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Investigation of a chaotic thermostat
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A numerical study is presented of a free particle interacting with a deterministic thermostat in which the usual
friction force is supplemented with a fluctuating force that depends on the self-consistent damping coefficient
associated with coupling to the heat bath. It is found that this addition results in a chaotic environment in
which a particle self-heats from rest and moves in positive and negative directions, exhibiting a characteristic
diffusive behavior. The frequency power spectrum of the dynamical quantities displays the exponential frequency
dependence ubiquitous to chaotic dynamics. The velocity distribution function approximates a Maxwellian
distribution, but it does show departures from perfect thermal equilibrium, while the distribution function for the
damping coefficient shows a closer fit. The behavior for the classic Nosé-Hoover (NH) thermostat is compared
to that of the enlarged Martyna-Klein-Tuckerman (MKT) model. Over a narrow amplitude range, the application
of a constant external force results quantitatively in the Einstein relation for the NH thermostat, and for the MKT
model it differs by a factor of 2.
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I. INTRODUCTION

The study of deterministic thermostats [1–4] has resulted
in extensive investigations [5–9] of physical systems and,
perhaps more importantly, it has provided insight about the
connection of statistical mechanics to nonlinear dynamics,
particularly the recognition of the subtle role played by chaotic
orbits [10]. Because of its simplicity and transparent physical
interpretation, the paradigm system of this subject is the Nosé-
Hoover (NH) model [11]: a free particle couples to a heat bath
through a friction force whose sign and strength adjust to keep
the time average of the square of the velocity equal to the
square of the thermal velocity v̄. The system has a single time
constant τ0 that measures the strength of coupling between
the particle and the heat bath. The time variation of all the
relevant physical variables can be scaled to this quantity, with
the associated spatial dependencies being scaled to an effective
length l = v̄τ0. Depending on the various physical scenarios,
this length can be interpreted as a scattering length or a mean
free path for collision with another particle or structure.

Because of the underlying Hamiltonian formalism and low
dimensionality, the motion of a free particle in the NH model
is integrable, resulting in closed, periodic orbits in the relevant
phase space. Although the orbits are nonlinear and intermittent,
the nonchaotic particle motion is unidirectional, nondiffusive,
and the velocity distribution function is far from being a
Maxwellian; a particle initially at rest always remains at rest.
However, the majority of the applied studies incorporate the
action of an external potential φ(r) because that is the typical
environment of relevance to a physical system. The inclusion of
such a potential enlarges the dimensionality of the phase space,
and while retaining the Hamiltonian structure, the dynamics
now has access to a chaotic sea that allows the behavior,
over limited parameter regimes, to display a more “thermal
character.” But it must be recognized that it is the interaction
between φ and the reservoir that causes the quasithermalization
and that path requires the presence of a chaotic environment.

Several researchers [12–17] have recognized the need to
enlarge the original NH model to better approximate a thermal
interaction, yet remaining faithful to the deterministic thermo-
stat philosophy. In one method or another, the various additions
to the NH model seek to enhance the role of chaotic dynamics.
A necessary ingredient is the increase in the dimensionality
of the associated phase space. To this end, some approaches
increase the number of the heat reservoirs, in a cascading order,
while adhering to the coupling through a frictional force. Some
studies also introduce higher (odd) powers of the velocity to
augment the frictional force. Typically, the multiple reservoirs
are studied in conjunction with φ and found to result in a
more satisfactory thermal character than the simple NH model.
But again, it is the interaction between the potential and the
reservoirs that achieves the result.

Another approach [18,19] to introduce chaotic behavior
into deterministic thermostats is to include external forces
whose temporal dependence is chosen, a priori, to resemble
the behavior of a Langevin type of force but having an explicit
deterministic origin. The merit of this methodology is that
the chaotic behavior transforms fractal-type distributions into
smooth, Maxwellian-like functions, in the absence of φ. Also,
the resulting orbits resemble the Brownian motion expected
for a free particle interacting with a heat reservoir. The present
study adheres to this general concept while retaining the
inherent simplicity of the NH model.

This manuscript presents a numerical investigation of the
properties of a free particle interacting with a deterministic
reservoir in which a new Langevin type of force is included,
but its time dependence is not a priori determined. The force is
linked directly to the evolution of the self-consistent damping
coefficient associated with coupling to the heat bath. The
resulting behavior displays features characteristic of coupling
to a thermal reservoir, such as self-heating and diffusive
behavior. For overall perspective and motivation for the focus
of the present work, it should be mentioned that the lack
of diffusive behavior has been previously identified to be a
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shortcoming of deterministic thermostats, and remedies have
been found by increasing the number of degrees of freedom
[20,21].

At the outset of this type of investigation it is appropriate to
ask what is the merit of pursuing chaotic behavior at the single-
particle level. After all, by adding many particles to a system
may by itself cure the lack of chaos in a heuristic and practical
sense and may be suitable in a variety of applications. But
there is always the concern of whether the behavior sampled is
correct at the basic level. This issue is of particular significance
in studies of thermal systems that are externally driven. For
example, a particle in a thermal system interacting with a wave.
The wave-induced modification of an individual chaotic orbit
can lead to consequences unrelated to the global chaos possibly
induced by the consideration of many particles.

The manuscript is organized as follows. Section II describes
the model investigated. Section III presents numerical results
including, self-heating, correlations, spectral features, diffu-
sion, and response to an external force. It also compares the
behavior of the Nosé-Hoover thermostat to that developed by
Martyna et al. Conclusions are given in Sec. IV.

II. MODEL

The equations for the proposed extension of the basic NH
model have the form (in one dimension)

m
dv

dt
= F (t) − γ (t)mv, (1)

dγ

dt
= τ−2

0

[(v

v̄

)2
− 1

]
, (2)

where t is the physical time in seconds, m is the particle mass, v
the velocity, F the fluctuating force, γ the damping coefficient,
τ0 the coupling time between the particle and the reservoir, and
v̄ the thermal velocity.

The choice of the force F is guided by the fact that it should
have zero mean, have a short autocorrelation, and be related
self-consistently to the reservoir. The following expression
satisfies such constraints

F = F0 sin(θ ), (3)

dθ

dt
= γ (t), (4)

with F0 the peak strength of the fluctuating force. The natural
scaling of this system results in the scaled variables used in the
numerical study,

u = v

v̄
, τ = t

τ0
, � = γ τ0, λ = F0τ0

mv̄
, η = x

v̄τ0
, (5)

in which x is the physical position (e.g., in cm) and η the scaled
position.

The scaled system becomes

du

dτ
= λ sin(θ ) + �u, (6)

d�

dτ
= u2 − 1, (7)

dθ

dτ
= �. (8)

The system defined by the choice λ = 1 has been found, after
numerical surveys, to provide the best description for a free
particle in contact with a heat bath.

In making later comparisons between the single NH ther-
mostat and the dual Martyna-Klein-Tuckerman (MKT) ther-
mostat, a parameter h is included, with the system of equations
now taking the form

du

dτ
= sin(θ ) + h sin(α)

1 + h
− �u, (9)

d�

dτ
= u2 − 1 − h�ξ, (10)

h
dξ

dτ
= h(�2 − 1), (11)

dθ

dτ
= �, (12)

h
dα

dτ
= hξ, (13)

in which the choice h = 1 corresponds to the MKT model, and
h = 0 recovers the NH model.

In writing the fluctuating force in Eq. (9), the principle
has been followed that each thermostat generates an explicitly
uncorrelated force, although correlations develop through the
coupling to each of the thermostats. Another obvious possi-
bility for the dual force associated with the MKT model is of
the form sin(θ + α), which has also been explored, but due
to the explicit phase correlations that can appear, the thermal
character of the particle motion is not as good as that obtained
with the additive expression in Eq.(9).

The system defined by Eqs. (9)–(13) has an effective energy
function

U = u2

2
+ �2

2
+ hξ 2

2
+ θ + hα, (14)

and a corresponding conservation of energy,

dU

dτ
= u

(
sin(θ ) + h sin(α)

1 + h

)
, (15)

in which the right-hand side shows the power exchanged
between the particle and the reservoirs through the fluctuating
force. In general the reservoirs start interacting with the particle
with unknown phases that are equally probable, (θ0, α0). In the
numerical results shown in Sec. III averages over these initial
phases are made, which from Eq. (15) correspond to

〈
dU

dτ

〉
= 0. (16)

The chaotic dynamics is governed by the nonlinear interplay
(e.g., frequency mixing, harmonics, half-harmonic genera-
tion) of several characteristic frequencies and decay times
that are embedded in various subelements of the system of
Eqs. (9)–(13). These frequencies appear later when examining
spectral features in Fig. 7. They can be extracted by analyzing
the linear response about possible stationary points, i.e., for
a stationary value g0 associated with a given variable g the
linear response is written as g = g0 + g̃esτ , where the complex
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exponent s is one of the eigenvalues of the corresponding
system determinant and g̃ a constant initial value. Next the
relevant eigenvalues are identified.

It is evident from Eqs. (11) and (12) that for h = 1, the
fluctuation-MKT model does not have a global stationary
point, but for h = 0, the fluctuation-NH system does. The
associated stationary points are

�0, u0 = ±1, θ0 = nπ with n = 0,1 . . . . (17)

The corresponding (cubic) eigenvalue equation is

s3 + 2u0(u0s − cos θ0). (18)

Choosing each of the appearances of the factor u0 to have
the same value results in two equations,

s3 + 2(s ± 1) = 0. (19)

The two signs in Eq. (19) generate eigenvalues that are
the negative of each other; they simply represent time going
forward or backward, but the numerical values are the same.
The numerical values of the three roots for the positive sign in
Eq. (19) are

0.3855 ± i1.5639,−0.7709. (20)

As is shown later in Fig. 7, the numerical solution of
the nonlinear dynamics indicates that the frequency labeled
a = 1.56, found from Eq. (19), appears prominently. But,
surprisingly, it is also seen later in Fig. 7 that another frequency,
labeled c = 0.59, plays a key role in shaping the spectra. This
frequency does not correspond to the standard eigenvalues in
Eq. (19). What is peculiar is that this other frequency corre-
sponds to one of the eigenvalues of the expression obtained
from Eq. (18) when each of the factors u0 are allowed to attain
their stationary points separately. This split choice generates
the pair

s3 − 2(s ± 1) = 0. (21)

In analogy to Eq. (19) the two signs correspond to the
time-reversal solutions. For the positive sign in Eq. (21) the
numerical values of the corresponding three roots are

−0.8846 ± i0.5897,1.7693. (22)

There are two other frequencies that are present in the dynamics
and which appear in the spectra shown later in Fig. 7. One is
the ubiquitous frequency for velocity oscillations about the
equilibrium value u0 = ±1 for a free particle in contact with
the NH thermostat, labeled b = √

2. The other arises from
the eigenvalues associated with only the fluctuating force,
in the absence of the friction term in Eq. (6), but still with
the phase advance determined by the contact to the NH heat
bath in Eq. (8). In this limit, the eigenvalues are obtained
from the characteristic equation, s3 = ±2, namely (±0.63 ±
i1.09,±1.26), which identifies the other hidden frequency in
the dynamics, labeled d = 1.09.

Before examining the numerical solution of the model
equations it is worth emphasizing that the new force term
preserves the time-reversal properties intrinsic to the NH
and MKT thermostats. Also, no stochasticity is explicitly
introduced by the new force term. The chaotic behavior to
be illustrated in the following section is thus a manifestation
of “deterministic chaos.”

III. NUMERICAL RESULTS

The numerical results presented in this section are obtained
by solving Eqs. (9)–(13) with a fourth-order Runge-Kutta
method using a time step dt = 10−3, as is typical of studies
of this subject. Characteristically, the calculations are stored
every 20 steps for further analysis, for a total time record of
τ = 5000. When performing phase averages, 200 values of
θ0 and 50 values of α0, distributed uniformly in (0,2π ), are
sampled.

A. Self-heating

For thermostat models in which only a friction force is
present, as in the NH and MKT systems, a free particle
whose initial velocity is zero remains at rest forever. To
explore heating-related issues in those systems, a range of
nonzero initial velocities must be considered. That is not
the case in the present model because the fluctuating force
provides an effective “zitterbewegun” that allows a single,
initially stationary particle to self-heat. The nature of this
trembling motion in the absence of the usual friction force
in the equation of motion, Eq. (9), but retaining the coupling to
the thermostats, has been investigated in detail. But for brevity
the corresponding figures are not shown.

It is found that without the friction term the behavior is
quite different for the two thermostats. In the case of NH,
there is a very rapid transient in the large time scale and is
followed by a nearly constant velocity. The reason for this
behavior is that Eq. (10), for h = 0, results in the damping
coefficient increasing linearly in time, and thus the phase
angle advances as θ ∼ τ 2, which causes the fluctuating force
to oscillate rapidly. Effectively, as time increases the particle
enters an inertial regime in which the oscillations are very small
compared to the mean velocity. The MKT system exhibits a
behavior more typical of chaotic dynamics, as expected from
the inclusion of an extra degree of freedom, i.e., two heat baths
that communicate with each other. For MKT the reservoirs
develop a self-consistent locking that results in relatively slow
oscillations of the effective fluctuating force compared to that
in the NH model.

For both the NH and MKT models the combined action of
the fluctuating force and the friction force causes a particle to
execute nonperiodic oscillations in the positive and negative
directions. The magnitude of the velocity swings is bounded
to the range |u| � 4, with the MKT model displaying more,
lower-frequency structures, than the NH model. Figure 1 shows
the chaotic phase space, (�,u), formed by the velocity and
the damping coefficient, under the combined action of the
fluctuating force and the friction force. The figure displays
only points sampled after 100 computation steps. It is seen
from Fig. 1 that the use of two reservoirs in the MKT model
results in a more dense, and symmetric, population of the phase
space than in the NH model.

The approach to equilibrium by a single particle initially
at rest, with initial phases θ0 = 0, α0 = 0, and coefficients
�(0) = 0, ξ (0) = 0 has been analyzed (but not shown) by
examining the time dependence of the running time average
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FIG. 1. Chaotic phase space (�,u) generated when the fluctuating
force and damping force act together for the MKT model (left panel)
and NH model (right panel) for a particle initially at rest. Display
shows points sampled after 100 computational steps over the time
interval 0 < τ < 5000.

of the square of the scaled velocity

〈u2〉τ = 1

τ

∫ τ

0
ds[u(s)]2. (23)

It is found that the NH model approaches the expected value,
〈u2〉τ = 1 on a time scale of τ ≈ 250, more rapidly than
the MKT model, which displays a relaxation time close to
τ ≈ 1500.

To complement the information about the self-heating,
Fig. 2 presents an example of the time dependence of the
self-consistent, fluctuating force for the MKT model [Fig. 2(a)]
and the NH model [Fig. 2(b)]. Note that the time interval
shown, 0 < τ < 100, is small compared to that sampled in
Fig. 1.

B. Correlations

The behavior of the velocity autocorrelation function,

Cu(τ ) =
∫ T

0 ds u(s + τ )u(s)∫ T

0 ds[u(s)]2
, (24)

is examined for the choice of the maximum time, T = 5000,
corresponding to the entire time interval displayed in Fig. 1.

Figure 3 illustrates the effect of the fluctuating force on the
velocity correlations associated with the NH and the MKT
models. To make this comparison it is necessary to start
with a nonzero initial velocity, taken here as u(0) = 0.5. The
top (blue) curve in both panels corresponds to the velocity
autocorrelation function with only the frictional force affecting
the particle motion. It is evident that both of these systems are
strongly correlated, as is well known. The bottom (red) curves
on both panels show the autocorrelation functions when the
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FIG. 2. Typical time dependence of the self-consistent, fluctu-
ating force for (a) the MKT model and (b) the NH model. Note
the small time interval shown, 0 < τ < 100, in comparison to that
in Fig. 1.

fluctuating force is activated. It is seen that the correlations are
effectively destroyed over times τ > 10, with the NH model
displaying a shorter decorrelation time scale than the MKT
model.

C. Frequency spectra

Insight about the dynamical processes is obtained from the
features of the frequency spectrum. In generating the various
spectra from the numerical time series, a Hanning window is
applied.

Figure 4(a) shows the time evolution of the scaled velocity
for the NH model over a short time interval, 600 < τ < 700.
The striking feature is the appearance of large, narrow pulses,
embedded in much slower oscillations, with their appearance
time, τj , seemingly random. The black curve is the numerical
solution, and the red curve is an analytical, Lorentzian function,
centered on one of the pulses, i.e.,

L(τ ) = Aτ 2
L

(τ − τj )2 + τ 2
L

, (25)

in which A represents the peak amplitude of a pulse and τL its
width. For the pulse selected at τj = 629.6, A is adjusted to
match the peak and τL = 0.51. Figure 4(b) shows the isolated
pulse on an expanded time scale; it is seen that the shape of the
pulse is indeed a Lorentzian function. The deviation between
the black and the red curve for large time differences arises
because the pulse is embedded in lower-frequency oscillations.
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FIG. 3. Effect of fluctuating force on the velocity autocorrelation
function for a particle with an initial scaled velocity u = 0.5 for
(a) MKT model and (b) NH model. The top blue curve in each panel
only includes the frictional force. The bottom red curves show the
decay of the correlation when the fluctuating force is included.

The significance of the Lorentzian shape of the pulse is
that the corresponding frequency spectrum has an exponential
dependence on the frequency f ,

L̃(f ) = πAτLe−2πτLf ei2πτLf . (26)

For a dynamical system in which the distribution of widths is
narrow, and the appearance of the pulses is weakly correlated,
as is typical of chaotic phenomena, a distinct signature is an
exponential frequency dependence for the ensemble average
of the amplitude of the frequency spectrum of the relevant
physical variable, say, S,

〈|S̃(f )|〉 ∝ e−2πτLf . (27)

The broadband spectra of the classic models of chaotic
systems have been shown in the numerical studies by Ohtomo
et al. [22] to follow such an exponential dependence. Basic
laboratory studies of heat transport in plasmas [23] have
measured the individual Lorentzian pulses and identified that
they are the cause of the associated exponential spectra, and
of the chaotic behavior [24]. A related analytical study [25]
has demonstrated the origin of such unique pulses. They are
the ubiquitous flights around fixed points in the underlying
phase space; their width is determined by the associated linear
eigenvalues.

Figure 5 shows a segment of the phase-space evolution of
the variables (�,u) associated with Fig. 4 and corresponding

600 610 620 630 640 650 660 670 680 690 700

SCALED  TIME

-3

-2

-1

0

1

2

3

S
C

A
L

E
D

  V
E

L
O

C
IT

Y

NH  THERMOSTAT

(a)

624 626 628 630 632 634 636

SCALED  TIME

-2

-1

0

1

2

3

S
C

A
L

E
D

  V
E

L
O

C
IT

Y

EXPANDED  SCALE

(b)

FIG. 4. Small-scale temporal structure of the scaled velocity in
the NH model. (a) The interval, 600 < τ < 700, during which several
sharp pulses are present. Superposed on the black time trace is a
red curve consisting of a Lorentzian function chosen to line up with
one pulse. (b) An expanded view. The width of the Lorentzian is
τL = 0.51. Similar results are obtained for the other narrow pulses.

to the NH model. The more complex blue trajectories arise
from the interval displayed in Fig. 4(a). The thicker red
curve highlights the trajectory that belongs to the Lorentzian
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FIG. 5. Phase space (�,u) evolution associated with Fig. 4. The
blue curve corresponds to the longer-time interval shown in the top
panel, Fig. 4(a). The red curve is the phase-space trajectory associated
with the expanded pulse in the bottom panel, Fig. 4(b). The flight
around the quasistationary point (� = 0, u = 1) is the Lorentzian
pulse, lasting a characteristic time τL = 0.51.
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FIG. 6. Phase-averaged, frequency spectrum of velocity variable
for the NH model. (a) A log-linear display and (b) a log-log display.
The blue curve is the numerical result, averaged over 200 initial
values of θ . The red curves correspond to an exponential frequency
dependence with a Lorentzian temporal width τL = 0.54.

pulse shown in Fig. 4(b). It is evident from this display that the
sharp, intermittent pulses are rapid, Lorentzian flights around
the quasistationary fixed points � = 0, u = ±1.

Figures similar to 4 and 5 have been generated for the
MKT model but for brevity are not shown. They demonstrate
that the MKT model displays the same dynamical behavior
as the NH model, as expected for a chaotic system. It exhibits
the characteristic intermittent pulses, Lorentzian shape, and
rapid phase-space flights. The Lorentzian width for a typical
MKT pulse is τL = 0.57. The conclusion drawn from such
analysis is that the fluctuating force transforms the NH and
MKT thermostats into intrinsically chaotic systems.

It should be noted that the results shown in Figs. 4 and 5
pertain to a single particle started with zero velocity, and
zero starting phases, as is necessary to study a representative
trajectory that undergoes self-heating by the fluctuating force.
The features to be examined next are ensemble averages over
the initial phases but keeping the initial velocity equal to
zero.

Figure 6 displays the ensemble average of the amplitude of
the velocity spectrum for the NH model. The scaled frequency
in the figure is the frequency f . The left panel uses a log-linear
format, and the right panel a log-log format, as is typically done
in turbulence studies. The purpose of using the two displays is
to illustrate that the multiple power laws apparent in the log-
log display, which could suggest misleading interpretations,
are nothing but an exponential dependence resulting from the
Lorentzian pulses. The dark blue curves are obtained from
the numerical solution, and the red curves are exponentials
given by Eq. (27), for a value τL = 0.54, while the fit to a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SCALED  FREQUENCY

0

100

200

300

400

500

600

700

800

900

1000

A
M

P
L

IT
U

D
E

  O
F

  V
E

L
O

C
IT

Y
  S

P
E

C
T

R
U

M

c+a-b

c+b-a

c

a

b

3a-b-c

a+b+c

FIG. 7. Coherent peaks in the phase-averaged, frequency spec-
trum of velocity variable for the NH model. To be compared to Fig. 6.
The red frequency markers labeled (a), (b), and (c) correspond to
the intrinsic frequencies of the system: a = 1.56, b = √

2, c = 0.59.
The nonlinearly generated, spectral lines are all combinations of these
basic frequencies, as identified by the arrows next to them.

single-phase, isolated pulse, shown in Fig. 4, is τL = 0.51. It is
also evident that the broadband base of the spectrum described
by Eq. (27) is punctuated by large-amplitude, coherent peaks
of relatively low frequency.

Figure 7 focuses on the low-frequency features of Fig. 6,
using a linear display. The dark blue curve is obtained from
the numerical solution. There are three red vertical lines
acting as markers corresponding to the angular frequencies:
a = 1.56, b = √

2, c = 0.59. These angular frequencies have
been previously identified in Sec. II; a is the magnitude of the
imaginary part of the complex root in Eq. (20), b is the angular
frequency of a free particle without the fluctuating force, and
c is the magnitude of the imaginary part of the complex root in
Eq. (22). The arrows connecting to the various peaks indicate
the combinations of these basic frequencies that are responsible
for their appearance. It is clear that the fluctuating force allows
for nontrivial, frequency-coupling channels to be excited.
These features may be manifestations of properties previ-
ously identified with strange nonchaotic attractors [26–28].
It is emphasized that analogous results to those shown in Figs. 6
and 7 have been obtained for the MKT model but for brevity
are not shown. The MKT model also displays the characteristic
exponential frequency dependence with a characteristic value
τL = 0.54, while the fit to a single-phase, isolated pulse has
τL = 0.57. However, it is to be noted that the frequency
combinations leading to coherent peaks are different. For the
MKT model the largest peak appears at an angular frequency
equal to c/2, the second largest is at an angular frequency equal
to d = 1.09, and a smaller peak is discernible at an angular
frequency equal to 9c/2.
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FIG. 8. The velocity distribution functions for the MKT and NH
models are shown in (a), and the corresponding distributions for the
� damping coefficient are displayed in (b), all using a linear scale.
The MKT curves are smoother because they are averaged over an
ensemble that is 50 times larger than for the NH system.

D. Distributions

Distribution functions for a given quantity are constructed
from the numerical solutions by binning within 41 bins, the
values attained over 50,000 stored time steps, for a given
initial phase. The phase-averaged distributions are generated
by adding the individual distributions for an ensemble of initial
phases.

Figure 8(a) displays the phase-averaged, velocity distri-
bution functions for the MKT and NH models, in a linear
scale. It is seen that the NH model (black curve) has a
deficit of low-velocity particles and, as a consequence, is
a bit wider at the waist. In contrast, the MKT model (red
curve) has a rounded, overpopulated, group of low-velocity
particles. Figure 8(b) shows the phase-averaged distribution of
the associated damping coefficient �. The MKT (red curve)
does show a much closer approximation to a Maxwellian
distribution, with the peak looking more parabolic. However,
the NH model (black curve) shows significant departures,
notably, it seems to have a net, positive bias. To some extent
the variations of the NH model are enhanced over those of the
MKT model due to the smaller ensemble sampled (50 times
smaller).

Figure 9 presents a log-linear display of the distribution
functions for the MKT model. The left panel is the velocity
distribution function and the right panel the � distribution.
The blue crosses are the individual numerical values calculated
and the red curve is an analytic Maxwellian distribution for
ū2 = 1. The fit for the damping coefficient is quite close to
a Maxwellian, but the velocity distribution does show a more
square behavior at low velocities.
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FIG. 9. Distribution functions for the MKT model displayed in a
log-linear scale. The blue crosses are the individual values from the
numerical solution and the red curve is a Maxwellian distribution with
ū2 = 1. (a) Velocity distribution function. (b) Distribution function of
� damping coefficient.

E. Diffusion

The diffusive behavior is examined by constructing the
running time average of the square of the (scaled) particle
position, η = x/l, for a given initial phase,

〈η2〉τ = 1

τ

∫ τ

0
ds[η(s)]2. (28)

The phase-averaged, square displacement is generated by
adding the individual results of Eq. (28) for an ensemble of
individual phases.

To compare the scaled numerical results to the Einstein
relation, use is made of the standard definitions for the diffusion
coefficient D and the mobility μ,

〈x2〉 = 2Dt, 〈v〉 = μG, (29)

for an applied constant force G to a particle undergoing
Brownian motion. With the scaling defined in Eq. (5), the
Einstein relation is connected to the quantities that can be
numerically evaluated, namely

D

μT
= 〈η2〉/2τ

〈u〉/E , (30)

where E now represents the additional, scaled, constant force
to be added to the system of Eqs. (9)–(13) used in the numerical
solution and T is the temperature of the heat bath. The Einstein
relation states that the ratio on the right-hand side of Eq. (27)
is unity.

Figure 10 displays the time dependence of the average of
the square displacement for the MKT (red curve) and the
NH (black curve) models. The blue, straight lines are fits
to the numerical results to illustrate that the self-consistent,
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FIG. 10. Time evolution of the averaged, square displacement,
〈(�x/l)2〉, for the MKT and NH models demonstrates that the
behavior is diffusive. The blue straight lines are fits to the numerical
solution; their slope determines the value (twice) of the respective
diffusion coefficient. The MKT curve shows smaller fluctuations
because it is averaged over an ensemble that is 50 times larger than
for the NH system.

fluctuating force induces diffusive behavior on a free particle
for both models. The scaled diffusion coefficient for the MKT
model is 1.45, and 0.69 for the NH model, roughly different
by a factor of 2.

To extract the mobility coefficient, a pulsed force is applied.
The reason is that this is a dynamical system with an inherent
inertia. It takes a finite time to reach a steady state for a given
strength of the applied force. If the force is too large, then the
system runs away and enters a ballistic regime. If the force is
too small, then the fluctuations overwhelm the small induced
velocity, i.e., it is below the noise floor. Thus, only a narrow
range of values of E result in a valid test of the Einstein relation.
An example is illustrated for the NH model in Fig. 11. In this
case E = 0.049. The red curve shows the time evolution of the
mobility induced by the temporal pulse shown; it has a top-
hat shape over the interval 300 < τ < 2500. After a transient
stage, the mobility tends toward a steady value of 0.56. After
the pulse is turned off, the average velocity experiences a slow
decay. A similar behavior is also obtained for the MKT system
(not shown). For this other model an applied force of strength
E = 0.03 yields a steady mobility value of 0.76.

Defining the right-hand side of Eq. (30) as the Einstein ratio,
the results shown in Figs. 10 and 11 yield a value of 1.23 for the
NH model and 1.81 for the MKT model. For the NH model it is
found that an additional velocity average over 11 initial values,
u(0), ranging over −4 < u(0) < 4 results in an Einstein ratio
of 1.07. Thus, within the statistical uncertainty, the behavior
of the NH model can be said to agree quantitatively with the
Einstein relation.

Figure 12 illustrates the transition from diffusive to ballistic
behavior for the NH model for an applied force E = 0.035.
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FIG. 11. Response to a pulsed, constant force for the NH model.
Red curve is the scaled, average-velocity, 〈u〉τ,θ , divided by the peak
strength of the force, i.e., the mobility. The average is over time
and over initial phases. A steady flow is established from which the
Einstein relation is tested, using the diffusion coefficient from Fig. 10.
The temporal shape of the applied pulse is shown near the bottom.
After the pulse is off, the mean velocity decays.

The black curve is the time evolution of the averaged, squared
displacement; it is the diffusive behavior shown earlier in
Fig. 10 in the absence of an external pulse. The red curve
is the behavior when the pulse shown at the bottom of the
figure is activated. It is seen that while the pulse is “on” the
displacement increases quadratically (or slightly faster). But
when the pulse is turned off, the particle returns to the diffusive
behavior induced by the fluctuating force. The two blue straight
lines have the same slope, equal to that fitting the behavior of
the NH model in Fig. 10.

IV. CONCLUSIONS

This study has shown that the inclusion of a self-consistent,
fluctuating force into the dynamical equation transforms the
NH and MKT deterministic thermostats into “deterministic
chaotic systems.” The fluctuating force is linked to the damping
coefficient that connects the particle velocity to the heat bath.
In a sense, this addition better mimics a physical situation
in which a free particle embedded in a thermal environment
experiences both a complicated force with zero-mean value
and also friction. But, physically, the fluctuating force and
the damping have the same deterministic origin, namely the
interaction with the larger elements that constitute the heat
bath. In the simplest model considered here this interaction
is summarized by two parameters: the thermal velocity v̄ and
the coupling time-constant to the heat bath τ0. Using these
quantities to scale the dependent and independent variables
yields a universal system that, in principle, is relatively simple.
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FIG. 12. Transition from diffusive to ballistic behavior for the NH
model. The red curve is the temporal evolution of the averaged, square
displacement, 〈(�x/l)2〉, resulting from the application of a pulsed
force. The black curve is the diffusive behavior without the force.
The two blue, straight lines signal path of diffusive behavior obtained
from Fig. 10. They are connected by a regime of ballistic behavior
(parabolic) during application of the pulse. After the pulse is off, the
diffusive behavior returns.

The consequences of the fluctuating force have been
investigated numerically for two well-known deterministic
thermostats: the NH model and the MKT model. A significant
improvement on both models caused by the fluctuating force
is that the velocity autocorrelation function decays rapidly. As
a result, it is found that for both models the additional force
induces diffusive motion for an initially stationary particle,
with the MKT model displaying a diffusion coefficient D ≈
1.45v̄2τ0, which is approximately a factor of 2 larger than that
for the NH model. The application of an external constant force
results, within a limited range of the strength of the applied
force, in a value for the mobility coefficient that for the NH
model is quantitatively equal, within statistical uncertainty, to
that predicted by the Einstein relation. For the MKT model
the value is a factor of 2 larger. This discrepancy conjures the
possibility that its remedy may be achieved by increasing the
number of thermostat variables in the MKT system. This is an
intriguing question whose answer requires a dedicated study.

The fluctuating force results in a velocity distribution
function for the MKT model that comes close to being a
Maxwellian, except for an increase in the low velocity particles.
For the NH model the chaotic fluctuations induce a significant
decrease in the number of low-velocity particles, resulting in
a wider waist. But the distribution function for the damping
coefficient that couples to the heat bath shows a remarkable
good fit to a Maxwellian function for the MKT model. For the
NH model, it shows significant departures from a Maxwellian.
These comparisons suggest that the chaotic extension of the
MKT thermostat provides a closer approximation to thermal
behavior within a purely deterministic description.

For both thermostat models the fluctuating force causes
the spectra of all (not all shown here for brevity but have
been individually verified) the relevant variables to exhibit the
characteristic exponential frequency dependence associated
with chaotic systems. It has been demonstrated that such
spectra are the consequence of intermittent, sharp pulses that
have a unique Lorentzian shape. Topologically, the pulses
correspond to rapid flights around quasistationary points in
the (�,u) phase space. This explicit finding has dual impli-
cations. In the context of the present work, it demonstrates
that the fluctuating force results in a self-consistent chaotic
system, i.e., it transforms a deterministic thermostat into a
“deterministic chaotic thermostat.” From the point of view
of the study of chaotic dynamics, the results shown provide
new examples of dynamical systems in which the connection
between Lorentzian pulses and exponential frequency spectra
has been established [29,30]. However, since the spectra of
Fig. 6 indicates that coherent features are also present, the
system does not achieve a state of complete chaos. Thus, it
seems worthwhile to pursue in a future study the connection
of the “degree of chaos” to parameter tuning by using various
mathematical measures of chaos.

In summary, a chaotic extension of deterministic ther-
mostats is found to better approximate the interaction of a
classical particle with a heat bath. Future studies of more
complex situations in which the fluctuating force is included
appear to be worth pursuing.
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