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In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from
radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical
symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the
radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction
is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and
scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through
a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to
an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously
varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying
two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the
physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM
scattering from the structure and validate strong performance of the lens.
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I. INTRODUCTION

Analysis of electromagnetic (EM) scattering from spherical
structures containing complex media, such as metamaterials
[1,2], anisotropic [3–8], bianisotropic [9–11], dispersive [12],
and inhomogeneous media [13–22], has always been among
the most interesting topics for researchers because of their
complicated constitutive relations, and therefore having more
involved parameters and degrees of freedom in design. Mean-
while, inhomogeneous media are of great importance owing to
their extensive use in lens antenna design [23–26] and trans-
parency [5,27]. In addition, according to the presented appli-
cations of inhomogeneous planar and cylindrical structures in
Refs. [28–32], using these media in spherical structures could
also result in potentially interesting applications. Along with
the above-mentioned investigations, several recent researches
in the field of inhomogeneous spherical structures show the
significance of analyzing EM scattering from these structures
[18–22]. Most studies in the field of spherical structures inves-
tigated the case of radial inhomogeneity [14–22] or anisotropy
[33], although Ref. [13] is one of the main investigations for
the analysis of EM scattering from a three-dimensional (3D)
inhomogeneous sphere, which is presented for the general
case. In all the studies in the field of radially inhomogeneous
media, to make use of the advantage of spherical symmetry,
a similar known angular dependency has been used based on
the spherical harmonics. These harmonics are orthogonal over
a spherical surface. The reason for the several investigations
in this field is to present different approaches to extract the
radial dependencies of EM fields in the inhomogeneous media.
Preliminary investigations on the analysis of EM scattering
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from radially inhomogeneous spherical structures (RISSs)
used approximate methods, namely Born approximation and
multilayer equivalent [14–17]. Contrary to these investiga-
tions, which are based on approximations, recent studies based
on hybrid (analytical-numerical) methods for the analysis
of RISSs were presented in the literature. In Refs. [18,19],
orthogonal Dini-type basis functions are used to solve the
electric field volume integral equation of an inhomogeneous
gyroelectric sphere. In Ref. [20], using spherical symmetry, the
3D integral equation for an inhomogeneous dielectric sphere
was converted to a 1D integral equation in the radial direction,
which simplified the analysis process and reduced calculation
weight. In Refs. [21,22], an approximate method is proposed
for the analysis of EM scattering from an inhomogeneous
sphere with a size that is smaller than the vacuum wavelength,
which allows using only the two lowest spherical harmonics.

In this study, an analytical approach for analysis of EM
scattering from RISSs using duality principle is proposed.
Similar angular dependencies in the researches mentioned are
used, which are based on spherical harmonics. The system of
differential equations describing the EM propagation is derived
toward the inhomogeneity direction accurately and directly
from the Maxwell equations. To solve the system of equations,
the results of the dual planar problem, which is far simpler
and previously solved, are used. The proposed duality is based
on equating the wave differential equations in the direction
of inhomogeneity and boundary conditions of the mentioned
two structures, which are the key elements for solving each
electromagnetic problem. The validity of the proposed duality
is verified for a special case of RISSs, which has an analytical
exact solution. The EM problems in spherical structures are
known to be difficult. Using inhomogeneous medium in such
structures can significantly increase the complexity of the
problem. Moreover, providing a mathematical method for
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FIG. 1. RISS: sphere core coated with a radially inhomogeneous
layer (a) and radially inhomogeneous sphere (b).

solving the governing equations requires intensive calculations
and substantial processing for these problems. Combining
the mentioned difficulties turns the analysis of RISSs into a
very complicated problem with an extensive analysis process.
The proposed duality overcomes the mentioned complexities
and difficulties by introducing a dual planar structure for
any RISSs, which is far simpler, well posed, and previously
solved. This study results in an accurate solution, using a
simple analytical approach. RISSs are divided into two general
(applicable) categories, namely an arbitrary spherical core
coated with an inhomogeneous layer and an inhomogeneous
sphere. Contrary to the mentioned studies in the literature,
one of the advantages of the current investigation is that both
applicable categories of RISSs are analyzed. In the last section,
an inhomogeneous dielectric sphere is introduced as a class of
lens antenna based on the basic concept of gradient refractive
index material. Comparing the results of the proposed method
and other conventional approaches confirms the applicability
and strong performance of the proposed lens antenna relative
to the Luneburg lens. The proposed approach can be used
for other interesting applications such as designing radar
absorbers, cloaks, and radomes in future researches.

II. PROBLEM DEFINITION

Consider a radially inhomogeneous spherical structure as
illustrated in Fig. 1. The mentioned structure is divided into
two general and practical categories, namely, a spherical core
coated with an inhomogeneous layer and an inhomogeneous
sphere, which are introduced in Figs. 1(a) and 1(b), respec-
tively. The core of the structure in the first category can be a
perfect electrical conductor (PEC), a perfect magnetic conduc-
tor (PMC), impedance surface, dielectric, or metamaterial [see
Fig. 1(a)]. It is assumed that the plane wave with Ex component
and amplitude of the electric field E0 propagating toward the
positive z direction illuminates the mentioned structures. The
transverse components of incident fields can be represented by
an infinite sum of spherical wave functions in the following

manner [34]:
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+Ĵn(k0r)P 1
n (cos θ)
sin θ

)
,

(1)

Einc
φ = E0

sin φ

k0r

∞∑
n=1

j−n 2n + 1

n(n + 1)

(
j Ĵ
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where k0and η0 are the wave number and intrinsic impedance of
the surrounding media, respectively. According to the physical
concept of the problem, as a portion of the incident EM wave
power penetrates into the inhomogeneous layer, the problem
of EM wave propagation in the inhomogeneous media must be
addressed. Because the inhomogeneity is only toward the radial
direction, the problem has spherical symmetry. Therefore, sim-
ilar to previous studies in the field of radially inhomogeneous
media [18–22], the angular dependency can be shown with
respect to spherical harmonics in the following manner. These
harmonics are orthogonal over a spherical surface,

ψm,n(θ,φ) = P m
n (cos θ )ejmφ. (5)

According to the definition of incident plane wave with Ex

component (m = 1 is assumed) as the inhomogeneous medium
that is assumed to be linear, the general form of spatial
dependency of the auxiliary vector potentials for TEr and TMr
modes is shown as follows, based on spherical harmonics:
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where Ainh,n
r (r,ω) and F inh,n

r (r,ω) represent the radial and
frequency dependency of auxiliary potentials in a radially
inhomogeneous medium and satisfy the following equations
(see Appendix A):
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where εcomp(r,ω) = ε(r,ω) + σ (r,ω)/jω. These equations do
not have an analytical solution except for in some special cases.
The general form of spatial dependency for the transverse
components of EM fields can be defined in the following way:
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where
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The extraction of the above equations from auxiliary poten-
tials and the relation between EM fields are described in
detail in Appendix A. E

inh,n
φ,F (r,ω), E

inh,n
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inh,n
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and H
inh,n
φ,A (r,ω) represent the radial and frequency dependency

of transverse fields. In the following, the extraction of the
mentioned dependencies as the key parameters of the problem
is discussed. Replacing the electromagnetic fields by Maxwell
equations and equating the components with the same angular
variation, the differential equations system of wave propaga-
tion toward the direction of inhomogeneity is derived:
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FIG. 2. The dual IPL.

∂
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H
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= −jωεcomp(r,ω)Einh,n
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The differential equation system in (20)–23 has no exact
solution except for some special cases. Similar to previ-
ous studies in the field of planar and cylindrical structures
[28–32], the process of derivation of EM field variation in the
direction of inhomogeneity are based on the solution of the
wave propagation system of differential equations. Therefore,
the difference between equations form and the process of
extracting them in comparison with the recent studies in the
field of radially inhomogeneous spherical structures is obvious
and expected [18–22]. However, it is of significant importance
to mention that all the relations and equations in this study are
derived directly and exactly from Maxwell equations, which
ensures a converged unique solution for the problem. It is
clear that the process of solving the system of equations and
extracting the radial dependency of the fields is difficult. In
addition, proposing a mathematical solution for the mentioned
system requires extensive and complex calculations, which
increase the difficulty of the problem. To simplify the analysis
process, an approach based on the duality principle is proposed.
This approach uses the results of the dual inhomogeneous
planar problem, which is far simpler and more well posed than
the main problem in spherical coordinate. In addition, various
analytical methods are presented in the literature to solve the
dual problem. In the next section, the equations of the dual
planar structure and duality relations are presented.

A. Dual IPL

Consider an inhomogeneous planar layer (IPL) as illustrated
in Fig. 2. The plane wave propagates toward the −z direction
and the structure is obliquely illuminated. The system of
differential equation describing EM wave propagation in an
inhomogeneous layer is obtained similar to [35,36] in the
following form:

(i) for T Ez,

∂Ey(z,ω)

∂z
= jωμ(z,ω)Hx(z,ω) (24)

∂Hx(z,ω)
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=

(
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2
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)
Ey(z,ω); (25)
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TABLE I. Comprehensive duality between electromagnetic
fields, electromagnetic parameters.

IPL ISL

−zEy(z,ω) E
inh,n
φ,F (r,ω)

zHx(z,ω) H
inh,n
φ,F (r,ω)

zHy(z,ω) H
inh,n
φ,A (r,ω)

zEx(z,ω) E
inh,n
φ,A (r,ω)

μ(z,ω)
z

μ(r,ω)
ε(z,ω)

z
ε(r,ω)

σ (z,ω)
z

σ (r,ω)

−1±
√

1+4kx
2

2 n

(ii) for T Mz,

∂Hy(z,ω)

∂z
= −jωεcomp(z,ω)Ex(z,ω) (26)

∂Ex(z,ω)

∂z
= −

(
jωμ(z,ω) + kx

2

jωεcomp(z,ω)

)
Hy(z,ω),

(27)

where kx = k0sinθ and k0 is the wave number of region 1
(see Fig. 2). To derive the duality, similar to the spherical
structure, an inhomogeneous planar layer is located at z =
[Ri,Ro]. In addition, regions 1 and 2 in Fig. 2 have the same
EM parameters with the surrounding medium and core in
the RISS, respectively. For PEC, PMC, and impedance cores
similar boundary conditions are considered at z = Ri . By
comparing (20)–(23) with (24)–(27), it can be clearly seen that
the equations describing the components of EM field related
to A and F potentials in RISSs and those of planar structure
for TEz and TMz polarizations are similarly uncoupled. This
fact is the primary basis of the duality establishment between
inhomogeneous spherical and planar structures presented in
Table I. This duality is explained as an analytical approach for
the analysis of EM scattering.

In the analysis of scattering problems, satisfaction of
boundary conditions is as important as extraction and solving
the wave equations. Therefore, in the following, the duality
between boundary conditions for both structures is presented.
For this purpose, the general forms of vector potentials in the
homogeneous surrounding medium and dielectric, or metama-
terial, core are presented in the following manner:

As
r = E0 sin φ

η0ω

∞∑
n=0

anĤ
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∞∑
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∞∑
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TABLE II. Comprehensive duality between scattering parameters.

IPL ISL
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′
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where a kd is the wave number of the dielectric or metamaterial
core, and s and t superscripts represent scattered fields from the
structure and fields that are propagated in the core, respectively.
According to the spherical symmetry of the problem, a similar
angular variation is considered in the above equations, and the
radially inhomogeneous medium, which is based on spherical
harmonics, is similar in both. The scattered wave from the
structure and the transmitted ones in the core can be easily
extracted from the mentioned potentials and their relations with
EM fields [34]. In addition, the calculation process for the
transmitted and reflected waves from the dual IPL is explained
exclusively in [35,36]. Equating the boundary conditions in
the inhomogeneous spherical and planar structures, the rest of
the equations needed for completing the duality approach are
obtained and presented in Table II, where T T E and T T M are
transmitted coefficients of TE and TM modes, respectively, and
the other parameters can be presented in the following manner:

A = j−n 2n + 1

n(n + 1)
Ĵn(k0Ro), (32)

B = Ĥn
(2)

(k0Ro), (33)

C = j−n 2n + 1

n(n + 1)
j Ĵ

′
n(k0Ro), (34)

D = jĤ
′
n

(2)
(k0Ro), (35)

MT E = (ejkzRo + 
T Ee−jkzRo ), (36)

NT E = (ejkzRo − 
T Ee−jkzRo ), (37)

MT M = (ejkzRo + 
T Me−jkzRo ), (38)

NT M = (ejkzRo − 
T Me−jkzRo ), (39)

θt = sin−1

(
kx

kd

)
, (40)

kz1 = kd cos(θt ), (41)

where θt is the transmission angle. In addition, εd and μd are
EM parameters of the dielectric or metamaterial spherical core.

T E and 
T M are the reflection coefficients for TE and TM
modes for planar structure, respectively. Details of the deriva-
tion of the duality between the two structures are explained
completely in Appendix B. Through previous sections, the
problem of EM scattering from a spherical core coated with a
radially inhomogeneous layer was addressed. In the following,
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the analysis of scattering from an inhomogeneous sphere is
presented as another set of applicable RISSs.

Also, it is worth mentioning that the presented duality is
between each harmonic of spherical wave and each angle of
the incident plane wave in the dual planar structure, which is
clear from (41) and the last row in the Table I. In this paper,
we used the planar incident wave in order to verify the validity
of the method. However, we note that one may consider any
other excitation types while the analysis procedure remains
the same. First, the exciting wave should be written as a
summation of spherical wave harmonics [20]. Then the dual
planar incident waves can be derived using Table I and
the problem of scattering from IRSSs can be solved using
Table II and the superposition principle according to the
linearity of Maxwell equations.

Using the far-field approximation for Riccati-Hankel, the
bistatic radar cross section is defined as follows [34]:

σ(bistatic) = lim
r→∞[4πr2 |Es |2

|Einc|2

= λ2

π
[cos2φ|Aθ |2 + sin2φ|Aφ|2], (42)

where

|Aθ |2 =
∣∣∣∣∣

∞∑
n=1

jn

(
cn

dP 1
n (cos θ )

dθ
+ dn

P 1
n (cos θ )

sin θ

)∣∣∣∣∣
2

, (43)

|Aφ|2 =
∣∣∣∣∣

∞∑
n=1

jn

(
cn

P 1
n (cos θ )

sin θ
+ dn

dP 1
n (cos θ )

dθ

)∣∣∣∣∣
2

. (44)

B. Conditions of achieving the valuable, accurate,
and converged solution

In this section, the conditions in which the differential
system of Eqs. (20)–(23) is solvable leading to valid, accurate,
and unique converged solution are discussed. Based on the first
order Cauchy-Kowalevski theorem in mathematics [37], the
above-mentioned system of equations will give a convergent
unique solution when the coefficients at all the points on the
arbitrary interval are continuous. Thus, in this article, it is
assumed that the EM parameters of inhomogeneous mate-
rial and consequently the coefficients in Eqs. (20)–(23) and
(24)–(27) are continuous in all points on the interval z =
[Ri,Ro], However, it is clear that even in the case of discon-
tinuity, one can estimate the discontinuous function with a
continuous one. Analyzing EM scattering from an inhomo-
geneous sphere, owing to the presence of r = 0 in the solution
domain, the term (1/r) becomes singular. To overcome this
drawback, the spherical homogeneous dielectric metamaterial
core with near zero radius coated with inhomogeneous layers
is considered as an equivalent problem similar to [20]. Other
than the mentioned singularity, the conditions of achieving
a convergence of solutions depend on the method which we
use to solve the dual planar problem. In the case of finite
difference (FD) and Taylor’s series methods, the only problem
is the discontinuity of the inhomogeneity profile which was
discussed earlier in this section. The validity of the proposed

approach for an inhomogeneous sphere is verified for the
proposed class of lens antenna.

III. EXAMPLES AND DISCUSSIONS

In this section, the validity of the proposed approach for
the special type of RISS with analytical and closed-form
solution is verified. A spherical PEC core coated with a
radially inhomogeneous layer with the following constitutive
parameters is considered:

ε(r) = ε0K1e
−K2r , (45)

μ(r) = μ0K3e
−K2r , (46)

where K1, K2, and K3 are equal to 6, 1 m−1, and 1, respectively.
The internal and external radii of the coating are λ (wavelength)
and 2λ, respectively. The exact form of the radial and frequency
dependency for the auxiliary potentials of the mentioned
inhomogeneous medium is presented in the following manner.
The proposed general form is derived simply by solving the
differential equations (8) and (9) [38],

F inh,n
r (r,ω) = √

reK2r/2cnJ((1/2)
√

4n(n+1)+1)

− 1
2 i

(
K2

2 − 4ω2μ0ε0K1K3
)
r

+√
reK2r/2dnY((1/2)

√
4n(n+1)+1)

− 1
2 i

(
K2

2 − 4ω2μ0ε0K1K3
)
r, (47)

Ainh,n
r (r,ω) = √

re−K2r/2anJ((1/2)
√

4n(n+1)+1)

− 1
2 i

(
K2

2 − 4ω2μ0ε0K1K3
)
r

+√
re−K2r/2bnY((1/2)

√
4n(n+1)+1)

− 1
2 i

(
K2

2 − 4ω2μ0ε0K1K3
)
r. (48)

The structure is illuminated by a plane wave with the strength
of electric field 1 V m−1. Figures 3(a) and 3(b) show the bistatic
radar cross sections in the E plane (x-z) and the H plane (y-z),
which are calculated by the exact solution, the proposed ap-
proach, and the multilayer homogeneous equivalent approach.
In the multilayer equivalent approach, the inhomogeneous
layer is modeled by 60 homogeneous layers with the same
thickness and the parameters of each layer are calculated
using the step-index approximation. In the computations with
finite difference (FD) [35] and Taylor [36] methods using the
proposed duality approach, the number of subdivisions for
FD calculations is M = 50. In addition, in the Taylor series
method, the number of terms for the truncated Taylor series
is N = 40. As it is observed from the figures, one can easily
see that there is a good agreement between the obtained results
from the presented method and the exact solution. To determine
the convergence of the proposed method to the exact closed
form solution, the error function is defined as follows:

mean
relative

error = 1

180

⎛
⎝∑179

θ=0

∣∣∣ σEplane,approximate−σEplane,exact

σEplane,exact

∣∣∣+∑179
θ=0

∣∣∣ σHplane,approximate−σHplane,exact

σHplane,exact

∣∣∣
⎞
⎠. (49)
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FIG. 3. Radar cross section, pertaining to PEC coated with a
radially inhomogeneous layer with EM parameters shown in (57) and
(58), calculated by the presented method, the exact solution, and the
multilayer equivalent method in E plane (a) and H plane (b).

The computation time and error of the employed methods
are compared in Table III. Comparing the results simply and
clearly confirms that the proposed method is fast and accurate.

Designing a different class of lens antenna

In this section, a different class of lens antenna including
inhomogeneous dielectric spheres is proposed. The proposed
lens antenna is based on the physical concept of gradient
refractive index material, which is the main principle for all
the spherical lens antennas that have been introduced. The
refractive index is gradually increased from the value of the
surrounding medium permittivity to the maximum value at
the center of the inhomogeneous sphere. The general form
of electric permittivity of the proposed lens is presented as
follows:

εr (r) = (1 + A1)[
1 + A1

(
r

Ro

)B1
] , (50)

TABLE III. Comparison of the computational efficiency of dual-
ity approach, exact solution, and multilayer equivalency method in
Example 1.

Computation time (s) Relative error (%)

Duality-FD 32 1.783
Duality-Taylor 27 1.014
Multilayer
homogeneous 132 3.826
equivalent

FIG. 4. The inhomogeneous profile for relative permittivity ob-
tained by GA corresponding to the optimized lens antenna.

where A1 and B1 are unknown constant coefficients that are
calculated as outputs of optimization algorithms. Relation (50)
simply and clearly shows that the profile of relative permittivity
in the inhomogeneous sphere is in complete agreement with
the physical concept of the gradient refractive index material
in the design of lens antenna. In this study, the radius of the
lens antenna is assumed to be 0.6 m at the frequency of 1 GHz
(or 2λ). As the gradient refractive index concept is proposed
independent of the excitation [24–26], a plane wave is used as a
classical source. The main goal in the design of a lens antenna
is maximum focusing and minimum side-lobe level. Based on
the two presented factors, the fitness function for optimization
is presented as follows [24]:

fitness(εr (r),A1,B1) = α
1

G(θ = 0)
+ βG(θ )|Sidelobe Region,

(51)
where α and β are weight coefficients and G(θ ) is the gain
value at the desired angle. Genetic algorithm (GA) opti-
mization is used in the proposed method for designing the
lens antenna in this section [24,39]. GA is a favorite global
optimization approach that is used commonly. The A1 = 0.3
and B1 = 16 are the result of the GA. The electric permittivity
profiles and antenna gain related to these obtained values
and applicable Luneburg lens are presented in Figs. 4, 5(a),
and 5(b), respectively. To compute the gain of Luneburg and
the proposed lens antennas, we used the multilayer equivalent
method in both the MATLAB and CST software along with the
proposed method. In this manner, the validity of the proposed
method was verified for the cases that do not have an exact
solution, despite the presented example in the previous section.
It can be clearly seen that the suggested lens has a 5-dB
gain enhancement in the main lobe with a 4-dB side lobe
level reduction. This design approach can be promising for
designing a different class of lenses in a similar manner in
future research.

IV. CONCLUSION

In this contribution, an interesting duality-based approach
is presented for solving the problem of the EM scattering from
RISSs. The duality between the wave equations and boundary
conditions in the spherical and planar structures was used. The
method is exact and without any approximation and is based on
a strong mathematical and physical background for studying
inhomogeneous structures in engineering electromagnetics.

032137-6



ANALYTICAL METHOD FOR ANALYSIS OF … PHYSICAL REVIEW E 97, 032137 (2018)

FIG. 5. The gain, pertaining to Luneburg and optimized lens
antenna with EM parameters shown in (63), calculated by the
presented method, and the multilayer equivalent method in E plane
(a) and H plane (b).

The validity of the proposed method was verified through
the comprehensive example. Comparing the results obtained
from the proposed approach, the exact solution and other
commonly used methods in the literature showed that this
method is simple, fast, accurate, and valid for all continuous
EM profiles. The proposed method substitutes a complex
problem in spherical geometry that has a large computational
load, with a simple, well-posed problem in planar geometry
having less time cost. In addition, the mentioned theory gives
us a physical vision of the collision of wave and scattering
object geometries. In the final section, to show the applicability
of the method, as a different application, that is, a special
type of dielectric inhomogeneity was introduced to achieve
optimum performance for a different class of lens antenna
based on the gradient refractive index principle. The proposed
method and other conventional approaches are used to confirm
the applicability and strong performance of the proposed lens
antenna relative to the Luneburg lens antenna.

APPENDIX A

The auxiliary potentials and their relations with electromag-
netic fields in a source-free radially inhomogeneous spherical
medium (∇ · B = 0, ∇ · D = 0) that be shown in the following
manner:

D = εcomp(r,ω)E = −∇ × F, (A1)

B = μ(r,ω)H = ∇ × A, (A2)

�Einh
F = − 1

εcomp(r,ω)
∇ × �F inh, (A3)

�EA

inh = −∇ψ inh
e − jω �Ainh, (A4)

�H inh
A = 1

μ(r,ω)
∇ × �Ainh, (A5)

�H inh
F = −∇ψ inh

m − jω �F inh. (A6)

As the inhomogeneity is only toward the radial axis and
according to spherical symmetry of the problem, the angular
dependency of the auxiliary vector and scalar potentials are
considered similar to those of the previous investigations based
on the presented spherical harmonics in (5)–(7). By placing the
introduced angular dependency, the following conclusions can
be made for the radial dependency of auxiliary potentials:

ψ inh
e = − 1

jεcomp(r,ω)

∂

∂r

(
Ainh

μ(r,ω)

)
, (A7)

ψ inh
m = − 1

jμ(r,ω)

∂

∂r

(
F inh

εcomp(r,ω)

)
. (A8)

According to the above equations, the general form of spatial
dependency of EM fields can be derived from Eqs. (10)–(15).
Replacing the derived spatial dependency in the Maxwell
equations, the radial component is obtained in terms of (with
respect to) transverse components as follows:

Einh
r = cos φ

∞∑
n=1

Einh,n
r (r,ω)P n

1 (cos θ ), (A9)

H inh
r = sin φ

∞∑
n=1

H inh,n
r (r,ω)P n

1 (cos θ ), (A10)

H inh,n
r (r,ω) = n(n + 1)

jωrμ(r,ω)
E

inh,n
φ,F (r,ω), (A11)

Einh,n
r (r,ω) = n(n + 1)

jωrεcomp(r,ω)
H

inh,n
φ,A (r,ω). (A12)

APPENDIX B

In this section, the procedure of obtaining Table II’s rela-
tions is explained. As it was mentioned previously in the article,
extraction of Table II’s equations is based on equating bound-
ary conditions of spherical and planar structures. Therefore,
boundary conditions for spherical structure with various types
of cores is presented in the following manner:

Boundary conditions at r = Ro:

E
inh,n
φ,A (Ro,ω) = E0

k0Ro

⎛
⎝ 2n+1

n(n+1)j Ĵ
′
n(k0Ro)

+jan
ˆ

H
(2)
n

′

(k0Ro)

⎞
⎠, (B1)

H
inh,n
φ,A (Ro,ω) = E0

η0k0Ro

(
2n+1

n(n+1) Ĵn(k0Ro)

+an
ˆ

H
(2)
n (k0Ro)

)
, (B2)

E
inh,n
φ,F (Ro,ω) = E0

kRo

(
2n+1

n(n+1) Ĵn(k0Ro)

+bn
ˆ

H
(2)
n (k0Ro)

)
, (B3)

H
inh,n
φ,F (Ro,ω) = E0

η0kRo

⎛
⎝ 2n+1

n(n+1)j Ĵ
′
n(k0Ro)

+jbn
ˆ

H
(2)
n

′

(k0Ro)

⎞
⎠. (B4)

Boundary conditions at r = Ri :
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Dielectric or metamaterial core:

E
inh,n
φ,A (Ri,ω) = E0

kdRi

jcnĴ
′
n(kdRi), (B5)

H
inh,n
φ,A (Ri,ω) = E0

η0kdRi

cnĴn(kdRi), (B6)

E
inh,n
φ,F (Ri,ω) = E0

kdRi

dnĴn (kdRi), (B7)

H
inh,n
φ,F (Ri,ω) = E0

η0kdRi

jbnĴ
′
n(kdRi). (B8)

PEC core:

E
inh,n
φ,A (Ri,ω) = E

inh,n
φ,F (Ri,ω) = 0. (B9)

PMC core:

H
inh,n
φ,A (Ri,ω) = H

inh,n
φ,F (Ri,ω) = 0. (B10)

Surface impedance boundary conditions [40]:

E
inh,n
φ,A (Ri,ω) = −ηsH

inh,n
φ,A (Ri,ω) = 0, (B11)

E
inh,n
φ,F (Ri,ω) = −ηsH

inh,n
φ,F (Ri,ω) = 0. (B12)

In addition, boundary conditions for dual planar structure is
obtained as follows [35,36]:

Boundary conditions at z = Ro:
For T Ez:

E0(ejkzRo + 
T Ee−jkzRo ) = Ey(Ro,ω), (B13)

E0

η0
cos(θi)(e

jkzRo − 
T Ee−jkzRo ) = Hx(Ro,ω). (B14)

For T Mz:

E0

η0
(ejkzRo + 
T Me−jkzRo ) = Hy(Ro,ω), (B15)

E0 cos(θi)(−ejkzRo + 
T Me−jkzRo ) = Ex(Ro,ω). (B16)

Boundary conditions at z = Ri :
Dielectric or metamaterial core:
For T Ez:

E0T
T Eejkz1Ri = Ey(Ri,ω), (B17)

E0

η0
cos(θt )(T

T Eejkz1Ri ) = Hx(Ri,ω). (B18)

For T Mz:

E0

η0
T T Mejkz1Ri = Hy(Ri,ω), (B19)

E0 cos(θt )(T
T Mejkz1Ri ) = Ex(Ri,ω). (B20)

PEC core:

Ey(Ri,ω) = Ex(Ri,ω) = 0. (B21)

PMC core:

Hx(Ri,ω) = Hy(Ri,ω) = 0. (B22)

Surface impedance boundary conditions [40]:

Ey(Ri,ω) = ηsHx(Ri,ω), (B23)

Ex(Ri,ω) = −ηsHy(Ri,ω), (B24)

where ηs is the surface impedance and εrd and μrd are EM
parameters of dielectric or metamaterial core. By equating
boundary conditions of both structures in z = Ro, r = Ro,
and z = Ri , r = Ri , Table II’s equations and Eqs. (32)–(41)
in the article were easily obtained. In addition, according to
the proposed duality, it can be shown that for the fields at
z = Ri and r = Ri , the boundary of both structures are equal
for structures with PEC, PMC, and an impedance boundary
condition core.
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