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We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally
coupled oscillators. To understand the complex interaction between these two couplings we introduce a control
parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In
particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition
route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling
in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped
into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network
of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct
coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also
observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase
in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary
state, synchronized state, and incoherent oscillation death state.
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I. INTRODUCTION

A network of coupled nonlinear dynamical systems man-
ifests itself into a plethora of intriguing collective dynamical
behaviors, such as clusters, pattern formation, synchronization,
and so on [1]. Among them, oscillation quenching is one
of the intriguing phenomena observed in various physical,
chemical, and biological systems [2]. The phenomenon of
quenching can be further distinguished as (i) amplitude death
(AD) and (ii) oscillation death (OD). AD is the stabilization of
already existing homogeneous steady state (HSS), which was
initially identified due to a large parameter mismatch [3,4],
but later observed in identical systems with meanfield diffusive
interaction [5] and time delayed coupling [6,7]. In the OD state,
the oscillators in the network cease their oscillations under the
coupling and populate in at least two inhomogeneous steady
states (IHSS). Oscillation death was also initially observed
due to parameter mismatch in coupled systems [8]. Later,
the phenomenon of quenching of oscillations was shown
to emerge even in identical oscillators with time-delayed
interactions [9,10] and eventually realized in a variety of
couplings, such as dynamic coupling [11], conjugate coupling
[12], environmental coupling [13] and in repulsive mean field
interactions [14,15]. OD state has also been experimentally
observed in chemical oscillators [16], chemical droplets [17],
thermokinetic oscillators [18], and electronic circuits [19].
Multicluster OD state was reported recently in an ensemble
of globally coupled Josephson junctions [20].

Chimera state, which corresponds to the coexistence of
coherent and incoherent domains of oscillations in an identical
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network, is another emerging phenomenon that is being widely
reported both theoretically and experimentally in the recent
literature [21–24]. In the recent past, much attention has been
paid toward understanding the onset of such chimera states
[25–28]. Initially, such states were reported under nonlocal
coupling [21,22,24,29], eventually realized even in global
coupling [30–32], and in nearest-neighbor couplings [33–36],
as chimera states were shown to share strong resemblance to
(and can reveal underlying dynamical mechanisms in) many
real-world phenomena, such as unihemispheric sleep (i.e.,
ability of some mammals and birds sleeping with one half of
the brain while the other half remains awake) [37], epileptic
seizure [38], neuronal bump states [39,40], power grids [41],
and social systems [42]. Despite the existence of substantial
reports on the OD and the chimera states, both these states were
reported as separate dynamical entities until recently [43–47].

In this article, we will unravel the emergence of the
fascinating phenomenon of chimera death state, which is char-
acterized by the combined features of chimera and oscillation
death state. In the chimera death state, the oscillators in the
network segregate into two coexisting domains, wherein one
domain neighboring nodes occupy the same branch of the
inhomogeneous steady state (spatially coherent OD), while in
the other domain neighboring nodes are randomly distributed
among the different branches of the inhomogeneous steady
state (spatially incoherent OD). The interconnection between
the chimera and the oscillation death states was reported by
Zakharova et al. [43] using a symmetry breaking nonlocal
coupling, where the transition from amplitude chimera to
chimera death via in-phase synchronized state was reported
[43–45]. Recently, distinct types of chimera death states were
also reported by Premalatha et al. [46]. It was shown that
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the presence of nonisochronicity parameter leads to structural
changes in the chimera death region giving rise to the existence
of different types of chimera death states such as multichimera
death state, type-I periodic chimera death (PCD-I) state and
type-II periodic chimera death (PCD-II) state [46,47].

In this manuscript, we consider a network of nonlocally
coupled van der Pol (vdP) oscillators with combined attractive
and repulsive interactions. It is known that the counteracting
effects of attractive-repulsive couplings play a predominant
role in various chemical and biological processes. For instance,
excitation-contraction (EC) coupling was employed in cardiac
myocytes [48] and a pair of neurons in the presence of coexist-
ing excitatory (attractive) and inhibitory (repulsive) synaptic
couplings was analyzed by Yanagita et. al [49]. Further, in the
gene regulatory network, positive and negative feedback loops
are often used to perform various functions such as bistable
switches, oscillators, and excitable devices [50]. Here, we
elucidate the emergence of various complex collective patterns
due to the combined presence of attractive and repulsive cou-
plings. We begin our analysis with a minimal network of two
coupled vdP oscillators and illustrate the onset of oscillation
death as a function of the repulsive interaction. Further, we
extend our analysis to a network of coupled vdP oscillators with
nonlocal attractive-repulsive couplings and demonstrate the
emergence of distinct collective dynamics as a function of the
strength of the repulsive interaction. In particular, the existence
of chimera death preceded by a distinct collective state, namely
oscillatory cluster state (OC), will be demonstrated. The oscil-
latory cluster is characterized by the coexisting homogeneous
and inhomogeneous oscillatory states. Finally, we will estab-
lish that the chimera death state occurs via the distinct oscilla-
tory cluster state due to the interplay of the nonlocal repulsive
and attractive couplings using two-parameter phase diagrams.

The structure of the paper is organized as follows: In
Sec. II, we describe our model of a network of nonlocally
coupled van der Pol oscillators with combined attractive and
repulsive couplings. In Sec. III, we demonstrate the emergence
of oscillation death as a function of the repulsive coupling in
two coupled van der Pol oscillators. Further, we investigate
the emergence of distinct chimera death state via oscillatory
cluster state in a network of oscillators in Sec. IV, and we
discuss the global dynamical behavior in Sec. V. Finally, we
summarize our results in Sec. VI.

II. THE MODEL

We consider a simple, prototype, self-excitatory model of
van der Pol (vdP) oscillators which can be constructed exper-
imentally using electronic circuits that mimics the dynamics
of the human heart [51,52]. Now, we consider a network of
nonlocally coupled van der Pol oscillators with combined at-
tractive and repulsive interactions, whose governing equations
are represented as

ẋi = yi + ε

2P

i+P∑
j=i−P

(xj − xi),

ẏi = α
(
1 − x2

i

)
yi − xi − qε

2P

i+P∑
j=i−P

(yj − yi), (1)

where, i = 1,2,...,N . Here, N is the total number of oscillators
in the network. In Eq. (1), α is the damping parameter, which
manifests itself nearly sinusoidal oscillations for smaller values
and relaxation oscillations for larger values. The nonlocal
interaction is controlled through the coupling strength ε and
the coupling range (coupling radius) r , which is defined as
P /N , where P corresponds to the total number of neighbors in
both the directions of oscillators in the network. Particularly,
the repulsive interaction among the oscillators is controlled
through the parameter q. Initial conditions for x and y are
uniformly distributed between −1.0 to +1.0. Runge-Kutta
fourth-order integration scheme is used with a time step of
0.01 for all our simulations.

Over the decades several investigations employing van der
Pol oscillators have reported distinct dynamical behaviors
under a variety of coupling configurations. In particular, among
the variety of collective behaviors reported so far in the
literature using the coupled vdP oscillators, the phenomena
of oscillation death, cluster formation, chimera, and chimera
death will be reported in a single framework in the present
manuscript. Further, we will also show the existence of chimera
death preceded by a distinct collective state, namely oscilla-
tory cluster state (OC). Swing of synchronized state is also
observed without nonisochronicity parameter in contrast to the
one reported in the literature. Further, systematic bifurcation
analysis of different dynamical transitions has also carried out
all through the article.

III. EMERGENCE OF OSCILLATION DEATH IN TWO
COUPLED VAN DER POL OSCILLATORS

At first, we consider the limiting case of two identical
van der Pol oscillators with attractive and repulsive couplings
between them. The dynamical transitions of the two coupled
vdP oscillator will be analyzed through the bifurcation dia-
grams (using XPPAUT) depicted in Figs. 1(a) and 1(b). The
coupled system Eq. (1) is characterized by the following fixed
points: (i) trivial fixed point: (0,0,0,0) and (ii) nontrivial fixed

points: (x∗
1 ,y∗

1 , − x∗
1 , − y∗

1 ), where, x∗
1 = −

√
−1+αε+qε2

αε
and

y∗
1 = εx∗. The corresponding eigen values are

λ1,2 = 1 − ε2 ∓
√

1 + ε2d1 − 8ε3α̃

2ε
,

λ3,4 = 1 − qε2 ∓
√

1 + ε2d2 − 8ε3α̃

2ε
, (2)

where α̃ = α + qε, d1 = 6 + ε2, and d2 = 4 − 2q + q2ε2.
From an analysis of the above eigen values, we find that a pitch-
fork bifurcation (PB) occurs at the critical coupling strength

εPB = −α+
√

α2+4q

2q
. The unstable inhomogeneous steady state,

which emerges through a symmetry breaking pitchfork bifur-
cation, is stabilized via the Hopf bifurcation point εHB = 1√

q
,

which can be deduced by equating the real parts of the eigen
values to zero. Figure 1(a) is depicted for the repulsive coupling
q = 0.3 as a function of the nonlocal coupling strength ε.
For feeble values of the repulsive coupling (q), in-phase
synchronized state (represented by lines connected by filled
circles) is found to be stable in the explored range of ε due to the
predominant effect of the attractive coupling over the repulsive
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FIG. 1. (a, b) show bifurcation diagrams (using XPPAUT) for N = 2,α = 0.5. Panel (a) is plotted for q = 0.3 and (b) is for q = 0.8. Filled
circles (green) and triangles (brown) represent stable IPS and OPS states, respectively. The unfilled circles correspond to unstable OPS. The
dotted (black) line and solid (red) line depict unstable and stable nature of steady states. TR, PB, and HB denote torus, pitchfork, and Hopf
bifurcation points, respectively. PBP and SNP denote the pitch fork and saddle node bifurcations of periodic orbits. (c) Phase diagram in (q,ε)
space. R1 and R2 are the multistability regions of IPS-OD and IPS-OPS, respectively.

coupling. Dotted line connected by unfilled circles correspond
to unstable out-of-phase synchronized state. By increasing ε

from zero, an unstable inhomogeneous steady state (indicated
by broken lines) emerges via pitchfork bifurcation at εPB =
1.18 and is stabilized through a Hopf bifurcation at εHB = 1.82
thereby rendering the stable IHSS (denoted by solid red lines)
to coexist with stable IPS state in the region R1 in Fig. 1(a).

Now, we increase the strength of the repulsive coupling
to q = 0.8. The dynamical transitions as a function of the
nonlocal coupling for q = 0.8 are depicted in the bifurcation
diagram in Fig. 1(b). It is evident that for smaller values of ε, the
stable IPS oscillations (lines connected by filled circles) coexist
with unstable out-of-phase synchronized (OPS) oscillations
(lines connected by unfilled circles). Upon increasing ε further,
the trade-off between the attractive and repulsive couplings
result in the stabilization of the unstable OPS via a pitchfork
bifurcation of periodic orbit (PBP) at εPBP = 0.344 leading to
bistability between the stable IPS and stable OPS (indicated
by lines connected by filled triangles) states in the region
R2. The phase difference between the OPS state is found
to be π and hence it may also be regarded as antiphase
synchronization. By increasing the coupling strength further
results in destabilization of stable OPS states via torus (TR)
bifurcation at εTR = 0.926. Further, the saddle-node bifurca-
tion (SNP) of periodic orbits occurs at εSNP = 1.04, shown by
a pair of squares in Fig. 1(b), where the unstable quasiperiodic
and periodic oscillations collide and disappear leading to
monostable limit cycle oscillation (IPS state) in a narrow range
of ε ∈ (0.926,1.12). In addition, the unstable inhomogeneous
steady state that emerges at εPB = 0.845 is stabilized via the
Hopf bifurcation at εHB = 1.12 resulting in bistability between
IPS and OD state in the region R1. The coupled system settles
at the stable OD state for strong nonlocal coupling as evident
from Fig. 1(b).

To observe the role of the repulsive coupling in inducing
the oscillation death in the simplest network of two coupled
vdP oscillators, we have plotted the two phase diagram in (q,ε)
space in Fig. 1(c). It elucidates that the coupled system exhibits
only IPS state in the entire range of ε for lower values of the
repulsive coupling strength q. At strong coupling limits the
competition among the attractive and the repulsive interactions

leads to stable OD state. Moreover, we find bistability between
IPS-OPS and IPS-OD in the R1 and R2 regions, respectively,
in Fig. 1(c). From the above analysis we find that a strong
competition between the attractive and repulsive interactions
can give rise to the onset of oscillation death. It is also to
be noted that the OD state emerges only for larger repulsive
coupling strengths. Linear stability analysis shows that the OD
state is stable in the region εHB > 1√

q
for q � 1 where the sta-

bilization occurs through the Hopf bifurcation. The analytical
critical stability curve across which a switch in the stability of
unstable inhomogeneous steady state occurs as function of q is
represented by the line connected by filled circles in Fig. 1(c).
To study the role of the repulsive coupling in inducing various
other collective dynamics and the transition to chimera death
state via the oscillatory cluster state we extend our analysis
to a network of vdP oscillators with nonlocal attractive and
repulsive couplings.

IV. ROLE OF REPULSIVE INTERACTION IN A LARGER
NETWORK OF OSCILLATORS

In this section we study the effect of nonlocal repulsive cou-
pling together with an attractive coupling in a network of oscil-
lators with N = 100 for the nonlocal coupling radius r = 0.3.

A. Swing of synchronized states

For the repulsive coupling strength q = 0.5, we have found
a swing like behavior of synchronized states as a function of ε

(see Fig. 2). The coupled system exhibits stable synchronized
oscillations for smaller values of ε, the corresponding snapshot
and phase portrait of which are shown in Figs. 2(a) and 2(b)
for ε = 0.1. The solid (red) line represents the phase portrait
of globally synchronized oscillators whereas the filled circle
points (black) connecting by the continuous line denote the
phase portrait of uncoupled vdP oscillators and it is evident
from the figures that the globally synchronized oscillators
follow the original trajectory of the uncoupled vdP oscillators.

By increasing ε further, stable solitary state emerges as a
result of destabilization of the globally synchronized state, as
illustrated in Figs. 2(c) and 2(d) for ε = 0.26. From the figure,
it is clear that the symmetry of the coupled system is broken
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FIG. 2. Snapshots for the variables xi and phase portraits of the
system at α = 0.5, q = 0.5. (a, b) synchronization (SYN) for ε = 0.1,
(c, d) solitary state (SS) for ε = 0.26, and (e, d) synchronization
(SYN) for ε = 0.6. The filled circles (black) connected by continuous
line represent phase trajectory of the uncoupled oscillator.

spontaneously upon increasing the coupling strength resulting
in two different groups comprising of coherent and solitary
oscillators. The coherent oscillators (indicated by continuous
red line) oscillate about the origin like the uncoupled oscillators
whereas the solitary oscillators (indicated by solid gray line)
oscillate with different amplitudes. Further increase in ε

leads to a stabilization of completely synchronized state [see
Fig. 2(e)] for ε = 0.6 and it follows the same trajectory as
that of the uncoupled oscillators. Thus, we have observed
a swing of the synchronized state, which was destabilized
by the emergence of solitary state and again stabilized as a
function of the coupling strength ε. It is to be noted that the
coherent oscillators always evolve with the same amplitude and
frequency as that of the uncoupled oscillator. To characterize
the observed dynamical transition, we have estimated the
standard deviation as used by Daido and Nakanishi [53] and
Premalatha et al. [47] using the formula

σ = 〈(|xi − xi |2)1/2〉t , (3)

where the bar represents the ensemble average and < · >t

represents the time average. The standard deviation is depicted
in Fig. 3(a) as a function of the nonlocal attractive coupling ε.
From Fig. 3(a), it is evident that σ takes null value for the
synchronized state and nonzero value for the solitary state
thereby corroborating the re-emergence of the stable synchro-
nized state after the emergence of solitary state in a short range
of ε. It is to be noted that nonisochronicity induced swing
of synchronized state was reported in Refs. [47,53], whereas,
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FIG. 3. (a) Standard deviation (σ ) at α = 0.5, q = 0.5 by varying
coupling strength ε, the null value of the standard deviation stands for
synchronized state and nonzero values correspond to the solitary state
and (b) maximum Floquet exponent for solitary state. max|μ| < 1
represents stable solution of periodic orbits and max|μ| > 1 indi-
cates the unstable nature of the corresponding dynamical state. The
corresponding transient behavior is shown in the inset.

in contrast, we have observed the swing of the synchronized
state as a function of the nonlocal coupling strength in the
presence of the repulsive coupling without introducing any
nonisochronicity parameter. As the oscillations in the solitary
states are periodic and they are of same frequency, we can
find the stability of these states using Floquet theory. For this
purpose, we have perturbed Eq. (1) in the form xi = x∗

i + ηi

and yi = y∗
i + ζi and derived the equations

η̇i = ζi + ε

2P

i+P∑
j=i−P

(ηj − ηi),

ζ̇i = α(1 − x∗
i

2)ζi − (1 + 2x∗
i y∗

i )ηi − qε

2P

i+P∑
j=i−P

(ζj − ζi),

(4)

where x∗
i and y∗

i correspond to the solitary state and ηi and
ζi are the perturbation terms. The stability of the periodic
orbits can be determined from the values of the Floquet mul-
tipliers (μi , i = 1,2,...N ). Whenever ηi and ζi asymptotically
approach zero or finite values, all the Floquet multipliers
μi’s should lie within a unit circle in the complex plane (or
|μi | < 1). Usually one of the values of μi can take the value
1, which is referred to as Goldstone mode in the literature. In
such situations, the periodic orbit is stable. If any one of the
μi’s is greater than one, the functions ηi and ζi are found to
grow up and consequently the periodic orbits are not stable.
We have plotted the maximum value of Floquet exponents
(max|μi |) as a function of the coupling strength ε in Fig. 3(b).
It is clear that the value of max|μ| < 1 shows stable region
of solitary state and max|μ| > 1 indicates the unstable region.
The corresponding transient behavior is shown in the inset of
Fig. 3(b), which clearly depicts that the values of the Floquet
exponents increase with decreasing transient time. In the stable
solitary state the system experiences a very large transient time
than the unstable region where the transient solitary state exists
only for a finite time.

B. Quasiperiodic chimera

A slight increase in q, breaks the system symmetry spon-
taneously thereby rendering one group of oscillators to the
coherent region and the other group of oscillators to the
incoherent state leading to the genesis of the fascinating hybrid
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FIG. 4. (a) Space-time plot of the chimera state at α = 0.5, ε =
0.3, and q = 0.77. Panel (b) shows the phase portrait of representative
oscillators from the coherent and incoherent groups. The red trajectory
corresponds to the representative oscillator (x100,y100) from the coher-
ent group and that from the incoherent group (x40,y40) is represented
by blue trajectory. The corresponding Poincaré points are shown on
the phase portrait trajectory with filled circles and star points. The
closed loop of the Poincaré points confirms the quasiperiodic nature
of chimera state.

state of chimera (CM). The space-time plot and phase portraits
of quasiperiodic chimera state for α = 0.5, ε = 0.3, and q =
0.77 are illustrated in Figs. 4(a) and 4(b). The oscillators are
found to exhibit quasiperiodic oscillations in both coherent and
incoherent regions. Representative oscillators from both the
groups are shown in Fig. 4(b). Dotted (blue) and solid (red)
lines correspond to the oscillator x100 from the coherent group
and x40 from the incoherent group, respectively. The Poincaré
points (filled circles and star points) are depicted on the phase
trajectory to corroborate that their closed loop structure which
signify the quasiperiodic nature of oscillations in the chimera
state. The enlarged image of the Poincaré trajectory is shown
in Fig. 4(b).

C. Collective dynamics at maximum repulsive coupling (q = 1)

In this section, we study the dynamics at the maximum
repulsive coupling strength (q = 1). Space-time plots and
the corresponding frequencies fi are depicted in Fig. 5 for
α = 0.5 as a function of the nonlocal coupling strength ε. The
coupled oscillator network evolves independently resulting in
desynchronization-I (DS-I) state for ε = 0.05 [see Figs. 5(a)
and 5(b)]. In this case, the competition between the attractive
and the repulsive interactions leads to the desynchronized state
with same amplitude and frequency but with different phases
[see Fig. 5(a)]. The phases of the oscillators (even though
they oscillate with same frequency) are distributed randomly
between zero and 2π . The inset in Fig. 5(b) shows the snapshot
image of DS-I state. By increasing ε, we observe that the
oscillators in the desynchronized group align spontaneously
with constant velocity and form a stable coherent traveling
wave (TW) as depicted in Figs. 5(c) and 5(d) for ε = 0.5.
In contrast to the desynchronized state, we find that the
oscillators evolve with constant phase differences distributed
between zero and 2π as depicted in the inset of Fig. 5(d).
Further increase in ε leads to strong competition between the
attractive and the repulsive nonlocal couplings resulting in
desynchronized state (DS-II) as shown in Figs. 5(e) and 5(f)
for ε = 0.92. The amplitude, phase and frequency of all the
oscillators are found to evolve independently as is evident from
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FIG. 5. Space-time plots and the corresponding frequencies fi for
(a, b) desynchronization-I (DS-I) at ε = 0.05, (c, d) traveling wave
(TW) at ε = 0.5, and (e, f) desynchronization-II (DS-II) at ε = 0.92.
Other parameters are α = 0.5 and q = 1.

Figs. 5(e) and 5(f). The inset in Fig. 5(f) shows the snapshot
of completely desynchronized state.

Splitting of the desynchronized oscillators into homo-
geneous and inhomogeneous ones facilitating the onset of
oscillatory clusters (clusters of different oscillatory states) was
observed for further increase in the strength of the nonlocal
coupling ε. The spatiotemporal plot of an oscillatory cluster
(OC) is depicted in Fig. 6(a). To differentiate the domains of
homogeneous and inhomogeneous states we have calculated
the center of mass using the formula xc.m. = ∫ T

0
xi (t)dt

T
, where

T = 2π
ω

is the period of oscillation. The center of mass
of each oscillator is depicted in Fig. 6(b), where the stars
represent inhomogeneous oscillations and the unfilled triangles
denote the homogeneous oscillations. From the center of mass
analysis, it is clear that the homogeneous oscillations always
oscillate about the origin characterized by null value of the
center of mass whereas the inhomogeneous states take the
center of mass away from the origin characterized by nonzero
values of the center of mass. We have depicted the phase
portraits of homogeneous and inhomogeneous oscillators in
the oscillatory clusters in Fig. 6(c) and the enlarged images
of inhomogeneous groups are shown in the inset. It is evident
that the homogeneous group oscillates with larger amplitudes
[represented by dashed lines in Fig. 6(c)] than the inhomoge-
neous group (solid lines). Further the inhomogeneous group
contains more number of oscillators than the homogeneous
group. Increasing ε further, the number of oscillators in the
homogeneous group decreases thereby leading to an increase
in the number of oscillators in the inhomogeneous oscillatory
group and finally ending up with only a stable inhomogeneous
steady state in the strong coupling limit. The space-time and
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FIG. 6. (a) Space-time plot depicting the oscillatory cluster (OC)
state for α = 0.5, ε = 0.95 and q = 1.0. Center of mass of each
oscillator is shown in (b). Here, the center of mass is calculated
by averaging over one period of each oscillator. Center of mass
of homogeneous oscillations are denoted by unfilled triangles and
star represents the oscillators in the inhomogeneous group. (c) Phase
portrait of representative oscillators from homogeneous and inhomo-
geneous group of oscillators. Enlarged images of the inhomogeneous
oscillators are shown in the insets.

snapshot images of two coherent cluster steady states (2C-OD)
are depicted in Figs. 7(a) and 7(b) for ε = 1.05. The oscillators
in the coherent edges moves randomly between the upper and
the lower branches of the IHSS for further larger ε resulting in
two cluster chimera death (2C-CD) state as shown in Figs. 7(c)
and 7(d). While increasing the strength of the coupling beyond
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FIG. 7. Space-time and snapshot images for α = 0.5 and q=1.
(a) Two cluster oscillation death (2C-OD) for ε = 1.05, (b) two cluster
chimera death (2C-CD) for ε = 1.18, and (c) multicluster chimera
death (MCD) for ε = 2.0.
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FIG. 8. Space-time and snapshot images of incoherent oscillation
death (IOD) state for α = 0.5, q = 1, and ε = 2.0,

ε = 1.2, stable multichimera death state (MCD) emerges from
2C-CD [see Figs. 7(e) and 7(f)].

Stable incoherent oscillation death (IOD) state was also
found to coexist in the region of stable chimera death state
upon distributing the initial state of the oscillators at nearly
incoherent oscillation death state. The space-time and snapshot
images of IOD state is shown in Figs. 8(a) and 8(b) for ε = 2.0.
In this state, the oscillators occupy the upper and the lower
branches of inhomogeneous steady state alternately as depicted
in Fig. 8(b). Thus, it is evident that the trade-off between the
repulsive and attractive nonlocal couplings facilitates the onset
of a rich variety of collective dynamics in a network of vdP
oscillators. In particular, the competing effects between both
the couplings lead to a new transition route to the chimera
death state, namely oscillatory cluster state. In the earlier
reports, the chimera death was observed through a transition
from amplitude chimera to chimera death via in-phase syn-
chronized state for lower range of coupling strengths and a
direct transition from amplitude chimera to chimera death was
reported at larger coupling strengths. The transition routes were
reported with respect to coupling range (r) [43]. The amplitude
chimera dynamics consists of coherent homogeneous and
incoherent inhomogeneous oscillations. The inhomogeneous
oscillations in the incoherent state occupy upper and lower
branches alternately with different amplitudes. Instead, here
the chimera death is observed through oscillatory cluster state
with respect to the strength of repulsive coupling q. Here, both
homogeneous and inhomogeneous oscillations are in the form
of clusters. Moreover, the amplitude chimera dynamics was
reported as transient in the previous reports whereas in this
work the oscillatory cluster dynamics is found to be stable
in all the range of coupling radius [45]. The emergence of
oscillatory cluster as a function of the coupling range r and the
strength of nonlocal repulsive coupling ε will be discussed in
the following section.

D. Oscillatory cluster state with respect to q and r

To understand the robustness of OC state with respect to
the coupling range r , we have depicted the number of coherent
clusters (homogeneous oscillatory states) in the (q,r) plane
in Fig. 9 for a fixed value of ε = 0.97. It is evident from the
figure that the oscillatory cluster states emerge only above a
critical coupling strength of the repulsive interaction. Different
symbols attribute to distinct number of oscillatory clusters with
respect to the nonlocal coupling radius r . It is also clear that
the number of coherent clusters decreases while their spread
increases as a function of the coupling range r .
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FIG. 9. (a) The number of clusters (coherent domains) of oscil-
latory cluster state in (q,r) plane for coupling strength ε = 0.97 and
α = 0.5.

There is an exponential decrease in the number of coherent
clusters in the oscillatory cluster state as depicted in Fig. 10 for
N = 500. The inset in Fig. 10 represents log-log plot illustrat-
ing that the number of coherent domains obeying the power
law n0 = arb with respect to coupling range r . We have also
found best fit for a = 0.802725 and b = −0.913692, which
is represented by the red solid line while the corresponding
numerical data is represented by the unfilled circles in Fig. 10.

V. GLOBAL DYNAMICAL BEHAVIOR WITH RESPECT TO
THE STRENGTH OF THE REPULSIVE COUPLING Q

To understand the global dynamical behavior of the network
of coupled vdP oscillators as a function of the strength of
the repulsive coupling q and coupling strength ε, we have
plotted the two parameter plot in (q,ε) space for four distinct
coupling radius values r = 0.1, r = 0.2, r = 0.3, and r = 0.4
in Fig. 11. Traveling wave (TW) and completely synchronized
oscillations (SYN) emerge alternately for lower values of q and
ε [see Fig. 11(a)] for the coupling radius r = 0.1. Increasing ε

for lower values of q results only in completely synchronized
state. Solitary state (SS), chimera (CM) and traveling wave
(TW) state emerges as a function of q for ε < 1 and OD
state emerges for larger values of ε (ε > 1). For the strength
of the repulsive coupling q = 1, desynchronized state (DS-I)

r
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FIG. 10. Exponentially decreasing number of clusters with re-
spect to coupling range for N = 500. The corresponding power law fit
is shown in the inset with logarithmic scale. Unfilled circles represent
the numerical data and the corresponding best fit is shown by red solid
line.
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FIG. 11. Two parameter diagrams in (q,ε) space for α =
0.5 and for the coupling range values (a) r = 0.1, (b) r = 0.2,
(c) r = 0.3 and (d) r = 0.4. Different colors delineate distinct
dynamical regimes. CM, SS, SYN and DS (I and II) represent
chimera, solitary, synchronized and desynchronized states (I and II).
TW and OC denote traveling wave and oscillatory cluster states.
2C-OD, 4C-OD, and 7C-OD describe two, four and seven cluster
oscillation death states. Analogously 2C-CD, 4C-CD, and 7C-CD are
the two, four, and seven cluster chimera death states. MCD describes
multichimera death state. The dotted line and solid line represent the
Floquet stability curve for stable SYN state and linear stability curve
for IOD state, respectively.

is observed at very low values of ε and traveling waves for
larger values of ε. Further, transition to desynchronized state
(DS-II), oscillatory cluster state (OC), seven cluster oscillation
death (7C-OD), seven cluster chimera death (7C-CD) and
multichimera death states (MCD) are observed in Fig. 11(a)
as a function of the strength of the nonlocal coupling ε for
r = 0.1.

Now, we increase the coupling range r from 0.1 to 0.2 and
the corresponding two parameter phase diagram is depicted
in Fig. 11(b). Emergence of traveling wave and synchronized
state alternately for r = 0.1 is suppressed for r = 0.2 thereby
rendering the oscillators to evolve in complete synchrony for
lower values of q and ε [see Fig. 11(b)]. One can observe
interesting collective dynamics only above a moderate value
of q (q > 0.5). In this coupling range, similar dynamical
behaviors are observed as in Fig. 11(a) for r = 0.1 except
for the four cluster oscillation death (4C-OD) state and four
cluster chimera death (4C-CD) state. Figures 11(c) and 11(d)
depict the dynamical behavior for the coupling ranges r =
0.3 and r = 0.4, respectively. Initially for lower values of
q synchronized state is observed for all values of ε. At
moderate values of q (q ≈ 0.5), the coupled system exhibits
synchronized behavior for lower values of ε. There is an excur-
sion of some isolated oscillators away from the synchronized
group leading to solitary state for further increase in ε. The
coupled oscillators exhibit completely synchronized state upon
increasing ε further. In this region, swing like behavior of
synchronized state is observed. At strong coupling limits (ε >
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1 and q ≈ 0.5), the coupled oscillators exhibit a steady-state
behavior. There is a direct transition from completely synchro-
nized oscillatory state to steady state due to strong trade-off
between the attractive and repulsive couplings. By increasing
ε, traveling wave (TW) state is found to be stable up to ε ≈ 0.8.
Beyond this the oscillators become unstable and the coupled
system evolves desynchronously. Further increase in ε results
in stable homogeneous and inhomogeneous states thereby
facilitating oscillatory cluster state (OC). Finally the coupled
system attains steady state where all the oscillators reach
inhomogeneous state. For the coupling range r = 0.3, the two
cluster (2C-OD) oscillation death state emerges and becomes
two cluster chimera death state as a function of the nonlocal
coupling strength ε. In 2C-CD state the oscillators in two
coherent edges jump between upper and lower inhomogeneous
branches facilitating two coherent states and two incoherent
states. At strong coupling limits the two cluster chimera death
(2C-CD) state becomes a multi-chimera death state (MCD),
which is characterized by the emergence of multiple coherent
and incoherent branches of steady states. Similar dynamical
behaviors are observed in Fig. 11(d) for r = 0.4 except for the
emergence of chimera state, oscillatory cluster and chimera
death states. It is also to be noted that the transition from
desynchronized state to chimera death state is always observed
through the oscillatory cluster (OC) states for all values of the
coupling radius r in contrast to the reports in the literature,
where chimera death is observed due to nonisochronicity
parameter. In general, complex collective dynamics and their
dynamical transitions are observed only for larger values of the
repulsive coupling strength q > 0.5 elucidating its importance
in inducing complex collective dynamics compared with the
counter-active attractive coupling.

In addition, incoherent oscillation death state (IOD)
coexists with chimera death state in certain regions of
parameter space. The analytical boundary of IOD state is
deduced from the following linear stability analysis. By
distributing the initial state of the oscillators nearly at the
inhomogeneous steady state, the system exhibits incoherent
oscillation death state. At this IOD state, the system
has the following fixed points, (xi−P ,yi−P ) = (x0,y0),..,
(xi−2,yi−2) = (x0,y0), (xi−1,yi−1) = (−x0, − y0), (xi,yi) =
(x0,y0), (xi+1,yi+1) = (−x0, − y0), (xi+2,yi+2) = (x0,y0)..,
(xi+P ,yi+P ) = (x0,y0). By substituting the above-mentioned
fixed points in Eq. (1), the system equation can be reduced as

y0 − βx0 = 0,

α
(
1 − x2

0

)
y0 − x0 + qβy0 = 0, (5)

where, β = ε for even number of nearest neighbors and β =
( P+1

P
)qε for odd number of nearest neighbors. The explicit

fixed point solutions for Eq. (5), which can be deduced as

x0 = ±
√

−1 + αβ + qβ2

αβ
,

y0 = βx0. (6)

The stability condition can be derived by substituting the fixed
points (x0,y0) in the 2N × 2N Jacobian matrix of the system

Eq. (1) can be expressed as

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 · · · a1N

a21 a22 a23 a24 · · · a2N

a31 a32 a33 a34 · · · a3N

a41 a42 a43 a44 · · · a4N

...
...

...
...

. . .
...

ad1 ad2 ad3 ad4 · · · adN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with aii = −ε, ai(i+1) = 1 and ai(i+j+1) = ai(i−j ) = ε
2P

for i =
1,3..,(N − 1) and j = 1,3..,(2P − 1). Analogously, ai(i−1) =
γ1, aii = γ2, and ai(i+j ) = ai(i−j ) = −qε

2P
for i = 2,4..,N and

j = 2,4..,2P , where γ1 = 1 − 2αβ − 2qβ2 and γ2 = 1
β

−
qβ + qε. Here, ai(N+j ) = aij and ai(1−j ) = ai(N−j+1) for j =
1,2..,P . From the eigen value analysis conditions for stable
IOD region can be obtained [20]. In the stable IOD region the
following condition must be satisfied:

T r(J ) = λ1 + λ2 + λ3 + ...λ2N < 0. (8)

For odd and even number of nearest neighbors, the trace of
2N × 2N Jacobian matrix of the considered system can be
expressed as

Tr(J ) = N (αc1 − εq̂) < 0. (9)

The following additional condition has also to be satisfied for
fixed points to be stable:

det(J ) = λ1 λ2 λ3 ... λ2N > 0. (10)

The stability conditions are found by equating the eigen
values of the determinant to zero. In the stable IOD region real
parts of all the eigen values acquire negative values. Mainly,
the following eigen values play a crucial role in determining
the stability,

λ1 = 1
4 (2αc1 ±

√
(−2αc1)2 − 16c2) (11)

λ2 = 1

4P
[2Pαc1 − 6εq̂

±
√

(−2Pαc1 + 6εq̂)2 − 16(P 2c2 − 3Pαεc1 − 9qε2)],

(12)

where c1 = (1 − x2) and c2 = 1 + 2xyα and q̂ = 1 − q. The
stable region emerges at

ε1 = 1√
q

, for even P,

ε2 =
(

P

P + 1

)
1√
q

, for odd P,

which are obtained from λ1. The stability condition deduced
from λ1 can be denoted as ε1 and ε2. Similarly, the stability con-
dition deduced from λ2 can be represented by ε3 = [ εk2−2Pk1

ε
+√

4P (−P−3αε + 4k1)−36qε2 + ( 2Pk1
ε

− k2)2], where k1 =
−1 + αε + qε2 and k2 = 2Pα − 6ε + 6qε. The stable IOD
region is enclosed by ε1 > 1√

q
for q < 0.65 and ε3 >

−4α+√
2
√

25q+8α2

5
√

q
for q > 0.65 (N = 6,8,10,12..,100). For

P = 2, the stable region satisfies both the above conditions.
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FIG. 12. Boundaries of incoherent oscillation death in (q, ε) space for (a) even P and (b) odd P . Stability curves with respect different
nearest neighbors are denoted by distinct line types. The shaded region in Figure (a) represents the stable region of IOD state for even number
of P .

The corresponding stability curves enclosing the stability
regions of IOD state for even number of nearest neighbors
is depicted in Fig. 12(a). The solid line and dashed line in
Fig. 12(a) represent ε3 at P = 2 and P = 4, respectively.
Comparing both the curves it is clear that for large P, ε3

curve emerges below the stable region. Further for all other
even P , the stable region is enclosed only by ε1 > 1√

q
. The

stability curves ε2 enclosing the stable IOD state for odd P ’s
are depicted in Fig. 12(b). The distinct lines correspond to
different values of nearest neighbors elucidating that the stable
region depends on the number of nearest neighbors. It is to be
noted that the stable region decreases with increase in number
of nearest neighbors.

The analytical boundary of IOD state is depicted by solid
line in all the two parameter diagrams in Fig. 11. The area
above the solid line represents the stable IOD region satisfying
the stability condition ε � 1√

q
for q � 1, which is valid for all

even number of nearest neighbors. It is to be noted that the
above stability condition is the same as that of the two coupled
network as it repeats for N -coupled network with even number
of nearest neighbors.

Finally, the area under the dashed line in all the
two phase diagrams denote stable regions of synchronized
state, which is confirmed using Floquet exponents from
Eq. (4). The stable synchronized oscillations coexists with
SS, TW, CM, DS-I, DS-II, and OC states. The synchronized
state also coexists with coherent oscillation death and chimera
death states in certain ranges of parameters. The stability

q

r = 0 .4
r = 0 .3
r = 0 .2
r = 0 .1

10.650. 3

2

1.45

0. 9

FIG. 13. Boundaries of stable completely synchronized state for
four distinct coupling ranges in (q, ε) space. Different line points
such as circle, rectangle, triangle and star points with line represent
coupling ranges r = 0.1,r = 0.2,r = 0.3 and r = 0.4, respectively.

curves of synchronized states are shown separately in Fig. 13,
where the four different line points represent the four distinct
coupling radius r = 0.1, 0.2, 0.3, and 0.4. The stability of
synchronized state was also verified through master stability
function [54,55].

VI. CONCLUSIONS

In summary, we have investigated the emergence of chimera
death states in a network of nonlocally coupled van der Pol
oscillators due to the combined effect of both the attractive
and repulsive couplings. We found that the repulsive coupling
plays a crucial role in inducing various collective dynamics.
In particular, we have shown that the chimera death state
emerges through a novel transition route, namely, oscillatory
cluster state (OC) due to strong trade-off between the attractive
and repulsive couplings. It is also shown that the network of
coupled vdP oscillators takes the same transition route in all
the coupling ranges. Strong competing interaction between
the couplings renders the oscillators either in homogeneous
or inhomogeneous oscillatory states. We have also elucidated
that an increase in the coupling radius leads to a decrease in the
number of clusters (coherent states) and increases the cluster
size (coherent regions). Finally, we have observed that increase
in coupling strength leads to structural changes in coherent
death state and to the transition from coherent oscillation
death to multichimera death via distinct cluster chimera death
state. Furthermore, the coexistence of incoherent death state
is also found to coexist with the chimera death state and
the corresponding analytical stability was deduced. Analytical
stability curves for the synchronized and solitary states were
also deduced.
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