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Exponentially decaying interaction potential of cavity solitons
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We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser
above threshold. We show that they experience an attractive force even when their distance is much larger than
their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance,
we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to
what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic
times of the laser, photon lifetime, and carrier lifetime.
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I. INTRODUCTION

It is well known that high-dimensional optical dynamics,
which arise from the competition of a large number of spatial
and/or temporal degrees of freedom, present several analogies
to hydrodynamics [1,2]. Optical vortices [3], turbulence [4],
photon flux along channels [5], and rogue waves [6–8] are just
some examples. In the subfield of localized structures, striking
similarities were shown between the trajectories of confined
self-propelled cavity solitons in a laser with saturable absorber
[9] and those of the so-called walkers, droplets bouncing over
a vessel containing the same liquid, which vibrates vertically
close to the Faraday instability threshold [10].

In this paper we add a piece to the puzzle, suggesting that
two cavity solitons in an optically driven laser interact in a way
similar to that of hydrophobic materials, i.e., with an expo-
nentially decaying interaction potential [11]. The hydrophobic
force is the unusually strong attraction (much stronger than
van der Waals force) experienced by nonpolar molecules and
surfaces in water, and it is ubiquitous in water-based systems
and in everyday life [12].

Cavity solitons (CSs) are self-confined light beams which
form in optical cavities where some particular mechanism
compensates for diffraction or dispersion [13,14]. Since one
of the main applicative interests of CSs is bitwise information
encoding (1 if the CS is present, 0 if it is absent), it is of
fundamental importance to know how they interact in order
to determine how many independent CSs can be stored in a
cavity. The existence of a critical distance above which two
CSs behave as independent entities determines the maximum
information density of a particular device. In this respect,
a further distinction can be introduced between temporal
(propagating) CSs and spatial CSs.
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Temporal CSs have attracted much interest since it was re-
alized that their frequency-domain counterparts are frequency
combs that can span large portions of an octave [15]. From
the viewpoint of information storage, it was shown that in
a fiber laser the critical temporal distance above which two
CSs no longer interact is about 40 ps, which implies that the
information storage density is 125 bits/m [16]. In those studies
the resonator is passive and it is driven by a coherent external
field. A new kind of temporal CS has been demonstrated
more recently that forms in an active resonator, a highly
multi-longitudinal-mode ring laser, again driven by a coherent
external field [17]. These CSs were named phase solitons
because they are associated with a 2π rotation of the electric
field in the Argand plane which gives them a chiral charge.
Unlike temporal CSs in fiber resonators, phase solitons display
long range interaction, which ultimately leads to the formation
of complexes with multiple chiral charge [18].

Spatial CSs have been mainly studied in semiconductor-
based devices, whose capacity is of course much more limited
because even the largest samples have a transverse size of at
most a few hundred micrometers. They were first demonstrated
in coherently driven semiconductor lasers below threshold
[19,20]. Earlier theoretical studies about interactions of CSs
have been made in the case where the nonlinear medium was a
collection of passive two-level atoms [21,22], that is, without
population inversion. The existence of two critical distances
was demonstrated, let us call them d1 and d2, such that if two
CSs are created with an initial distance smaller than d1 they
merge or annihilate, if the initial distance is larger than d2

they do not interact, and if the initial distance is in between
they repel until they reach the distance d2. Those results were
basically confirmed in a later work based on a more refined
bulk semiconductor model, with the difference that if the initial
distance is in between d1 and d2 the two CSs may either attract
or repel until the distance is equal to a third value, d∗, with d1 <

d∗ < d2. In addition, depending on the sign of the frequency
detuning between the injected field and the medium resonance,
more than one equilibrium distance may exist, related to the
presence of tails in the soliton intensity profile [23].
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Although it was later demonstrated that spatial CSs exist
also in driven semiconductor lasers, i.e., with the active
medium pumped above the laser threshold [24], no further
systematic studies of the interaction of CSs in those config-
urations were carried out. A possible reason for that is that
it became immediately evident that real devices are far from
being transversely homogeneous, especially when the medium
is pumped, and the CSs are pinned to particular points of the
transverse section (defects) [25]. Nevertheless, it is also true
that the influence of parameter gradients or material defects
can be overcome thanks to an external periodic modulation,
allowing for the creation of a regular array where CSs are
placed in well-controlled equilibrium positions [26].

In this paper we show that the interaction of CSs in a
driven laser is fundamentally different from that of a driven
passive resonator, and it rather presents striking analogies with
hydrodynamics.

II. MODEL

We study the interaction of two CSs in a vertical cavity sur-
face emitting laser (VCSEL)-type laser with incoherent pump
and coherent optical injection as schematically illustrated in
Fig. 1 [24]. The geometry of the VCSEL guarantees a broad
two-dimensional cross section, which makes soliton interac-
tion independent of the boundary conditions, and restricts the
dynamics to a single longitudinal mode, thus simplifying the
model equations.

We consider the following set of effective Maxwell-Bloch
equations [24,27]:

∂tE = σ [EI − (1 + iθ )E + P + i∇2E], (1)

∂tD = J − D − (E∗P + EP ∗)/2 + d∇2D, (2)

∂tP = ξ (D)[(1 − iα)f (D)E − P ], (3)

where E and P are the slowly varying electric field and effec-
tive material polarization, respectively, D is the carrier density,
σ is the ratio of carrier lifetime τc to photon lifetime τph, EI

is the injected field amplitude, θ is the frequency detuning
between cavity and optical injection multiplied by the photon
lifetime, α is the linewidth enhancement factor, J is the pump
(electric or optical), and d is the carrier diffusion constant.
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FIG. 1. Sketch of the VCSEL with optical injection and incoher-
ent pump, with the typical dimensions and a three-dimensional image
of the interacting solitons

Diffraction is described by the transverse Laplacian operator,
∇2, and time is scaled to τc (typically of order 1 ns), while the
spatial scale is the square root of the diffraction parameter.

The real function f (D) accounts for the nonlinearity of gain
typical of quantum wells [27]. Assuming that the nonlinearity
is quadratic we set f (D) = (1 − βD)D, with β = 0.125, a
value obtained as the best fit of the gain calculated with a mi-
croscopic model [27]. Nonlinearity implies that the threshold
current for the free running laser is different from 1 and we
have Jth = (1 − √

1 − 4β)/(2β). With our choice of β, the
threshold current is Jth = 1.17.

The complex function ξ (D) in the equation for the macro-
scopic polarization accounts for the dependence on the carrier
density of the gain linewidth and of the position of the
frequency where gain is a maximum [24].

In a laser with optical injection when the frequency of the
external field is not exactly matched to that of the solitary laser
no stable states exist as long as the amplitude y of the injected
field is smaller than a critical value (injection locking point).
The laser output is oscillatory and, in a two-dimensional system
like ours, several transverse modes can be excited. Under
those conditions the dynamical equation for the macroscopic
polarization P acts as a spectral filter, because it includes the
effect of the finite gain linewidth, and it is necessary to avoid
nonphysical short wavelength instabilities.

In this paper, however, we focus on the interaction of cavity
solitons that exist beyond the injection locking point and this
enables us to use the reduced set of equations

∂tE = σ [EI − (1 + iθ )E + (1 − iα)f (D)E + i∇2E], (4)

∂tD = J − D − f (D)|E|2 + d∇2D, (5)

which are obtained with a standard adiabatic elimination of
P [28]. In the simulations we kept fixed the parameters J =
1.2Jth, α = 4, θ = −2, d = 0.052, and EI = 1, and varied
only σ . These are typical parameters already used to model
experiments about CSs in a laser with optical injection above
threshold [24]. In particular, the chosen value of the diffusion
parameter is for a diffusion length of about 1 μm. With these
parameters a CS with a stationary background is stable, with
radius (HWHM) approximately equal to one space unit.

III. DYNAMICS OF MERGING SOLITONS

Our simulations simply consisted of switching on at the
same time two CSs at a certain initial distance r0 and seeing
what happens. We observed that even when r0 is of the order
of 10 space units, i.e., much larger than one soliton diameter,
the two CSs experience an attractive force which makes them
move toward each other and finally merge, forming a single CS.

Figure 2 shows the time evolution of CSs’ distance for
different initial values: the motion is very slow at the beginning,
especially for the larger initial distances, and extremely fast
at the end, just before merging. The fact that the interval
between two consequent merging times is approximately
constant in a logarithmic scale suggests that the merging time
depends exponentially on the initial distance. The assumption
is substantially confirmed by the plot of Fig. 3, although the
points are not perfectly aligned on a straight line.
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FIG. 2. Time evolution of solitons’ distance for different initial
values and σ = 400.

We remark that an exponential dependence of the merging
time on the initial distance has been recently observed also
for phase solitons, although in that case the final structure is
different from the initial ones, being a soliton with double chiral
charge [18].

We interpreted these data as a further manifestation of the
particle-like character of CSs. It is known that the merging time
of two masses under the gravitational potential r−1 scales as
r

3/2
0 , if r0 is the initial distance [29]. By analogy, we assumed

that a merging time which increases exponentially with the
initial distance is associated with an interaction potential which
decreases exponentially with the distance, such as

V (r) = −K2e−r/R. (6)

The potential depends on two parameters: the strength K

and the range R. Effective potentials are often introduced to
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FIG. 3. Semilogarithmic plot of the merging time of two cavity
solitons as a function of their initial distance for σ = 400. The
straight line has equation y = a + bx, with a = −3.460 ± 0.12 and
b = 1.055 ± 0.01, and it was obtained as a fit of the eight largest
initial distances, from r0 = 10 to r0 = 13.5.

describe the particle-like interaction of dissipative solitons
and in particular to find the equilibrium distance in bound
states [30–32].

Here we propose to extend the idea to the free fall motion
of one soliton toward the other. To that aim we assume that
the motion of the two CSs, regarded as particles moving in a
potential, is conservative. If the two bodies are initially at rest
at the distance r0 and we set the unknown mass of the particle
equal to 2, energy conservation implies that the velocity at
a given distance 0 � x � r0 is v(x) = −K

√
e−x/R − e−r0/R .

Incidentally, this means that the parameter K has also the
meaning of impact velocity in the limit r0 � R. From the
expression for the velocity we can calculate the time needed
to reach the distance r as

t(r) =
∫ r0

r

dx

v(x)

= 2R

K
er0/(2R) arctan

√
e(r0−r)/R − 1. (7)

It follows that the merging time tm = t(0) is

tm = 2R

K
er0/(2R) arctan

√
er0/R − 1. (8)

Even if the initial distance r0 is just a few times the interaction
range R the arctangent can be replaced by π/2 and we have a
simple approximated exponential law for the merging time:

tm,ap = π
R

K
er0/(2R). (9)

The straight line in Fig. 3 is a fit of the numerical data obtained
discarding those for which r0 < 10, in accordance with the
fact that Eq. (9) is strictly valid only in the limit of large initial
distances. The slope of the linear fit allows one to determine
with high precision the value of the R parameter as R = 0.474,
about one-half the soliton radius, showing that the potential is
actually short ranged.

If both R and K are known we can obtain the complete time
evolution of the distance by (graphically) inverting Eq. (7).
Unfortunately, the uncertainty in the intercept of the linear fit is
much larger than that of the slope and thus a precise estimation
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FIG. 4. Time evolution of solitons’ distance for σ = 400 and r0 =
10. The solid line is the numerical simulation; the dashed line is the
analytic curve given by Eq. (7) with R = 0.474 and K = 48.77.
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of the interaction strength K is not possible. In Fig. 4 the com-
parison between the numerically calculated distance and the
analytic curve for the initial distance r0 = 10 is made assuming
K = 48.77, which corresponds to the intercept a = −3.382,
a value compatible with the uncertainty of the fit, chosen in
such a way that the duration of the motion is the same for
both curves. The analytic curve reproduces well the exact time
dependence of the distance; the larger deviations are observed
in the central stage of the motion, but they remain smaller
than 3%. For instance, at t = 700 the distance in the numerical
simulation is r = 9.493 and the theoretical one is r = 9.235.

IV. DEPENDENCE OF THE MERGING TIME ON PHOTON
AND CARRIER LIFETIMES

In the above simulations we kept fixed the decay rate
σ = τc/τph = 400, which amounts to assuming that photons
are 400 times faster than carriers, a typical value for a
semiconductor microresonator. In order to determine if and
how that ratio influences the interaction strength we made other
simulations with σ = 40, 4, and 1, which would correspond to
progressively longer (external) resonators. Since the results for
σ = 40 differ very little from those with σ = 400, we focused
on the two sets of simulations with the smaller σ . In Fig. 5 we
display together the three fits of the merging time for σ = 400,
4, and 1. The slope is the same for all three; we only observe an
upward shift of the three lines for decreasing σ , which means
that the merging time increases with the photon lifetime. We
conclude that the range R of the interaction potential, which is
related to the slope, is independent ofσ , whereas the interaction
strength K decreases with σ . However, it is not reasonable to
assume a particular functional dependence of K on σ because,
as mentioned above, the uncertainty of the values of K given
by the fit is too large.

Finally, in Fig. 6 we show how the merging times for
different initial distances depend on σ−1. The dependence is
clearly linear, and we found that in general we can write

tm(r0) = f (r0)

(
1 + η

σ

)
. (10)
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FIG. 5. Semilogarithmic plot of the merging time of two cavity
solitons as a function of their initial distance for different values of
the relative decay rate σ .
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FIG. 6. Merging time of two cavity solitons as a function of the
inverse of the relative decay rate σ for different values of the initial
distance r0.

The function f (r0) represents the limit value of the merging
time for photon lifetime approaching zero and it can be
estimated as f (r0) = 0.0321e1.053r0 . A comparison with Eq. (9)
shows that R � 0.474, as before, and K � 46.4. The latter is
the maximum value of the interaction strength and also the
maximum possible impact velocity. Assuming that one space
unit is 4 μm and one time unit is 1 ns, this amounts to a
maximum impact velocity of about 200 μm/ns = 200 km/s, at
least one order of magnitude larger than the average velocities
measured for a CS set in motion by a phase gradient [33].

The parameter η turns out to be independent of r0, because
for the four lines considered we got η = 1.7 ± 0.008. Since
time t is the physical time τ scaled to τc and σ = τc/τph we
have for the physical merging time

τm(r0) = f (r0)(τc + 1.7τph). (11)

V. CONCLUSIONS

In conclusion, we have demonstrated that in an optically
injected VCSEL above threshold cavity solitons experience
an attractive force even at distances much larger than their
diameter. Due to that attraction the solitons move toward each
other with increasing velocity and finally merge. The merging
time with good approximation depends exponentially on the
initial distance.

We interpreted the above results as the conservative motion
of two particles subject to an exponentially decaying potential,
similar to that experienced by hydrophobic materials in water.
This is again in contrast with the overdamped dynamics of
cavity solitons in passive resonators, where it was shown that
the interaction of two nearby solitons causes a non-Newtonian
motion where the velocity, rather than the acceleration, is
proportional to the perturbation produced by one soliton on
the other [32].

The physical explanation that can be found in the literature
for the interaction of solitons is that a force acts on each soliton
due to the presence of its mate. In simple models where the
dynamics is governed by a single equation for the electric field,
a perturbative approach is possible which allows one to derive
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analytical expressions for the interaction potential. Such sim-
ple models include the nonlinear Schrödinger equation [30],
the parametrically driven Ginzburg-Landau equation [31], and
the Maxwell equation for a driven resonator containing a
nonlinear absorber [32].

Our system is intrinsically more complex. Since we are con-
sidering a class-B laser with optical injection, the model must
include also an equation for the dynamics of the gain, and this
prevents us from performing an analytical study of the same
kind as those reported above. Hence, we can only infer from the
dynamics what is a possible form of the interaction potential.

The results show that the interaction of solitons in a class-
B laser is certainly mediated by the gain medium, since the
merging time depends on the carrier recombination time as
well as the photon lifetime.

Our findings contrast with those reported in passive res-
onators, where it was shown that two cavity solitons which are
initially set sufficiently apart from each other never merge.

An explanation for the different behavior is that in passive
resonators cavity solitons are characterized by diffractive tails
in their intensity profiles, with an alternation of maxima and
minima. Therefore, the interaction potential of two distant

solitons is also oscillatory in space and several equilibria
positions exist in correspondence with the minima. In the active
case, instead, the cavity solitons do not present any oscillating
tail, and this makes reasonable our choice of a monotonic
potential. The different shapes of the intensity profiles in
the two cases can be associated with the different shapes of
the carrier density profiles, which present a bump and a dip,
respectively, in the passive and active cases.

Phase solitons with the same chiral charge in a longitudi-
nally extended driven semiconductor laser were also shown to
experience an attractive force [18] which makes them collide
and produce a single soliton after a merging time which
increases exponentially with the initial distance. An important
difference, however, is that the final soliton differs from the
initial ones because it possesses a double chiral charge; i.e.,
the total charge is conserved.
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