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Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses
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It has been recently shown [E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)]
that the nonphononic vibrational modes of structural glasses at low frequencies ω are quasilocalized and follow
a universal density of states D(ω)∼ω4. Here we show that the gapless nature of the observed density of states
depends on the existence of internal stresses that generically emerge in glasses due to frustration, thus elucidating
a basic element underlying this universal behavior. Similarly to jammed particulate packings, low-frequency
modes in structural glasses emerge from a balance between a local elasticity term and an internal stress term in the
dynamical matrix, where the difference between them is orders of magnitude smaller than their typical magnitude.
By artificially reducing the magnitude of internal stresses in a computer glass former in three dimensions, we
show that a gap is formed in the density of states below which no vibrational modes exist, thus demonstrating the
crucial importance of internal stresses. Finally, we show that while better annealing the glass upon cooling from
the liquid state significantly reduces its internal stresses, the self-organizational processes during cooling render
the gapless D(ω)∼ω4 density of state unaffected.
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The statistical and structural properties of low-frequency
vibrations in structural glasses have been the focus of many
experimental [1–3], theoretical [4–7], and computational
[8–12] research efforts for a few decades now. It is now estab-
lished [11–15] and quite widely accepted that (i) low-frequency
glassy (nonphononic) vibrations in generic structural glasses
in three dimensions follow a universal gapless density of
states D(ω) ∼ ω4, where ω denotes the frequency, and (ii) the
modes that populate the ω4 regime are quasilocalized—they
feature a localized, disordered core that is either decorated
by a power-law spatial decay away from the core [11], or
accompanied by an elastic-wave-like background [15–17]. The
participation ratio (see the precise definition below) of these
modes scales as N−1, where N is the number of particles in
the glass. Effective-medium [6] and other mean-field theories
[7] fail to capture this behavior of the vibrational density of
states (vDOS); they predict instead D(ω) ∼ ω2, independently
of the spatial dimension, and cannot (by construction) predict
the quasilocalization of glassy modes.

The physical origin of the universal ω4 law in the vDOS of
structural glasses is still a subject of current investigation. In
[14] it has been found that some extreme cooling conditions of
computer glassy samples can give rise to vDOSs that grow as
ωβ with β < 4. Notwithstanding, in the same work it has also
been shown that any physically realistic cooling rate (i.e., in
which heat is extracted at a rate that is much slower than the
inverse vibrational time) results in a glass that exhibits the ω4

law, highlighting the role of the self-organizational processes
that the glass undergoes as it explores lower-energy states upon
cooling.

In this paper, we focus on the role of frustration-induced
internal stresses in forming the gapless ω4 vDOS observed in
generic structural glasses. We show that a careful, artificial
reduction of the degree of frustration-induced internal stresses

in the glass leads to the opening of a gap in the vDOS, and
the suppression of quasilocalized vibrational modes. In [15]
it was shown that a complete, artificial relaxation of internal
stresses in harmonic soft spheres near unjamming leads to
the disappearance of quasilocalized vibrational modes. Here
we perform a quantitative study of the gradual suppression
of quasilocalized vibrational modes as internal stresses are
relieved. In the model studied, we find that reducing the
internal stresses by merely 3% leads to the elimination of
the quasilocalized vibrational modes that populate the ω4

regime of the vDOS.
We employ a generic computer glass forming model: a

50:50 binary mixture of “large” and “small” particles in
three dimensions (3D) that interact via an inverse power-law
pairwise potential (∼1/r10, with r being the pairwise distance).
A detailed description of the model can be found, e.g., in
[14]. Glassy samples are prepared by continuously cooling
high-temperature liquids states at a rate of Ṫ =10−3ε/(kBT τ )
[14], where ε is a microscopic energy scale, τ is a microscopic
time scale, and kB is Boltzmann’s constant. In what follows,
all data are reported in terms of the relevant microscopic units,
as defined in [14].

In our model system, the potential energy is given by a sum
over all pairs of particles, namely

U =
∑

α

ϕα(rα), (1)

where α labels pairs and rα is the distance between the particles
in each pair. In the harmonic approximation of the potential
energy U � U0 + 1

2 x · M · x, expressed in terms of the dy-

namical matrix M ≡ ∂2U
∂x∂x (where x is the 3N -dimensional

vector of particles’ positions in three dimensions), any solid
comprised of particles that interact via radially symmetric
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pairwise potentials can be thought of as a collection of masses
connected by Hookean springs. The springs are characterized
by stiffness (local elasticity spring constants) given by the
actual interaction stiffness κα ≡ ϕ′′

α � 0, and a rest-length
determined by the internal forces (stresses) fα ≡ −ϕ′

α � 0.
The emergence of frustration-induced internal forces (stresses)
fα is a generic property of glasses [18]. The dynamical matrix
is then expressed as [19]

M =
∑

α

κα

∂rα

∂x
∂rα

∂x
−

∑

α

fα r−1
α

∂2rα

∂x∂x
. (2)

We thus observe that the dynamical matrix M is a dif-
ference between a contribution that involves a sum over the
local elastic constants κα and a contribution that involves a
sum over the internal forces (stresses) fα . Consequently, each
vibrational frequency ω=√

� · M · �, where � is the eigen-
vector corresponding to the eigenvalue ω2, can be expressed as
ω=

√
ω2

κ − ω2
f . We verified that low-frequency glassy modes,

with ω → 0 in the ω4 regime of the vDOS, emerge not because
ω2

κ and ω2
f are each small, but rather because their differ-

ence is small, orders of magnitude smaller than their typical
magnitude (data not shown). Similar observations have been
made for jammed packings of soft spheres [15,20]. This almost
perfect balance between the local elasticity contribution ω2

κ

and the internal stresses contribution ω2
f suggests that internal

stresses play a crucial role in the emergence of the universal
nonphononic ω4 law in the vDOS of structural glasses.

To directly test this idea, we artificially reduced the internal
stresses in our glassy samples by defining a parametrized
dynamical matrix M(δ) obtained from Eq. (2) by replacing
fα with (1 − δ)fα , where 0 � δ � 1. That is, these artificial
glassy states correspond to the harmonic approximation of the
original Hookean spring network in which the rest length of
each spring is altered so as to reduce the magnitude of the spring
force by a factor 1 − δ. The result of such an alteration would
be to decrease the magnitude of internal stresses by exactly
the same factor. The same procedure has been introduced and
utilized numerically to reduce internal stresses in packings of
soft harmonic spheres and disks near the unjamming point
[6,21]. Note that δ = 0 corresponds to the original glass and
that δ > 0 alters both the eigenvalues ω2 and the eigenvectors
� of the artificial glass compared to the original glass.

We calculated M(δ) in 50 000 independently quenched
glassy samples of N = 2000 particles [11], and we analyzed
the low-frequency regime of the corresponding vDOS Dδ(ω).
The results are presented in Fig. 1. For the unaltered system,
we cleanly observe the ω4 scaling, i.e., the spectrum is gapless.
Once δ > 0 is set, we find a gap formed in the vDOS, and at δ

as small as 0.03, the ω4 regime of the vDOS is fully suppressed.
The fact that such a small reduction in the internal stresses

is sufficient to suppress the ω4 regime of the vDOS can
be understood in the framework of a simple perturbation
theory to leading order in δ. The perturbed (parametrized)
dynamical matrix takes the form M(δ) = M + �M(δ),
where the perturbation �M(δ) satisfies � · �M · � = ω2

f δ.
The eigenmodes are also perturbed in the form � + ��,
where �� · � = 0 to leading order, due to the normalization
condition (� + ��) · (� + ��) = 1. Finally, the perturbed
eigenvalues take the form ω2 + �ω2.
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FIG. 1. Vibrational density of states Dδ(ω) measured for ensem-
bles of glassy samples characterized by the parameter δ that quantifies
the artificial reduction of internal stresses; see the text for its precise
definition. We find that a gap opens up as the parameter δ is increased
from zero. The scale ω0 = 2 was chosen for visualization purposes.

The shift in the eigenvalues can be readily calculated from
the following eigenvalue equation:

ω2 + �ω2 = (� + ��) · (M + �M) · (� + ��)

� � · M · � + � · �M · � = ω2 + ω2
f δ

=⇒ �ω2 = ω2
f δ, (3)

where �� · � = 0 has been used. Consequently, the analysis
predicts that the eigenvalues ω2 shift upward by ω2

f δ upon
increasing δ from zero, and therefore a gap at vanishing
frequencies that grows as ωf

√
δ should appear in the low-

frequency tail of the vDOS. In our system, we find ωf ∼ 10,
and a lowest phonon frequency of order unity. We thus expect
the ω4 tail of the vDOS to be fully suppressed when δ ∼ 10−2,
as indeed seen in Fig. 1.

We next consider the effect of artificially reducing internal
stresses on the degree of localization of glassy modes. The
latter is effectively quantified by considering the participation
ratio of each mode �, defined as e ≡ [N

∑
i(� i · � i)2]−1,

where � i is the three-dimensional vector of the Cartesian com-
ponents of � pertaining to the ith particle. e ∼ O(N−1) cor-
responds to quasilocalized glassy modes (in three dimensions)
[11,13], while e ∼ O(1) corresponds to extended phonons
(plane waves). In fact, it is known that the presence of phonons
with similar frequencies leads to their hybridization with glassy
modes, i.e., to a significant increase in their participation ratio
[13,22]. In Fig. 2(a), we plot the mean participation ratio
of vibrational modes eδ , binned over frequency, for systems
parametrized by the same values of δ as shown in Fig. 1. Inter-
estingly, we find that artificially relieving the internal stresses
leads to weaker hybridizations of glassy modes with phonons,
as evident by the sharper increase of e upon approaching the
first phonon peak. We note that the truncation of the eδ signals
below a δ-dependent frequency scale, marked by the arrows in
Fig. 2(a), is consistent with the truncation of the vDOS below
the same frequency scale, as seen in Fig. 1.

It is interesting to compare the effect of artificially reducing
the internal stresses on the localization properties of soft glassy

032140-2



FRUSTRATION-INDUCED INTERNAL STRESSES ARE … PHYSICAL REVIEW E 97, 032140 (2018)

10
−1

10
0

10
−2

10
−1

10
0

ω/ω0

e Ṫ
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FIG. 2. (a) Mean participation ratios eδ measured for vibrational modes calculated for systems in which the internal stresses are reduced by
a factor 1 − δ. The full symbols pointed at by the arrows mark the δ-dependent truncation frequency, defined as the ensemble-lowest vibrational
frequency for a given value of δ. The scale ω0 = 2 was chosen for visualization purposes. (b) Same as (a), but in ensembles of systems quenched
from the high-temperature liquid phase at a rate Ṫ as indicated by the legend.

vibrational modes to the effect observed by preparing glasses
with slower cooling rates Ṫ , which in turn also leads to a reduc-
tion of internal stresses. In Fig. 2(b), we show the results of the
same analysis of the localization properties of low-frequency
modes as shown in panel (a), applied this time to our thermally
annealed glasses. Details about the preparation of our ensem-
bles of glassy samples can be found in [14]. We find a similar
trend in these annealed ensembles to that observed in the
artificially stress-reduced samples: eṪ increases more sharply
toward the first phonon frequency in the better-annealed
samples. A stark difference appears, however, in the frequency
range in which the artificial reduction of internal stresses
suppresses the existence of soft glassy modes: in the thermally
annealed samples, no apparent truncation is observed, i.e., soft
glassy modes appear to persist down to zero frequency, and
their localization is stronger for better annealed samples.

The aforementioned difference between the appearance
of soft glassy modes in thermally annealed versus artifi-
cially stress-relieved samples can be directly gleaned from
their respective vDOS. In Fig. 3, we compare the vDOS
of glassy samples in which internal stresses were reduced
by a factor 1 − δ with δ = 10−2 (green squares) to systems
in which stresses are relieved by a slower quench, of Ṫ =
10−5ε/(kBT τ ) (brown circles). We quantify the magnitude σ

of internal stresses of each ensemble by measuring the sample-
to-sample standard deviation of the xy component of the
stress tensor −V −1 ∑

α(fα/rα)rα · x̂ŷ · rα , with V denoting
the volume. The measured value of σ of each ensemble is
compared to that found in the ensemble shown in Fig. 1 for
the reference glass [quenched at Ṫ = 10−3ε/(kBT τ )], δ = 0,
denoted by σ0 in the legend of Fig. 3. In the two compared
ensembles, internal stresses are reduced by ≈ 4% and 1% for
the better annealed glasses and the artificially stress-relieved
glasses, respectively. Despite the substantially larger reduction
of internal stresses in the annealed glasses, the spectrum of
those glasses appears to maintain its gapless nature, whereas
in the spectrum of the artificially stress-relieved glasses a gap
is created. Consequently, the annealed glass possesses many
more modes at the very lowest frequencies compared to the
artificially stress-relieved glasses.

To summarize, we have shown in this paper that artificially
reducing the internal stresses in a model structural glass leads
to the disappearance of low-frequency quasilocalized modes.
This implies that the existence of low-frequency quasilocalized
modes depends on the presence of such stresses, which are
generic in glasses [18]. We further demonstrated that although
better annealing of glasses can lead to a significant relieving
of internal stresses, its effect on the form of the density of
vibrational modes is qualitatively different compared to artifi-
cially reducing the internal stresses. This difference highlights
once again the marginal nature of structural glasses and the
importance of the self-organizational processes taking place
during cooling from the liquid state. An interesting question
to be addressed next is whether the gapless ω4 law observed
under mild annealing is robust to extremely slow annealing,
e.g., in vapor-deposited glasses [23], or glasses created by the
swap Monte Carlo method [24].
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FIG. 3. Comparison of the density of vibrational modes of glassy
samples in which internal stresses are reduced by a slower quench
(thermally annealed), or by the 1 − δ procedure as described above
(artificially annealed). The scale ω0 = 2 was chosen for visualization
purposes.
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