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On the number of Bose-selected modes in driven-dissipative ideal Bose gases
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In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose
condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of
Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other
states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013)]. However, so far very little is known
about how the number of Bose-selected states depends on the properties of the system and its coupling to the
environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number
of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode
acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather
bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number
of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative
ideal Bose gases in the limit of weak system–bath coupling. These include rate matrices with continuum limit,
rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that
couple to a few observables only.
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I. INTRODUCTION

Other than in thermodynamic equilibrium, the density
matrix of a gas that is driven into a nonequilibrium steady state
does not follow directly from a simple principle like entropy
maximization. It depends on the microscopic details of the
system, the bath, and the system–bath coupling. Lately, a high
interest into out-of-equilibrium steady states which remember
the initial condition of an isolated system has developed.
For example, such steady states were observed in many-body
localized systems [1–5], including discrete time crystals [6–10]
that occur in many-body localized time-periodically driven
(Floquet) systems. Also nonequilibrium steady states (NESS)
of driven-dissipative many-body systems have generated much
attention. This includes open Floquet systems [11–21], state
engineering via dissipation [22–25], and photonic systems
[26,27], where coherent phenomena in some limits may be
related to lasing but in other limits rather to Bose condensation
[28–33]. In this context, optical microcavitities offer great
freedom for designing system and dissipative environment,
which allows for tailoring the coherent emission of multiple
modes [34,35] or to control a switching between emission of
two (or more) different modes [33,36–38].

In this paper, we are focusing on driven-dissipative ideal
gases of N noninteracting bosons that exchange energy with
the environment but no particles. They can be driven out of
equilibrium, e.g., by periodic driving in combination with the
coupling to a heat bath or by coupling the system to two heat
baths of different temperature. In such setups the ideal gas
will relax to a nonequilibrium steady state (NESS), which is
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characterized by a finite heat current through the system. It is
an interesting question, whether (and if yes when and in which
form) a system can show Bose condensation (or other forms
of ordering) under such nonequilibrium conditions. Since this
NESS does not follow from thermodynamic principles, it is not
obvious whether such a state will feature Bose condensation or
not. It was observed in Ref. [12] that in the quantum degenerate
limit of large densities the single-particle states split into two
groups: the Bose-selected states, whose occupations increase
linearly with the total particle number, much like for the ground
state in thermal equilibrium, while the occupations of all other
states saturate.

However, so far very little is known about the factors that
determine the number of Bose-selected states. The answer
to this question is crucial since systems hosting a single, a
few, or an extensive number of Bose-selected states will show
rather different behavior. While in the former two scenarios
each selected mode acquires a macroscopic occupation, cor-
responding to (fragmented) Bose condensation, the latter case
rather bears resemblance to a high-temperature state of matter.
Moreover, inducing transitions between several condensate
modes can be a very efficient mechanism to exchange energy
with the environment, which is not present in systems hosting
a single condensate only [12].

In this paper, we investigate how the number of Bose-
selected states depends on the properties of the system and
its coupling to the environment. To this end, we study several
different scenarios, which are reflected in different forms
of the rate matrices that characterize the driven-dissipative
ideal Bose gases in the limit of weak system-bath coupling.
These include rate matrices with continuum limit, rate matrices
of chaotic driven systems, random rate matrices, and rates
matrices resulting from thermal baths that couple to a few
observables only.
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II. DRIVEN-DISSIPATIVE IDEAL BOSE GAS
AND BOSE SELECTION

In the limit of weak system–bath coupling, the system will
approach a nonequilibrium steady state �S that is diagonal
in the eigenstates i of the Hamiltonian for an autonomous
(i.e., nondriven) system or in the Floquet states i for a time-
periodically driven system [13,39,40]. The mean occupations
of these states obey the equation of motion [12],

∂t 〈n̂i〉 =
∑

j

Rij 〈(n̂i + 1)n̂j 〉 − Rji〈(n̂j + 1)n̂i〉 = 0. (1)

The rate for a boson to jump from single-particle level j to i is
given by the single-particle rate Rij multiplied by the bosonic
enhancement factor (n̂i + 1), which manifests that bosons
favor to “jump” into states that already have large occupation.

It was pointed out in Refs. [12,13] that a generalization
of Bose condensation is also observed in the NESS, called
Bose selection. Here, a whole group of an odd number of
single-particle states, the Bose-selected states, can acquire
large occupation. As we briefly recapitulate in this section,
these selected states are only determined by the rate asymmetry
matrix,

Aij = Rij − Rji. (2)

We assume that the gas may exchange heat with an en-
vironment of one or more thermal phonon baths. A single
bath is described as a collection of harmonic oscillators
HB = ∑

α h̄ωαb̂†αb̂ which are in thermal equilibrium. The
corresponding system–bath coupling operator reads HSB =
γ v̂

∑
α cα(b̂†α + b̂) with dimensionless system coupling oper-

ator v̂, coefficients cα , and coupling strength γ . Throughout
the paper we assume that the baths are Markovian. Thus, the
single-particle rate for the autonomous system,

Rij = 2πγ 2

h̄
|〈i|v̂|j 〉|2g(εi − εj ), (3)

is of golden rule type. Here, εi is the energy of single-particle
eigenstate |i〉. It enters the bath-correlation function,

g(ε) = J (ε)

eε/T − 1
, (4)

where T is the temperature (measured in units of energy,
kB = 1) of the bath and J is its spectral function J (ε) =∑

α c2
α[δ(ε − h̄ωα) − δ(ε + h̄ωα)]. In the following we will

consider ohmic baths with a continuum of modes α and spectral
function J (ε) ∝ ε.

A nonequilibrium situation is found when, e.g., the system
is coupled to multiple baths at different temperatures, where
the total rate is given by the sum of the rates R

(b)
ij corresponding

to the individual bath b,

Rij =
∑

b

R
(b)
ij . (5)

Another possible scenario are time-periodically driven systems
coupled to a heat bath. In this case the rates read

Rij = 2πγ 2

h̄

∞∑
m=−∞

|vij (m)|2g(εi − εj − mh̄ω), (6)

with vij (m) = ω
2π

∫ 2π/ω

0 eimωt 〈i(t)|v̂|j (t)〉dt , driving
frequency ω, Floquet states |i(t)〉, and corresponding
quasienergies εi .

The equation of motion Eq. (1) for the mean occupations
depends also on the two-particle density–density correlations,
the equations of which depend in turn on three-particle corre-
lations and so on. In this way it establishes a hierarchy, which
in the following will be truncated already at the single-particle
level by employing the mean-field decomposition 〈n̂i n̂j 〉 ≈
〈n̂i〉〈n̂j 〉, i �= j . As a result, the steady-state occupations,
∂t 〈n̂i〉 = 0, follow from the nonlinear equations of motion,

0 =
∑

j

Aij 〈n̂j 〉〈n̂j 〉 + Rij 〈n̂j 〉 − Rji〈n̂i〉. (7)

Here we have used the rate asymmetries Aij , which for the
rates of a single bath read

A
(b)
ij = 2πγ 2

h̄
|〈i|v̂|j 〉|2J (εj − εi), (8)

so that they are independent of temperature. Note that it
has been shown by comparison to quasi-exact Monte Carlo
simulations [13] that the mean-field Eq. (7) yields excellent
predictions for the mean occupations 〈n̂i〉 for a broad range of
models.1

The solid lines in Fig. 1 show the steady-state solutions of
Eq. (7) as a function of the total particle number N = ∑

i〈n̂i〉
for three different scenarios: Figure 1(a) shows occupations for
a tight-binding chain of M = 20 sites, coupled to one heat bath
only; therefore, the steady state is thermal. Figure 1(b) shows
occupations for the same chain, but additionally in contact also
with a second, population-inverted heat bath described by a
negative temperature T2 < 0. Note that negative temperatures
have been realized, e.g., in atomic quantum gases by preparing
a state at the upper edge of a Bloch band [43]. Figure 1(c) shows
occupations for a time-periodically driven quantum kicked
rotor with M = 20 Floquet states coupled to a single bath.
The system is in a regime, where the corresponding classical
system, the Chirikov standard map [44], is known to be chaotic.

For small total particle number N , the bosons behave
classically and the occupations 〈n̂i〉 are given by the single-
particle probabilities p

sp
i to occupy the state i scaled linearly

with particle number N , 〈n̂i〉 � p
sp
i N . However, at large total

particle numbers the bosonic quantum statistics makes itself
felt. As a result, we observe Bose selection [12]: the occupa-
tions of some of the states saturate, while all additional particles
gather in a set S of selected states whose occupations grow
linearly with N . In equilibrium, Fig. 1(a), this corresponds to
Bose condensation in the ground state. Away from equilibrium
several states can be Bose selected.

1A possible reason for this good agreement has been pointed out
recently [41,42]; a driven system with a set of observables {Âi},
which are approximately conserved quantities will relax toward a
steady state that is well described by a generalized Gibbs ensemble
�GGE = Z−1

GGE exp (−∑
i λiÂi). Due to the weak-coupling limit that

we assume, the occupations n̂i of the system’s single-particle states i

are almost conserved, so in our context this set is given by {n̂i}. For a
state �GGE ∝ exp (−∑

i λi n̂i), the mean-field decomposition is exact,
〈n̂i n̂j 〉 = 〈n̂i〉〈n̂j 〉, i �= j .
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FIG. 1. Mean occupations 〈n̂i〉 of the single-particle eigenstates
i as a function of the total particle number N for the nonequilibrium
steady state of an ideal Bose gas. Solid lines are from mean-field
theory, Eq. (7), dashed lines from the asymptotic theory. (a), (b)
The system is a tight-binding chain with M = 20 sites, tunneling
parameter J , that is (a) in thermal equilibrium, coupled to a bath at
temperature T = J , and (b) in a nonequilibrium steady state, coupled
to a bath at temperature T1 = J to the occupation number operator
at site �1 = 3 and a second bath with temperature T2 = −0.2J at
site �2 = 5 with equal coupling strength γ1 = γ2. (c) Nonequilibrium
steady state of a fully chaotic Floquet system (frequency ω) with
M = 20 modes, the quantum kicked rotor with kicking strength
K = 10, coupled to a single bath of temperature T = h̄ω.

From Figs. 1(a)–1(c) we already observe that the number
MS = |S| of selected states can range from only few up to
an extensive number, while the former case corresponds to
fragmented Bose condensation, since each of the selected
state acquires a macroscopic occupation in the limit N → ∞,
the latter case does not correspond to Bose condensation,
since none of the selected states will acquire a macroscopic
occupation. To be more precise, in the thermodynamic limit,
N,M → ∞, N/M = const., there can only be (fragmented)
condensation if the number MS of Bose-selected states is
intensive, i.e., asymptotically independent of M . However, if
there is an extensive number of states, MS ∝ M , the system
will behave effectively classically also in the ultra degenerate
limit. So far, however, very little is known about how MS

depends on the properties of the system and in particular on
the form of rates. The main goal of this paper is to obtain a
better understanding of how the number of selected states is
determined by the properties of the rate matrix.

Before we begin with our analysis, let us briefly review the
equations that determine the set of selected states and what
so far has been known about their number. It has been shown
that generally the number MS of these selected states is odd.
The starting point for determining the set of selected states is
an asymptotic expansion (dashed lines in Fig. 1) of the mean
occupations in the limit of large occupation, N 
 1. For the
selected states, i ∈ S, Eq. (7) yields in this limit [12,13]

0 =
∑
j∈S

Aijηj ,∀i ∈ S, (9)

where ηi are the leading order occupations 〈n̂i〉 = ηiN +
O(N0). Note that for the nonselected states, these contributions
vanish, so it must hold ηi = 0,i /∈ S. The vector ηi,i ∈ S, is
thus a nontrivial vector in the kernel of the skew-symmetric
matrix AS = {Aij |i,j ∈ S}. The leading order of the occupa-
tions of the nonselected states, i /∈ S, is then given by

〈n̂i〉 = −
∑

j∈S Rijηj∑
j∈S Aijηj

+ O(N−1). (10)

The physical condition of having positive occupations,
〈n̂i〉 > 0 for both the selected and the nonselected states has
been shown to uniquely determine the set of the selected states
[13]. Using Eqs. (9) and (10) this condition can be cast into the
simple form

μ = Aη with

{
μi = 0,ηi > 0, for i ∈ S

μi < 0,ηi = 0, for i /∈ S.
(11)

From this condition a few simple statements about the
number of selected states have been drawn already. First, we
know that MS is generically odd, since without fine tuning
the skew-symmetric AS possesses a nontrivial kernel for an
odd number of selected states only. Second, in case the system
possesses a ground-state like state k defined by

Rki > Rik,∀i �= k, (12)

one can immediately see that the problem Eq. (11) is solved by
S = {k}, i.e., a single selected state is found. Finally, for un-
correlated random rates it has been observed numerically that
the number of selected states follows a binomial distribution.
Thus, an extensive number of states (on average half of the
states) are selected.

However, a general estimate for MS is not straight forward.
In the following, we will discuss different scenarios in which
such estimates can be found; first, we will study rates that
possess a well-defined continuum limit for M → ∞. Second,
we will consider rates that do not have such a continuum
limit, discussing the two important cases where rates are truly
random and rates that stem from a chaotic kicked system.
Finally, we will discuss rates that are given by a sum of direct
products, as they are relevant for autonomous systems that
couple to the environment via a few observables only.

III. RATES WITH CONTINUUM LIMIT

In this section we discuss systems described by rate matrices
that have a smooth continuum limit and which are, thus,
strongly correlated. We assume that the quantum numbers
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i ∈ {0,...,M − 1} can be labeled by a variable,

ki = α
i

M
, with constant α ∈ R, (13)

that becomes continuous in the limit M → ∞. Moreover, we
focus on one-dimensional systems whose rate matrices shall
become smooth in that limit, i.e., that there exists a function
R(k,q), such that

Rij = R(ki,kj )2 (14)

with  = α/M . The generalization to higher-dimensional
systems described by several continuous quantum numbers is
straightforward.

An example for this situation are the rates for a single bath
coupled to site � of the tight-binding chain described by the
Hamiltonian [see Fig. 1(b)]

HS = −J

M−2∑
i=1

(â†
i+1âi + â

†
i âi+1), (15)

where J is the tunneling constant and âi is the bosonic
annihilation operator at site i. In this case we find [25]

R(k,q) = 2γ 2

πh̄
g[ε(k) − ε(q)] sin(k�)2 sin(q�)2, (16)

with dispersion ε(k) = −2J cos(k) and k-space sampling with
i = 1, . . . ,M − 1, and α = π .

We make the ansatz that there is a discrete set of Bose-
selected states S = {ks}, such that in the asymptotic limit for
large densities n → ∞ the mean occupation density reads

〈n(k)〉 = 〈nn(k)〉 + n̄sδ(k − ks), (17)

where we have introduced the normalization condition

n = N =
∑

i

〈ni〉 ⇒ n =
∫ α

0
〈n(k)〉dk. (18)

Equation (9) then translates to

a(ks) = 0, ∀ks ∈ S, (19)

where we have defined the function

a(k) =
∑
s∈S

A(k,ks) n̄s , (20)

with rate asymmetry function A(k,q) = R(k,q) − R(q,k).
Note that for smooth rates, the function a(k) will be smooth
as well. The starting point for our reasoning is the analog
of Eq. (10), which predicts that in the continuum limit the
asymptotic occupations of all modes k /∈ S read

〈nn(k)〉 = −
∑

s∈S R(k,ks) n̄s

a(k)
. (21)

Since here the numerator is strictly nonnegative, the denomi-
nator has to be strictly negative,

a(k) < 0, ∀k /∈ S. (22)

In the following, we assume that R is twofold differentiable.
By discussing the rate function in the vicinity of the selected
states, we will then be able to restrict the possible selected
states to a few candidates only. From Eqs. (19) and (22) it
follows that a(k) is negative almost everywhere; however, at

ks1 ks2

k

a(k)

FIG. 2. Sketch of the typical behavior of the function a(k) defined
in Eq. (20). The function is globally negative with zeros at the Bose-
selected states ks .

local maxima it assumes the value zero, whenever k = ks ; see
sketch in Fig. 2. This implies both

0 = a′(ks) =
∑
p∈S

A′(ks,kp) n̄p (23)

and
0 > a′′(ks) =

∑
p∈S

A′′(ks,kp) n̄p, (24)

where we have defined A′(k,q) = ∂k A(k,q) and A′′(k,q) =
∂2
k A(k,q). Note that these local criteria are necessary, but not

sufficient for Bose selection in state ks . Note also that state
space k may have a boundary or not. For example, for the tight-
binding chain in Fig. 1(b), we do not impose periodic boundary
conditions in real space, then k takes values in the interval
[0,π ]. Thus, the dispersion ε(k) is not a periodic function of k

and our state space possesses boundaries at 0 and π . At such
boundaries the criteria Eqs. (23) and (24) do not have to apply,
because here the maxima of a(k) are no longer characterized
by derivatives.

As we will see, the criteria Eqs. (23) and (24) strongly
constrain the set of selected states. To illustrate this fact, we
will discuss different scenarios in the following subsection.

A. Different selection scenarios

If only one state k0 is selected and does not lie at the
boundary of the state space, it follows that

0 = ∂k A(k,q)|(k0,k0) and 0 > ∂2
k A(k,q)|(k0,k0). (25)

Since A is skew-symmetric,

A(k,q) = −A(q,k),∀k,q, (26)

we also find

0 = ∂q A(k,q)|(k0,k0) and 0 < ∂2
q A(k,q)|(k0,k0). (27)

Since also the gradient of A vanishes at (k0,k0), this point must
be an extreme point of the asymmetry function A. Moreover,
we find that the mixed derivative at this point must vanish

∂k∂q A(k,q)|(k0,k0) = ∂q∂k A(k,q)|(k0,k0) = −∂q∂k A(q,k)|(k0,k0)

= −∂k∂q A(k,q)|(k0,k0) = 0. (28)

Here we first used Schwarz’ theorem and in the third step
renamed the variables. Thus, k0 either corresponds to a saddle
point on the diagonal of the rate asymmetry matrix or it lies at
the boundary of state space (if there is one), where both local
criteria do not have to apply.

An example is given by the rate-asymmetry function A

shown in Fig. 3(a). Here we mark the position of the selected
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FIG. 3. Gallery of selected states in the random wave model,
Eq. (29), for a superposition of L = 80 plane waves with wave
number κ = 3π (a), (b) and κ = 5π (c). We discretize k-space such
that M = 50 (a), (b) and M = 200 (c) states exist. The smooth
rate-asymmetry function A(k,q) is sampled at the gray points. The
blue plane represents A = 0. Selected states are marked by black
arrows at the k- and q-axis. We indicate the contributing matrix
elements A(ks,kp) by downward pointing red (for A � 0) and blue
(for A < 0) arrows. For clarity we do not mark diagonal elements
A(ks,ks) if MS > 1.

state by black arrows on the side and the relevant matrix
element A(k0,k0) by a red arrow. It lies at a saddle point (having
the correct curvature) on the diagonal. Clearly, also the rest of
function a(k) ∝ A(k,k0) must remain below the blue A = 0
plane.

For MS > 1 the vector of the occupations {n̄s}s∈S is a
homogeneous solution of Eq. (19) and at the same time
of Eq. (23). This provides a strong restriction, since both

equations generally will not have a common set of solutions.
Therefore, selected states will generically occur in two special
scenarios.

The first scenario is the following. Since the rate asymmetry
A is continuous we will naturally find zero lines A(k,q) = 0
also away from the diagonal A(k,k) = 0. If the selected states
lie at these zero lines, i.e., A(ks,kp) = 0, the occupations
{n̄s}s∈S are only determined by Eq. (23).

Note that since the coefficient matrix [A′(ks,kp)]
s,p

is not
necessarily skew-symmetric, in this case also an even number
of selected states ks may occur in the continuum limit. In the
discrete case, an even number MS of selected states requires
fine-tuning in the rate matrix [13] such that, for example, some
of the Aij vanish. However, for continuous rate asymmetry
functions it is natural to have zero lines, i.e., A(ks,kp) = 0
for ks �= kp, such that in the continuous case no fine-tuning is
needed to observe an even number MS . However, if an even
number of selected states ks occurs in the continuous model, a
corresponding discrete system will still feature an odd number
of selected states. We then typically find pairs of neighboring
selected states around at least one2 of the selected states ks

of the continuous model [as in the example in Fig. 3(b)]. To
avoid confusion, we refer to the number of selected states in
the continuous system as continuum number of selected states
MS = 1,2,3,4, . . . .

In Fig. 3(b) we observe Bose selection at zero lines where
the continuum selection of MS = 2 states occurs. The asymp-
totic states k1,k2 lie at a zero line of A. Since in the discrete
system the number of selected modes MS is always odd, we
find MS = 3 in the discrete system with a pair of neighboring
states in the vicinity of state k2 > k1.

Another possible scenario is that the selected states are
found such that at (ks,kp) the rate asymmetry function pos-
sesses saddle points. Then A′(ks,kp) = 0 such that the occu-
pations {n̄s}s∈S are solely determined by Eq. (19). In this case
the corresponding continuum MS will be odd.

However, typically, neither of the cases—selection at only
zero lines or only saddle points—occurs in a “pure” form. This
can be seen in the example in Fig. 3(c), where we observe the
selection at both zero lines and saddle points with a continnum
selection of MS = 3 states. In this case, some of the relevant
points (ks,kp) lie on the zero lines of A, and others have saddle
points in the vicinity of the point (ks,kp). Here, MS = 5 states
are selected in the discrete system, with pairs at two continuum
wave numbers k.

But it is only in continuous rate matrices with few oscil-
lations (like in the examples chosen in Fig. 3) that we find
selected states defined by one of the different mechanisms
stated above. If we consider systems with more variation
in the rate matrix, like in Fig. 4, the points (ks,kp) are not
clearly relatable to either zero lines nor saddle points anymore.
Nevertheless, these points are often still found in the vicinity
of zero lines and saddle points.

2Around which of the states ks pairs form is, however, not universal
and depends on the discrete grid. If one plots the selected states as a
function of discretization parameter M , for example, one can observe
how such pairs jump from one ks to the other quite irregularly (not
shown).

032136-5



SCHNELL, KETZMERICK, AND ECKARDT PHYSICAL REVIEW E 97, 032136 (2018)

FIG. 4. Typical example for Bose selection in a more complex
rate matrix. Parameters are like in Fig. 3, but M = 300 and κ = 7π .

B. Random-wave model

The rate functions shown in Figs. 3 and 4 are motivated by
a random wave model for chaotic eigenfunctions [45]. They
are defined by

R(k,q) =
L∑

l=1

Re{cl exp[i(κk,lk + κq,lq)]} + C. (29)

It is a superposition of L independent plane waves with
κk,l = κ sin(ϕl), κq,l = κ cos(ϕl), fixed absolute value of the
wave number κ and uniformly distributed angles ϕl ∈ [0,2π ).
Amplitudes |cl| are drawn from a normal distribution and
phases arg(cl) are distributed uniformly. The global constant C
is chosen such that all rates are nonnegative. Its specific value
is irrelevant for the set of the Bose-selected states, which are
solely determined by the rate-asymmetry function A(k,q) in
which C will drop out.

This model produces rate functions that are smooth and
show oscillations on the length scale 2π/κ in state space; see,
e.g., Fig. 3. It allows us to investigate the typical behavior of
smooth rates that show variations on such a scale. We discretize
state space via Eq. (13) where, to unravel the continuum
physics, we choose the discretization length  to be small with
respect to the oscillation length of the model,  = 1/M �
2π/κ .

As we increase the wave number κ of the model the structure
of R will become more and more complex, leading to more
and more zero lines and saddle points in the rate asymmetry
function. Thus, we expect that with the characteristic wave
number κ , which determines the typical oscillation length
2π/κ of the smooth rate function R, also the average number
of selected modes 〈MS〉 will increase. This is confirmed by
the numerical results shown in Fig. 5(a). The mean number of
selected states increases as soon as κ exceeds the threshold
κ ≈ π , where the wavelength 2π/κ of the plane waves is
about double the system size. Afterwards, we see a linear
increase with 〈MS〉 ≈ 0.75κ/π as marked by the black and
white dashed line. The linear scaling is explained by the above
reasoning, since, e.g., the number of extrema (and also the
number of zeros) of sin(κk) on the interval k ∈ [0,1] is of the

(a)

0 10π 20π 30π
0

5

10

15

20

M = 10
M = 20
M = 50

κ

〈MS〉

(b)

0 20 40
0

2

4

6

κ = 2π
κ = 5π
κ = 14π

L

〈MS〉

(c)

0 20 40
0.0

2.5

5.0

7.5

10.0

L

〈MS〉

FIG. 5. Mean number 〈MS〉 of selected states in the random wave
model Eq. (29) for (a) a superposition of L = 50 plane waves as
a function of the wave number κ . The rates R(k,q) are sampled at
M = 10, 20, and 50 discrete states (from lower to upper curve). We
average over 500 realizations of the random rates. We see a linear
increase with 〈MS〉 ≈ 0.75κ/π (dashed line, guide to the eye) before
it saturates at a value where more than half of the single particle
states are Bose selected. (b), (c) Mean number of selected states as a
function of the number L of components for (b) M = 10 and (c) M =
20 discretization steps and 250 realizations and for κ = 2π, 5π, 14π

(from lower to upper curve). We see only a weak dependence on L.

order of κ/π . However, the origin of the prefactor of about
0.75 remains open.

Note that the mean number 〈MS〉 only depends weakly on
the number of components L that we use in the random wave
model as shown in Fig. 5(b) for M = 10 discrete states and (c)
M = 20 and three different values of κ .

The behavior seen in Fig. 5(a) clearly suggests that for
smooth rates, the number of selected states is typically on
the order of the number of oscillations in the rate asymmetry
function A. Therefore, for fixed smooth A, even if the number
of discrete states M is large, M → ∞, as observed in Fig. 5,
the number MS will remain intensive as it is solely the property
of the smooth function A.

We expect a breakdown of the theory for continuous rates
as soon as the oscillation length of the rate function becomes
comparable to the discretization length. For the random rates
this breakdown occurs for κ ≈ Mπ as visible in Fig. 5(a).
Interestingly, the mean number of selected states 〈MS〉 for
the random wave model does not saturate at 〈MS〉 = M/2
as one would expect for truly random rates (see Sec. IV A).
We observe a first saturation at values that are slightly above
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(b)
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0.0

0.1

0.2

0.3

MS

p(MS)

(c)
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0.00

0.25

0.50

0.75

1.00

kicked rotor
random rates

M

〈MS〉/M

FIG. 6. (a) Distribution of the number MS of Bose-selected states
for 5000 realizations of exponentially distributed random rates Rij

for a system of size M = 40. The distribution of the odd MS is
binomial with p = q = 0.5 (given by the black crosses connected
by the dashed line). (b) Same as in (a) but for 5000 realizations
of a chaotic quantum kicked rotor with M = 40 Floquet modes
where we choose the kicking strength K randomly from the interval
K ∈ [9.5,10.5). Binomial distribution with p = 0.62 for comparison.
(c) Mean number 〈MS〉 divided by system size M of Bose-selected
states as a function of M for the random rate model (dots) and the
kicked rotor (triangles) both for 50 realizations of the system. For
random rates, 〈MS〉 coincides with the predicted value M/2 (dashed
line); however, values for the kicked rotor deviate significantly from
this result.

M/2: for M = 20 discrete states we find saturation at about
〈MS〉 = 13, or for M = 10 we find 〈MS〉 ≈ 6.3

IV. RATES WITHOUT CONTINUUM LIMIT

A. Uncorrelated random rates

The single particle rates Rij that one observes typically for
a fully chaotic quantum rotor have been shown to roughly
follow an exponential distribution [46]. If we suppose that
there are no additional correlations between the rates Rij ,
we may draw typical rates from a random realization of the
exponential distribution, where p(Rij ) = exp(−λRij )/λ. Note
that the choice of the parameter λ is irrelevant, since it only
determines the timescale on which the system relaxes but not
the steady state.

3Note that after this first saturated regime, for the red line M = 10,
the number drops again at around κ = 2πM . This is related to the
effect of aliasing occurring when the wavelength 2π/κ of the random
wave model is smaller than the discretization length  = 1/M .

Figure 6(a) shows the distribution of the number MS of
Bose-selected states for random rates connecting M = 40
single particle states. The odd number of Bose-selected states
is given by a binomial distribution,

p(MS) =

⎧⎪⎨
⎪⎩

0 for MS even

1
2M−1

(
M

MS

)
for MS odd,

(30)

centered around 〈MS〉 = M/2 [cf. Fig. 6(c)]. Such a behavior
was observed in the literature for random rates, mostly in
the context of population dynamics, where similar equations,
the Lotka-Volterra equations, appear [12,47–50]. Usually this
result is motivated by arguing that for the random rates all
states are equal, so that every state has the same probability
to be Bose selected or not. Taking into account the additional
constraint that the total MS must be odd, one can in this way
motivate the distribution Eq. (30) by just counting the number
of possible choices of MS states among the total M states.

However, the argument that every state has the same prob-
ability to be Bose selected or not must also follow rigorously
from the steady state equations, and thus also from Eq. (11).
To fill this gap, we will compute the distribution of selected
states. To this end, we will first construct transformations of
the rate-asymmetry matrix A = (Aij ) under which the number
of Bose-selected states MS remains invariant; i.e., the solutions
of the problem Eq. (11) have the same MS .

1. Reordering transformations

Since the indexing of the states is arbitrary, MS will remain
invariant when reordering the states. The matrix Tk,l describes
the transpositions that exchange state k and l. Since T −1

k,l = Tk,l

the corresponding transformation takes the form

A → Tk,l A Tk,l . (31)

Under this transformation, the matrix remains skew-
symmetric, and also the number of Bose-selected states re-
mains invariant.

So for discussing the properties of a general A with a
given number MS of Bose-selected states, we can thus assume
solutions of the form

η = (η1,...,ηMS
,0,...,0)T . (32)

2. Rescaling transformations

We are only interested in the number of selected states and
not in their occupation. Therefore, let us consider a rescaling
of the coefficients ηi and μi . This is accomplished by a
transformation induced by the matrix

Dλ = diag(λ1,...,λM ), with positive λk > 0. (33)

As we want to apply this matrix to both the vectors η and μ,
it is important that only positive rescaling λk > 0 is allowed.
Otherwise, we would transform a solution of problem Eq. (11)
into vectors that do not solve a problem of this type. Since the
inverse of this matrix is again diagonal, D−1

λ = D(1/λ1,...), we
find that the rescaling transformation

η → Dλη, μ → D−1
λ μ, A → D−1

λ AD−1
λ (34)
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preserves skew-symmetry of the matrix A. Note that we
multiply A with the inverse from the left and the right. The
rescaled quantities μ̃,η̃,Ã with S̃ = S fulfill again Eq. (11),
since

μ̃ = D−1
λ μ = D−1

λ AD−1
λ Dλη = Ãη̃. (35)

3. Standard matrices

As we know that for any given skew-symmetric A the
problem Eq. (11) has a unique solution S [12,13], we always

find a sequence of transformations such that
η̃ = (1,...,1,︸ ︷︷ ︸

MS entries

0,...,0)T , μ̃ = (0,...,0,︸ ︷︷ ︸
MS entries

−1,..., − 1)T (36)

holds. As the transformation Eqs. (31) and (34) are invertible,
it turns out that it suffices to discuss the properties of the set
of standard matrices AMS

that is constructed such that it gives
rise to a solution of the form of Eq. (36). Then the space of
rate-asymmetry matrices with selection number MS is spanned
by a sequence of the two physically intuitive transformations
discussed above.

We find that these standard matrices take the form

AMS
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(1)
MS+1 · · · x

(1)
M

AS
MS

x
(2)
MS+1 − x

(1)
MS+1 · · · x

(2)
M − x

(1)
M

x
(3)
MS+1 − x

(2)
MS+1 · · · x

(3)
M − x

(2)
M

...
. . .

...

1 − x
(MS )
MS+1 · · · 1 − x

(MS )
M

−x
(1)
MS+1 −x

(2)
MS+1 + x

(1)
MS+1 · · · −1 + x

(MS )
MS+1

−x
(1)
MS+2 −x

(2)
MS+2 + x

(1)
MS+2 · · · −1 + x

(MS )
MS+2

...
...

. . .
... Aarb

−x
(1)
M −x

(2)
M + x

(1)
M · · · −1 + x

(MS )
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

with arbitrary real numbers x
(i)
j , arbitrary (M − MS)-

dimensional skew-symmetric matrix Aarb, and MS-
dimensional skew-symmetric matrix AS

MS
restricted by

the existence of the homogeneous solution

AS
MS

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠ = 0. (38)

4. Consequence for random rates

For a random rate matrix, all entries (Aij )j>i of the rate
asymmetry are random and statistically independent. We aim to
find the probability to randomly choose a matrix that is from the
class generated by the AMS

matrix [under the transformation
Eqs. (31) and (34)]. To this end, we first count the number
d of degrees of freedom in determining a general matrix
AMS

. In a second step we then discuss the influence of the
transformations.

Let us begin with the block AS
MS

. To construct such a matrix,
we start from an arbitrary MS-dimensional skew-symmetric
matrix that has dS = 1

2 (MS − 1)MS degrees of freedom. We
have to distinguish two different cases: For odd MS this matrix
has always a homogeneous solution, for even MS we have
to fine tune one parameter for a homogeneous solution to
exist, which reduces the number of degrees of freedom by
one. Furthermore, we have to subtract MS − 1 degrees because
the homogeneous solution is pinned to (1, . . . ,1)T . Thus, the
number of degrees of freedom in the subspace of the selected
modes is

do
S = 1

2 (MS − 1) (MS − 2), (39)

de
S = do

S − 1, (40)

for an odd or even number of selected modes, respectively.
Then, there are M − MS rows, each of which has MS − 1

free variables x(i) to choose. This contributes

df = (M − MS) (MS − 1) (41)

degrees of freedom.
Also, there is still an arbitrary (M − MS)-dimensional

skew-symmetric matrix free to choose, which adds another

darb = 1
2 (M − MS) (M − MS − 1) (42)

degrees of freedom.
This sums up to

do = do
S + df + darb = 1

2 (M − 1)(M − 2), (43)

de = do − 1, (44)

for odd and for even MS , respectively. Interestingly for every
MS the number of free parameters of the generating matrix
AMS

depends on the parity of MS only. Matrices with an even
MS have one degree of freedom less.

If we now choose a rate-asymmetry matrix randomly, the
probability to hit a matrix with a specific number of selected
states is proportional to its size in parameter space. The
diagonal transformations Eqs. (34) do not favor any number
of selected states, as they always contribute M degrees of
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freedom. For an even number of selected states there is one
free parameter less than for an odd number MS , such that
their generating matrices form a set of probability measure
zero in parameter space. Therefore, all generators AMS

of odd
selection numbers have equal size in probability space and the
even numbers are suppressed.

It is left to discuss the influence of the reordering transfor-
mations Eq. (31). They allow us to distribute the MS selected
states over the M states. The number of possible configurations
for this is given by the binomial factor

(
M

MS

)
. (45)

After normalization, we infer the distribution Eq. (30).

B. Chaotic quantum kicked rotor

We want to compare these results for uncorrelated random
rates to chaotic systems.

A paradigm for quantum chaos is the quantum kicked rotor,
a one-dimensional rotor governed by the Hamiltonian

Ĥ (ϕ̂,p̂,t) = p̂2

2
+ K cos(ϕ̂)

∑
n∈Z

δ(t − n), (46)

with time-periodic kicks of strength K , period τ = 1 and
[ϕ̂,p̂] = ih̄eff . For h̄eff = 2π

M
, M ∈ N, we can restrict the

system to a torus with periodic coordinate ϕ ∈ [0,2π ) and
periodic momentum p ∈ [−π,π ). Note that since the available
phase space volume on the torus is V = (2π )2, there exist
V/(2πh̄eff ) = M Floquet states on the torus.

These Floquet states |i(t)〉 are eigenstates of the one-cycle
evolution operator

Û (1,0) = e
− i

h̄eff
K cos(ϕ̂)

e
− i

h̄eff

p̂2

2 , (47)

fulfilling Û (1,0)|i(0)〉 = exp(−iεi/h̄eff )|i(0)〉 with corre-
sponding quasienergies εi .

This kicked rotor is coupled to a bath with temperature T .
We consider the coupling operator

v̂ = sin(ϕ̂) + cos(ϕ̂), (48)

which respects the periodicity of ϕ and breaks the parity (such
that also even and odd Floquet states are coupled to each other).

In Fig. 6(b) we show the distribution for the number of
selected states MS that we obtain when randomly choosing the
kicking strength K within the interval [9.5,10.5] (where the
classical counterpart of the quantum kicked rotor is essentially
fully chaotic) for a rotor with M = 40 Floquet states. From
Figs. 6(b) and 6(c) it is clear that the random rate model fails to
predict the number of selected states for a typical realization of
the chaotic quantum kicked rotor. The distribution is centered
around a much larger value than MS = M/2 expected for
random rates [Fig. 6(a)]. It also seems that the distribution
may not be fitted with a binomial distribution, which, for
example, for p = 0.62 (black crosses) is much broader then
the one that is observed. This trend also manifests itself in

Fig. 6(c) where the triangles show the mean number 〈MS〉
of Bose-selected states for the quantum kicked rotor. This
number lies well above M/2, for systems of size M � 150
about 80% of the states are Bose selected. Consequently, we
come to the intriguing conclusion that there must be additional
correlations among the rates Rij that are responsible for the
fact that significantly more states are selected for the chaotic
quantum kicked rotor than in the random-rate model. In the
Appendix, we describe a model with correlated random rates
that shows a similar distribution of selected states as the
quantum kicked rotor model. However, the origin of the large
number of selected states for our quantum kicked rotor model
remains an interesting open question.

V. RATES WITH PRODUCT STRUCTURE

Consider an arbitrary time-independent system with Hamil-
tonian HS , which is coupled to a positive temperature bath (B1)
and a population-inverted bath (B2) described by a negative
temperature through coupling operators which obey the form
of a projector on a single quantum state,

v̂(B1) = |f 〉〈f |, v̂(B2) = |g〉〈g|. (49)

Note that the states |f 〉 and |g〉 can also be coherent super-
positions of the single-particle eigenstates i. In this section,
we show that the number of selected states remains always
smaller than or equal to three, MS � 3, for all system sizes
M . Note that in the case of this specific system-bath coupling
even a system with chaotic single-particle dynamics features
only a maximum number of three condensates. An example of
a system with such a system bath coupling is the one depicted
in Fig. 1(b). Here the states f and g correspond to the local
Wannier orbitals at lattice sites �1 and �2, respectively.

For coupling operators of the form of Eq. (49), we find the
rate asymmetry matrix

Aij = 2π

h̄
J (εj − εi)(fifj − gigj ) (50)

from Eq. (8), where fi = |〈i |f 〉|2 and gi = |〈i |g〉|2. Here we
assume that JB2 (ε) = −JB1 (ε) = −J (ε), giving rise to rates
Rij � 0. Moreover, let us first consider ohmic baths with
spectral density J (ε) ∝ ε. We find a rate asymmetry matrix
having the product structure

Aij ∝ fifj εj − fifj εi − gigj εj + gigj εi . (51)

Now let ηi be the solution of Eq. (11). It then follows that
in the subspace of selected states one has

0 = Aη =

⎛
⎜⎜⎜⎝

fi1

fi2

...

fiMS

⎞
⎟⎟⎟⎠c1 −

⎛
⎜⎜⎜⎝

fi1εi1

fi2εi2

...

fiMS
εiMS

⎞
⎟⎟⎟⎠c2

−

⎛
⎜⎜⎜⎝

gi1

gi2

...

giMS

⎞
⎟⎟⎟⎠c3 +

⎛
⎜⎜⎜⎝

gi1εi1

gi2εi2

...

giMS
εiMS

⎞
⎟⎟⎟⎠c4, (52)
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with

c1 =
∑
i∈S

εifiηi, c2 =
∑
i∈S

fiηi,

c3 =
∑
i∈S

εigiηi, c4 =
∑
i∈S

giηi . (53)

Since fi > 0, gi > 0, and εi > 0 (otherwise, we can always
shift all εi by some constant), these coefficients are positive,

ci > 0. (54)

Now if MS = 1 or MS = 3, then the four vectors in Eq. (52)
will be linearly dependent, thus the ci can be positive as they
should. However, if MS was greater than three, then generally
the four vectors will be linearly independent, so that ci = 0
must hold, in contradiction to the assumption ci > 0.

Therefore, we have shown that for two ohmic baths with
product coupling to the system, the number of Bose-selected
states is restricted to a maximum of three.

There is a straightforward generalization of this simple
algebraic argument to the case where MB ohmic baths are
coupled to an autonomous system via coupling operators of
the product form, Eq. (49). In this case, we find an analog
to Eq. (52) but with a linear combination of 2MB vectors. By
similar reasoning the number of selected states is then restricted
to MS � 2MB − 1.

We expect that there is a generalization of the above
argument also to nonohmic systems described by arbitrary
spectral densities. We have checked functions of the form
(remember that J must be odd)

J (ε) ∝ |ε|dsgn(ε), (55)

with some power d (not necessarily an integer) and similarly
observe MS � 2MB − 1.

Figure 7(a) confirms the result for ohmic spectral densities
J (ε) ∝ ε. It shows the maximum number MS of selected states
for 200 systems that are randomly drawn from the gaussian
orthogonal ensemble, GOE(M), the ensemble of orthorgonal
M × M matrices, where the probability to find a matrix H is
given by p(H ) ∝ exp[−M

4 tr(H 2)]. In random matrix theory
these Hamiltonians serve as a model for a fully chaotic system
with time-reversal symmetry. We choose random Hamiltonians
to make sure that the number of Bose-selected states is not
additionally restricted by the system dynamics. We couple
these systems to MB ohmic baths, where we randomly choose
an index i ∈ {1, . . . ,M} to which the bath is coupled with
operator v̂ = |i〉〈i|. For half of the baths we choose positive
temperature, for the other half negative temperature (the
selected states are only determined by the rate asymmetry
matrix A and thus independent of the absolute values of these
temperatures).

In Fig. 7(a) we plot the maximum number of selected states
found for an ensemble of 200 realizations of this model. For
sufficiently small MB it equals the predicted upper bound for
MS . However, we observe that for larger values of MB , the
observed maximum number of selected states saturates very
quickly at values that are of the order of

√
M , where M is the

system size. This bounds the mean number of selected states
as shown in Fig. 7(b).
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FIG. 7. (a) Maximum number and (b) mean number MS of Bose-
selected states observed for 200 realizations of a random chaotic
system HS ∈ GOE(M) as a function of the number of baths MB

coupled to the system. We show systems of size M = 20, 100, 500
(from lower to upper curve). We place MB ohmic baths at some
random index i (coupling operator v̂ = |i〉〈i|). We choose half of the
baths with positive and the other half with negative temperature (for
odd MB we randomly decide). The dashed line in (a) is the predicted
upper bound 2MB − 1. (c) Mean number MS of selected states in this
model (here only 50 realizations are used) but as a function of system
size M . We choose MB = M/2, i.e., we are in the regime of so many
baths that the number MS is saturated.

We would like to stress that the behavior of the autonomous
GOE is very different from that of the time-periodically driven
rotor, although both systems exhibit chaotic single particle
dynamics. First, in the limit of large system size, M → ∞,
the number of selected states can be intensive, as long as the
number of baths MB is not scaled with system size, so that
we may find fragmented condensation in the thermodynamic
limit. However, even if we scale MB with system size, as shown
in Fig. 7(c) for MB = M/2, the mean number of selected
states seems to scale strongly sublinear with at maximum
〈MS〉 ∝ √

M , rather than the drastically different extensive
〈MS〉 ∝ M scaling that is observed for time-periodically driven
systems, cf. Sec. IV.

VI. CONCLUSION AND OUTLOOK

In this paper, we have addressed the effect of Bose selection
in nonequilibrium steady states of driven-dissipative ideal Bose
gases that exchange energy with an environment they are
weakly coupled to. Namely, when the total particle number N

is increased in such a system, eventually only the occupation
of a number MS of selected modes will increase linearly with
N , while the occupation of all other modes saturates. So far,
only very little was known about the factors that determine
how many modes will be selected.

Within this paper, we have investigated the question of
how many Bose-selected states will be found by addressing
different relevant scenarios leading to different forms of the
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rate matrix describing the driven-dissipative ideal Bose gas. We
have shown that upper bounds for the number of Bose-selected
states MS that are independent of the dimensionality M of the
underlying single-particle state space appear both for systems
whose rates can be understood as the discretization of a contin-
uous function as well as for systems that couple to baths via a
few single-particle quantum states only. In these cases, Bose se-
lection corresponds to (fragmented) Bose condensation, since
each Bose-selected state acquires a macroscopic occupation in
the thermodynamic limit M → ∞ at fixed density N/M .

Moreover, we have discussed two scenarios where the
number of selected states is found to grow linearly with M ,
so that none of the selected states will acquire a macroscopic
occupation in the thermodynamics limit. On the one hand, we
have shown that for randomly drawn uncorrelated rates the
number of selected states follows a binomial distribution so
that on average half of the single-particle states are selected.
On the other hand, we have numerically treated a periodically
driven system, the quantum kicked rotor, in a regime where the
corresponding classical model is fully chaotic. Averaging over
various kicking strengths we find that more than half (about
75 percent) of the states become selected. This is an intriguing
result. It implies that the chaotic driven system must give rise
to correlations among the rates, which are responsible for a
significant enhancement of the selected states. While we were
able to construct a model of correlated random rates showing
similar behavior, the question about the origin and the nature
of the large number of Bose-selected states for the quantum
kicked rotor remains open.

Further open questions to be addressed in future research
include the role of interactions and larger system bath coupling
on the effect of Bose selection, an understanding of the factors
determining the number of Bose-selected states in photonic
systems where Bose selection is induced by the interplay
of pumping, particle loss, and thermalization [51], and the
investigation of possible experimental platforms.
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APPENDIX: MODIFIED RANDOM WAVE MODEL FOR
THE RATES IN THE QUANTUM KICKED ROTOR

The deviations from the random rate model indicate that the
rates of the chaotic quantum kicked rotor contain correlations
that lead to the Bose selection of more states than in the
uncorrelated case. In this Appendix we construct a random
rate matrix having correlations that lead to similar behavior.

Correlations of the rates associated with the quantum-
kicked-rotor model in contact with a heat bath that we con-
sidered were discussed in Ref. [46] (where the single-particle
problem was studied). The rate Rij and the backwards rate
were proposed to obey

Rji = (1 + ξij )Rij , for i > j, (A1)

with both Rij and ξij stemming from individual exponen-
tial distributions with scale parameters λ and λξ , where λξ
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FIG. 8. (a) Distribution of the number MS of Bose-selected states
for 5000 realizations of rates Rij stemming from the random wave
model, Eq. (29), with κ = 1.9πM , L = 80, and M = 40 states.
(b) Same as in (a) but for 5000 realizations of the modified random
wave model, Eq. (A2), with M = 40 states, κ = 1.9πM , L = 80
and λ = 10. (c) Mean number 〈MS〉 of Bose-selected states divided
by system size M as a function M for the modified random wave
model (triangles) for 50 realizations of the system. We use L = 2M

components. The dashed line is at MS = M/2.

decreases with system size as λξ ∝ M−1.2. However, the rate
model Eq. (A1) leads to steady states with even less then half
of the states being Bose selected (data not shown).

Note that in Sec. III B we have encountered a model that
also features that typically more than half of the states are Bose
selected. It is the random wave model, Eq. (29), with parameter
κ ≈ 1.9πM [cf. also Fig. 5]. A suggestive point of view for
why the random wave model might be suitable to approximate
rates of a chaotic map is that random waves have been used
successfully to model typical chaotic eigenstates [45,52,53].
Note, however, that this vague reasoning is not based on a
microscopic picture for the derivation of the rates.

We can see in Fig. 8(a) that the distribution for the random
wave model with M = 40 is much broader than the one we
observe for the quantum kicked rotor in Fig. 6(b). Also the rates
Rij that result from a random wave model, Eq. (29), do not
follow an exponential distribution. Their distribution p(Rij )
is rather peaked at some finite value. To correct for this, we
introduce a modified random wave model for the rates

R(k,q) =
L∑

l=1

|cl|Re{1 + ei(κk,lk+κq,lq+αl )}e−λ|k−q|, (A2)

where we constrain the waves to positive values and localize
them on a length λ−1 by introducing an exponential factor. In
this model we choose κk,l = κ sin(ϕl), κq,l = κ cos(ϕl) similar
to the random wave model with fixed absolute value of the
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wave number κ , uniformly distributed angles ϕl,αl ∈ [0,2π ]
and cl from a normal distribution.

We observe that the modified random-wave model has rates
that are distributed exponentially and the distribution of the
MS shows relatively good agreement with the data from the
quantum kicked rotor for κ = 1.9πM and localization param-
eter λ = 400/M . This can be seen, for example, by comparing
the distribution for M = 40 discrete states in Fig. 8(b) to the
distribution of the quantum kicked rotor in Fig. 6(b), although
the mean values coincide, the distribution of our model is,

however, a bit broader than the one obtained for the quantum
kicked rotor. Also as a function of system size, Fig. 8(c), the
model seems to reproduce the mean value of selected states in
Fig. 6(c) quite nicely.

However, despite the fact that the modified random wave
model (A2) gives rise to a similar distribution of the number of
selected states as the one obtained for the quantum kicked rotor,
we have no evidence that the modified random-wave model
mimics the physics of the quantum kicked rotor coupled to a
heat bath [see Sec. IV B].
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