us now derive an explicit expression for
the terms of the matrix S that appear in the above expression.
Let us assume that T~ ! is diagonalizable. This assumption
is verified later by examining its eigenvectors. We now use
the following result from linear algebra [45]: there exists a
unique decomposition T~! = UDU !, where D is a diagonal
matrix having the eigenvalues of T~!, and U is a matrix
whose columns are the corresponding eigenvectors of 77!,
We determine this decomposition by solving for the eigen-
vectors of T~!, which then leads to the following expression
for S:

S=T"N=UuD U~ =[U] (’\llv 0 )[U—l] (C)
- - - 0 Ay ’
2
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where

2224+ (2 -2+ Q/(Q?

— D=4+ 2= )]

Ao =

2(1 —y?)

)

2(1+7)2—2)
1

4y +Q2-Q)+Q4/ (P —H[ -4y +(2-22)]
(U] =

2(14+y)2—2%)

4y +2-0)?—Q /(P-4 -4y +(2—Q2)?]
1

Note that the term within the square root in the eigenvectors is positive for all frequencies €2 in the band gaps and thus the two

eigenvectors are distinct. These two distinct eigenvectors span the vector space R? and hence T

verifies the assertion made earlier.

APPENDIX D: ASYMPTOTIC ANALYSIS PROCEDURE

To seek the dispersion relation of the lattice, the governing
equation for a lattice unit cell j is written in matrix form as

Muj +ZKpup +fNL(ujvup) =0
p

(DD

The displacement and frequency are solved using the method
of multiple scales, having the following asymptotic expansions
for displacement # and time ¢:

_ () 0 2
uj=u; +eu; + O(e?),

t = ot = [wy+ v + O(eD)]r. (D2)

Assuming u ; is harmonic with frequency w, and substituting
the above equations into the governing equations (Newton’s
laws), yields the following equations for the various orders of
€:

dzu(o)
e Z K,uy,,=0,  (D3)
1 d’u;,) )
€ : d + ZK U p
) ©
= —2wo; M ;" Zf Uy Uy p). (D4

The solution of the above equations yields the first-order plane
waves and their amplitude-dependent dispersion relations.
The zeroth-order equation is linear and is solved using the
Floquet Bloch theory. We impose a traveling-wave solution
of the form uf,?)(r) = z,e**rel™, where 7 is the eigenvector
associated with a wave with wave vector u, x, is the spatial
location of the center of a unit cell with index p, and u(’f)) is the
vector with components having the generalized displacement
of unit cell p. Substituting this expression into the system of
governing equations for a unit cell in Eq (D3) leads to the
eigenvalue problem ) » K e”‘ trz = a)OM z for a fixed wave
vector p in the reciprocal -lattice space. Its solution yields
the dispersion surface w = w(p) of the zeroth-order linear
system. Then the zeroth-order displacement of a cell p due
to the mth wave mode, with eigenvector z,,, may be written
as
(0) _ Ag ipx, it
uy (1) = —lzm(p)e™re™ +ccl, (D5)
where c.c. denotes the complex conjugate, A, is the wave
amplitude, and z,,(¢) is the mth wave mode at the wave vector

T diagonalizable [45], which

(

1. The eigenvector z,,(x) is normalized so that the maximum
absolute value of any component is 1. Thus the maximum
displacement of any mass in the lattice is Ay.

In contrast with linear media, the dispersion behavior of
our nonlinear lattice will depend on the amplitude A of the
wave mode, and we determine the first-order correction in the
dispersion relation as a function of this amplitude. To this end,
the first-order equation is solved to get a correction due to
the nonlinear terms. Substituting Eq. (D5) into the first-order
equation (D3) leads to the following equation corresponding
to the jth wave mode:

42 (1)

M
+ Z Kpmttyim

= woa)leMu(O) i

_Zf 51(1))’ ;(r(z))+p) =

Note that the linear part of Eq. (D6) (terms on the left) is
identical to the €° order equation [Eq. (D3)]. The term F(u)
on the right-hand side is the additional forcing term in the
€!-order equation due to nonlinear effects. The component of
F along u? is identified as a secular term and it should vanish

F(p). (Do)

for the €' solution to be bounded. This condition may be written
as

F([,L)d‘t =0. (D7)

2
(u}, F(w)) = /
Substituting terms from Eq. (D6) into F', the above condition
leads to an equation for the first-order frequency correction w; .
For the jth mode, solving this equation gives

u(O)H

2w
wl(AO’M') (O)HMu(O) \/(\) Z fNLeileT-
m p

2wy, j Aol

(D8)

Note that since u? is a periodic function of time t with period
21, the nonlinear forcing function fy is also periodic in 7.
The nonlinear forces also depend on the amplitude Ag of the
zeroth-order wave mode.

We now address two technical points that ensure the
uniqueness of the above expression for w; ;. The first is when
there are repeated eigenvalues, and the second is about the
invariance of the correction w, to the scaling of eigenvectors
by e'?. A procedure is outlined to address the case of repeated
eigenvalues in a systematic way, which results in a unique
and well-defined value of the frequency correction. Let us
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consider a wave vector g at which there are p repeated
eigenvalues w( and the corresponding eigenvectors are {v; :
1 <i < p}. A linear combination of any of these p eigen-
vectors is also a valid eigenvector, and these eigenvectors
define a vector subspace. However, note that ¢; in Eq. (D8)
depends on the eigenvectors in a nonlinear way, and hence
its value will depend on the choice of eigenvectors from
this vector subspace. As an illustrative example, consider the
eigenvalues and eigenvectors of the identity I, matrix. It has a
repeated eigenvalue 1, and the corresponding eigenvectors are
nonunique. We consider two sets of eigenvectors (v{,v;) and

(wy,w>):
1 i 0 i
V) = <0>er, V) = (1)6 I,

- o (B

Solving for w; gives different values for the v; and w; sets as
¢ has a nonlinear dependence on the components. To resolve
this anomaly, we remark here that the eigenvalue correction
corresponds to waves propagating at specific prescribed am-
plitude Ay. Note that this amplitude is prescribed on distinct
eigenvectors in a mutually exclusive manner. For example, if
we prescribe the zeroth-order solution displacement on masses
(i,J), the eigenvectors (u,u,) having a common eigenvalue

should satisfy the constraint

vi(i) = aAo, v1(j) =0, @) =0, v2(j) = BAo,

(D9)

where « and $ are normalizing constants such that the max-
imum magnitude of any component is unity (i.e., ||v{|lcc =
v2]lc = D).

Extending the above observation to the general case having
p common eigenvalues with eigenvectors, we present the
following approach to get a set of transformed eigenvectors
which obey a generalized form of the constraint in Eq. (D9). For
each eigenvector u; in this set of repeated eigenvalues, we find
a corresponding transformed eigenvector v; by setting p — 1
components of #; to zero. These p — 1 components are simply
chosen to be those that have the highest magnitude. Note that if
the indices of these components coincide with those chosen for
another i distinct from this set of repeated eigenvalues, then
a different set of indices is chosen. This procedure ensures
that we are enforcing distinct components to zero to get the
orthogonal modes.

The second point about the invariance of w; ; to the specific
choice of gauge factor ¢’ is explained by noting that only
the component corresponding to €' in fy is relevant to the
computation of ¢, and the contribution of all other components
is zero due to orthogonality. Hence, ¢; depends linearly on e?,
and multiplying by u!, which has a factor e~%, ensures that
the resulting final expression is independent of 6.
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