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Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials
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We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized
by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear
case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear
cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional
nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on
the stability structure of these localized modes is discussed with the help of linear stability analysis followed by
the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given.
The transverse power flow density associated with these localized modes is also discussed. It is found that the
relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to
control the energy exchange among gain or loss regions.
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I. INTRODUCTION

Over the past decade, and since they were originally pro-
posed by Bender and coworkers [1,2], systems characterized
by parity-time (PT )-symmetric Hamiltonians have become
a subject of intense research efforts. The interest in these
systems arises from their fundamental property to exhibit real
spectra, while non-Hermitian, thus providing an intriguing
alternative to standard Hermitian quantum mechanics. Bender
et al. also found that, for a PT -symmetric Hamiltonian, there
exists a critical threshold above which its eigenvalues are not
real but become complex, and the system undergoes a phase
transition because of the spontaneous PT -symmetry breaking
[1]. Transition through this exceptional point is the most typical
scenario of PT -symmetry breaking, which arises in a more
general context of non-Hermitian physics [3].

Due to an analogy between the Schrödinger equation in
quantum mechanics and the equation for slowly varying mode
amplitude in optics, PT -symmetric phenomena can be ob-
served in nonconservative optical systems with mutually bal-
anced gain and loss [4–6]. To achieve the balance between gain
and loss, the refractive index of the system should satisfy the
relation n(x) = n∗(−x), which means that the real and imag-
inary parts of the complex refractive index distribution should
be even and odd functions of position, respectively [6]. As
shown in several studies, PT -symmetric optical arrangements
can exhibit several interesting and counterintuitive properties,
which are otherwise unattainable in standard configurations
[7–10]. These include, for example, non-Hermitian Bloch
oscillations [11], abrupt phase transitions [12], nonreciprocity
[8,9], unidirectional invisibility [13], loss-induced super

scattering and gain-induced absorption [14], and mode
selection in PT -symmetric lasers [15], as well as existence of
coherent lasing absorbing modes [16]. Finally PT -symmetric
concepts have also been used in plasmonics [17], optical
metamaterials [18], and coherent atomic medium [19]. These
findings, in turn, have stimulated considerable research
activity in the nonlinear PT -symmetric systems as well.

In the last few years, variousPT -symmetric potentials have
been introduced to the nonlinear Schrödinger (NLS) equations,
which have been shown to possess stable and unstable solitons
of different types [5,20–25]. Particulary, the existence of dif-
ferent nonlinear localized modes has been studied analytically
as well as numerically in the NLS equation with complex PT -
symmetric Scarf-II potential [5,20,21,26], periodic potential
[5,20], Gaussian potential [27], Bessel potential [28], Rosen-
Morse Potential [29], and harmonic potential [24]. In addition
to these, nonlinear modes have been studied for other complex
PT -symmetric potentials bearing nonlinear optical systems
such as competing nonlinearity [30], saturable nonlinearity
[31], and logarithmically saturable nonlinearity [32].

It is particularly noteworthy that many of the above men-
tioned PT -symmetric potentials have concentrated on models
of NLS equation with a second order diffraction or dispersion
term. However, in the study of ultra-short optical pulse propa-
gation, the higher-order diffraction or dispersion effects cannot
be neglected [33,34]. Specifically, fourth-order dispersion has
been demonstrated to play an important role in fiber optics
[35,36]. Additionally, modulational instability in NLS-type
models with high-order dispersion have been extensively in-
vestigated [37–40]. In a recent study, the existence and stability
of gap solitons in the semi-infinite gap of a PT -symmetric
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optical lattice with a higher-order diffraction were examined
[41,42]. It was found that the Bloch bands and band gaps of
PT -symmetric optical lattice depend crucially on the coupling
constant of the fourth-order diffraction (FOD). In these works,
the localized solutions are obtained with the help of some nu-
merical techniques. In fact, very few models ofPT -symmetric
potential with higher-order diffraction or dispersion possess
exact analytical expressions for the localized modes. More
recently, under PT -symmetric potentials, different kinds of
exact bright solitons and their fascinating properties were dis-
cussed in the third-order NLS equation [43]. Thus far, nobody
has investigated exact solitons solutions in PT -symmetric
structures with higher-order diffraction or dispersion.

Our aim in this paper is to study analytically and numerically
the linear and nonlinear modes of the FOD NLS equation with
a generic complex hyperbolic PT -symmetric potential. The
exact expressions of such solutions are obtained in both one-
dimensional (1D) and two-dimensional (2D) NLS equations.
These solitons are shown to be stable through the linear-
stability analysis and by means of direct simulations, in wide
ranges of the governing parameters.

This paper is organized as follows. In Sec. II we introduce
the 1D NLS equation with FOD in the presence of complex
hyperbolic PT -symmetric potentials. The exact expression of
a localized solution of this model is obtained for both self-
focusing and self-defocusing nonlinear cases. We investigate
the effect of the FOD coefficient on the spectra of linear
problem and stability of nonlinear mode. We show that some
of these solutions can be stable, which is confirmed by both the
linear stability analysis and numerical time evolutions of the
complex NLS equation. Section III deals with the analytical
localized modes and their linear stability in two dimensions.
Finally, in Sec. IV the main results of the paper are briefly
summarized.

II. LOCALIZED MODES IN PT -SYMMETRIC COMPLEX
POTENTIAL WITH FOURTH-ORDER DIFFRACTION

A. Model equation

We consider optical wave propagation in a Kerr nonlinear
PT -symmetric potential with an FOD coefficient. In this case,
evolution of the dimensionless light field envelope ψ(z,x) is
governed by the 1D NLS equation [41,42]:

i
∂ψ

∂z
+ ∂2ψ

∂x2
− β

∂4ψ

∂x4
+ [V (x) + iW (x)]ψ + g|ψ |2ψ = 0,

(1)

where z is the propagation distance, x is the transverse
coordinate, β is the coupling constant of the FOD, and g = ±1
represent the self-focusing and self-defocusing nonlinearity,
respectively. V (x) and W (x) are the real and imaginary parts
of the complex PT -symmetric potential such that V (−x) =
V (x) and W (−x) = −W (x). Physically, V (x) is responsible
for the bending and slowing of light, and W (x) can lead to
either amplification (gain) or absorption (loss) of light within
an optical material. In the absence of gain-and-loss distribution
W (x), band gaps and lattice solitons were investigated in
Eq. (1) with a periodic potential and FOD coefficient [44].

FIG. 1. (a) The unbroken or broken PT -symmetric phase pro-
duced by linear eigenvalue problem (4) withPT -symmetric potential
(3). (b) Imaginary part of the eingavalue λ as a function of the FOD
coefficient β at V0 = 1. The parameter W0 = 2.

We focus on the stationary solutions of Eq. (1) in the form
ψ(z,x) = φ(x)eiνz, where ν is the real propagation constant
and the complex function φ(x) satisfies the stationary NLS
equation:

d2φ(x)

dx2
− β

d4φ(x)

dx4
+[V (x) + iW (x)]φ(x)+g|φ|2 = νφ(x),

(2)

which can be solved by using numerical methods. To study
analytically the localized soliton solution of Eq. (2), we
consider the following PT -symmetric potential:

V (x) = V0sech2(x) + V1sech4(x),

W (x) = sech(x) tanh(x)[W0 + W1sech2(x)], (3)

with V1 = β(μ4 + 35μ2 + 24), W1 = 10μβ(μ2 + 5), and
μ = W0(1 − 5β)/3. The constants V0, V1, W0, and W1 repre-
sent the depths of the real and imaginary parts of the potential.
The PT -symmetric potential (3) is a hyperbolic version of
the quantum-mechanical potential introduced by Scarf [45].
These two functions are bounded and V (x), W (x) → 0 as
|x| → ∞. Moreover, the gain-and-loss distribution can be
always balanced in Eq. (1) since

∫ +∞
−∞ W (x) dx = 0.

B. PT linear mode with fourth-order diffraction

In the absence of the nonlinearity (g = 0), Eq. (2) becomes
the following eigenvalue problem:

L�(x) = λ�(x), L = ∂2
x − β∂4

x + V (x) + iW (x), (4)

with λ and �(x) being the eigenvalue and the localized
eigenfunction, respectively. For the case β = 0, Eq. (3) reduces
to the standard Scarff-II potential in which the Hamiltonian of
(4) exhibits an entirely real spectrum (PT unbroken phase)
provided that |W0| < V0 + 1/4 [46]. For the general case with
β �= 0, and by using numerical calculation, Fig. 1(a) exhibits
the broken or unbroken PT -symmetric phases on the (V0,β)
space. It is seen that, for fixed V0, there always exists a
critical value of β beyond which the symmetry-breaking phase
transition makes the spectra complex-valued. For a given value
W0 = 2, it can also be seen that for β < 0, the broken region
is predominantly obtained. On the other hand, for β > 0, the
unbroken region appears and exhibits a complicated structure.
For the given parameters V0 = 1 and W0 = 2, and varying the
FOD coefficient β, the spontaneous symmetry breaking occurs
from two lowest states at seven points about β [see Fig. 1(b)].
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FIG. 2. The perturbation growth rate of solitons versus β with different values of W0: (a) W0 = 0.01, (b) W0 = 0.1, (c) W0 = 1 in the
focusing nonlinearity g = 1. In all cases we have considered V0 = −0.5.

C. PT nonlinear mode and stability

The exact bright soliton of Eq. (2) with PT -symmetric
potential (3) for both self-focusing and self-defocusing cases
can be found in the form

φ(x) = φ0sech(x) exp{iμ arctan[sinh(x)]}. (5)

Here the propagation constant ν, the phase number μ, and the
soliton amplitude φ0 are related to the potential parameters and
the FOD coefficient through

ν = 1 − β, μ = W0

3
(1 − 5β),

φ0 =
√

2 − V0 + μ2 − 5β(4 + 5μ2)

g
, (6)

where g[2 − V0 + μ2 − 5β(4 + 5μ2)] > 0 is the existence
condition of the solution.

From Eq. (6), we can find that the FOD coefficient influ-
ences the different parameters of the solution. In the particular
case where β = 0, the solution (5) reduces to the known ones
as given in Ref. [5].

For the nonlinear modes given in Eq. (5), the Poynting
vector S = i

2 (φφ∗
x − φ∗φx) = μφ2

0sech3(x). For β = 0, S is
everywhere positive if W0 > 0 [5,25]. In presence of the FOD
coefficient β �= 0, the sign of S is not always positive or
negative definite and is dependent on both parameters W0 and
β. From the expression of μ obtained in (6), it is clearly seen
that S remains positive if W0 > 0 and β < 1/5. This suggests
in this case that the power flow in thePT cell is in one direction,
i.e., from the gain towards loss domain. The total power of the
stationary localized solution is P = ∫ ∞

−∞ |φ(x,z)|2 dx = 2φ2
0 ,

which is independent on the the propagation distance z and
thus conserved.

In order to investigate the effect of the FOD parameter on the
linear stability properties of the self-trapped nonlinear modes
obtained here, we consider small perturbation to the solution
ψ(x,z), in the form [23,24,30]

ψ(x,z) = {φ(x) + ε[F (x)eiδz + G∗(x)e−iδ∗z]}eiνz, (7)

where ε � 1, F (x) and G(x) are the perturbation eigenfunc-
tions of the linearized eigenvalue problem, and δ measures the
growth rate of the perturbation instability. Substituting Eq. (7)
into Eq. (1) and linearizing with respect to ε, we obtain the
following linear eigenvalue problem:[

L̂ gφ2(x)
−gφ∗2(x) −L̂∗

][
F (x)
G(x)

]
= δ

[
F (x)
G(x)

]
, (8)

where L̂ = −μ + ∂xx − β∂xxxx + V (x) + iW (x) + 2g|φ|2.
The eigenvalue problem (8) can be solved numerically with
the help of Fourier collocation method [47]. The stability of
the perturbed soliton ψ(x,z) is related to the imaginary parts
Im(δ) of all eigenvalues δ. If |Im(δ)| > 0, then the solution
ψ(x,z) will grow exponentially with z (i.e., it is unstable),
otherwise the solution ψ(x,z) is stable. In the existence
range of the numerically found solitons, the dependence of
the the perturbation growth rate (the most unstable growth
rate) on the FOD coefficient is exhibited in Figs. 2 and 3.
It is clearly shown that for a fixed value of V0, the stable
regions shrink with the increase of W0 value, in the case of
both focusing [Figs. 2(a)–2(c)] and defocusing nonlinearities
[Figs. 3(a)–3(c)]. By comparing these two figures, we observe
that the defocusing nonlinearities enjoy a wider range of stable
solitons than the focusing cases.

For the attractive case g = 1, the numerically computed
linear stability spectra are plotted in Fig. 4(b1) for stable modes
and in Fig. 4(b2) for unstable ones (for different parameters V0,
W0, and β). The stable mode leads to a double-well potential
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FIG. 3. The perturbation growth rate of solitons versus β with different values of W0: (a) W0 = 0.01, (b) W0 = 0.1, (c) W0 = 1 in the
defocusing nonlinearity g = −1. In all cases we have considered V0 = −0.5.
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FIG. 4. (a1, a2) Real and imaginary parts of PT -symmetric potentials given in Eq. (3). (b1, b2) Numerically computed linear stability
spectra in the case of self-focusing nonlinearity g = 1. (c1) Stable and (c2) unstable propagations of nonlinear modes described in Eq. (2). (a1,
b1, c1) V0 = −0.5, W0 = 0.1, β = 0.04. (a2, b2, c2) V0 = −0.5, W0 = 0.1, β = −0.04.

[see Fig. 4(a1)], while the unstable one leads to a single-well
potential [see Fig. 4(a2)]. To validate the linear stability results,
we have simulated the propagation of exact soliton (5) under
an initial random noise perturbation up to 1% of its amplitude
for different parameters. Corresponding stable and unstable
propagations, in agreement with the linear stability analysis,
are displayed in Figs. 4(c1) and 4(c2), respectively.

For the repulsive case g = −1, the results of linear stability
spectra are displayed in Fig. 5(b1) for stable modes and in
Fig. 5(b2) for unstable ones. The two cases lead to only a barrier
potential [see Figs. 5(a1) and 5(a2)]. Further, we have also
tested the propagation dynamics of the exact nonlinear modes
(5) under an initial random noise perturbation up to 1% of its

amplitude. Typical simulation examples, shown in Figs. 5(c1)
and 5(c2), are in good agreements with the prediction of linear
stability analysis.

III. LOCALIZED MODES IN 2D PT -SYMMETRIC
COMPLEX POTENTIAL

We now consider the 2D NLS equation with a PT -
symmetric potential and a FOD coefficient [48]:

i
∂ψ

∂z
+ �ψ − β�2ψ + [V (x,y)

+ iW (x,y)]ψ + g|ψ |2ψ = 0, (9)

FIG. 5. (a1, a2) Real and imaginary parts of PT -symmetric potentials given in Eq. (3). (b1, b2) Numerically computed linear stability
spectra in the case of self-defocusing nonlinearity g = −1. (c1) Stable and (c2) unstable propagations of nonlinear modes described in Eq. (2).
(a1, b1, c1) V0 = −0.5, W0 = 0.1, β = 0.4. (a2, b2, c2) V0 = −0.5, W0 = 0.1, β = 0.8.
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FIG. 6. Transverse power flow vector indicating the power flow
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towards gain regions when β = 0.25. The other parameters are
V0 = −4, W0 = 1, g = 1.

where ψ = ψ(x,y,z) is a complex field envelope function,
� is the 2D Laplacian in the (x,y) plane, and �2 is the
so-called bi-Laplacian. The 2D complex potentials, which
obey the PT -symmetric requirements V (−x,−y) = V (x,y)
and W (−x,−y) = −W (x,y), are considered as

V (x,y) = V01

∑
σ=x,y

sech2(σ ) + V1

∑
σ=x,y

sech4(σ )

−V02

∏
σ=x,y

sech2(σ ),

W (x,y) = W01

∑
σ=x,y

sech(σ ) tanh(σ )

+W1

∑
σ=x,y

sech3(σ ) tanh(σ ), (10)

where the constants V1 and W1 are given by Eq. (6), V01 = 2 +
μ2 − 5β(4 + 5μ2), V02 = 2 − V0 + a2 − 5β(4 + 5a2), and
W01 = W0[1 + 5β(5β − 2)].

We find the exact analytical solutions of Eq. (9) with the
FOD coefficient β and PT -symmetric potential (10) in the
form

ψ(x,y,z) = φ(x,y) exp[iνz + iθ (x,y)], (11)

where ν = 2(1 − β), the phase θ (x,y), and soliton φ(x,y) are
obtained as

φ(x,y) = φ0sech(x)sech(y),

θ (x,y) = μ{tan−1[sinh(x)] + tan−1[sinh(y)]}. (12)

The soliton amplitude φ0 and the phase number μ are given by
Eq. (6).

The transverse power flow density for these 2D solutions is
calculated as

−→
S (x,y) = μφ2

0 [sech3(x),sech3(y)], (13)

whose positive or negative sign depends on the sign of the phase
number μ. Then if W0 = 0, or β = 1/5, we have μ = 0 and the
power does not flow. If W0 > 0, β < 1/5, we have μ > 0 and
the power flows from gain towards loss [see Fig. 6(a)]. In other
cases, μ < 0 and the power flows from loss toward gain [see
Fig. 6(b)]. The above results indicate that the relative strength
of the FOD coefficient and the sign of gain-loss distribution can
utterly change the direction of the power flow, which may be
used to control the energy exchange among gain or loss regions.
In addition, the conserved power related to the solution (12) is
given by P = 4φ2

0 , which is conserved.
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FIG. 7. (a1, a2) Plots of the linear stability eigenvalue spectra
of the 2D solitons in the case of self-focusing nonlinearity g = 1.
(b1) and (b2) plots of the corresponding stable and unstable intensity
evolution. The parameters are (a1, b1) V0 = −2, W0 = 0.1, β = 0.15;
(a2, b2) V0 = −1, W0 = 1, β = 0.03.

The linear stability of the 2D localized modes, obtained
here, is studied by considering the 2D generalization of the
eigenvalue problem given in (8). In Figs. 7(a1)–7(a2) and
Figs. 8(a1)–8(a2), we have shown the numerically computed
eigenvalue spectra for the focusing and defocusing nonlin-
earity, respectively. To obtain the corresponding intensity
evolution, we have performed the direct numerical simula-
tion of Eq. (9) by taking the initial profile as ψ(x,y,0) =
φ(x,y)eiθ(x,y). The results are shown in Figs. 7(b1) and 8(b1)
for stable propagation, and in Figs. 7(b2) and 8(b2) for unstable
propagation. The results of numerical simulations are in good
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FIG. 8. (a1, a2) Plots of the linear stability eigenvalue spectra
of the 2D solitons in the case of self-defocusing nonlinearity g =
−1. (b1, b2) Plots of the corresponding stable and unstable intensity
evolution. The parameters are (a1, b1) V0 = 0.1, W0 = 0.5, β = 0.1;
(a2, b2) V0 = 5, W0 = 0.1, β = −0.14.
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agreement with the predictions produced above by the linear
stability analysis.

IV. CONCLUSION

In this work, we have investigated analytically and numer-
ically the existence and properties of new classes of 1D and
2D spatial solitons supported by a complex hyperbolic PT -
symmetric potential in the presence of fourth-order diffraction
and Kerr nonlinearity. For the linear version of the model,
it is shown numerically that the PT -symmetric phases may
admit several breaking points due to the presence of the
fourth-order diffraction parameter. Then, in the presence of the
Kerr nonlinearity, the closed form expressions for the localized
modes in such 1D and 2D self-focusing and self-defocusing

Kerr nonlinear media are obtained. A linear stability analysis
corroborated by the direct numerical simulations reveals that
these analytical localized modes can propagate while being
stable for certain values of the fourth-order diffraction coeffi-
cient. The transverse power flow associated with these complex
solitons has also been computed. Our results suggest new
possibilities for experimental and theoretical studies about the
dynamics of nonlinear waves in more complex PT -symmetric
potentials and higher-order diffraction.
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