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We study the different phases and the phase transitions in a system of Y-shaped particles, examples of which
include immunoglobulin-G and trinaphthylene molecules, on a triangular lattice interacting exclusively through
excluded volume interactions. Each particle consists of a central site and three of its six nearest neighbors chosen
alternately, such that there are two types of particles which are mirror images of each other. We study the
equilibrium properties of the system using grand canonical Monte Carlo simulations that implement an algorithm
with cluster moves that is able to equilibrate the system at densities close to full packing. We show that, with
increasing density, the system undergoes two entropy-driven phase transitions with two broken-symmetry phases.
At low densities, the system is in a disordered phase. As intermediate phases, there is a solidlike sublattice phase in
which one type of particle is preferred over the other and the particles preferentially occupy one of four sublattices,
thus breaking both particle symmetry as well as translational invariance. At even higher densities, the phase is a
columnar phase, where the particle symmetry is restored, and the particles preferentially occupy even or odd rows
along one of the three directions. This phase has translational order in only one direction, and breaks rotational
invariance. From finite-size scaling, we demonstrate that both the transitions are first order in nature. We also
show that the simpler system with only one type of particle undergoes a single discontinuous phase transition
from a disordered phase to a solidlike sublattice phase with an increasing density of particles.
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I. INTRODUCTION

The study of the phases and critical behavior of lattice
systems of hard particles having different geometrical shapes
has been of continued interest in classical statistical mechanics,
not only from the point of view of how complex phases
arise from simple interactions, but also for understanding how
different universality classes of continuous phase transitions
depend on the shape of the particles. Such hard core lattice
gas (HCLG) models have also been of interest in the context
of the freezing transition [1,2], directed and undirected lattice
animals [3–5], the Yang-Lee edge singularity [6], and in the
absorption of molecules onto substrates [7–11]. Since only
excluded volume interactions are present, temperature plays
no role, and phase transitions, if any, are entropy driven. Many
different shapes have been studied in the literature. Exam-
ples include triangles [12], squares [13–19], dimers [20–23],
mixtures of squares and dimers [24,25], Y-shaped particles
[26,27], tetrominoes [28,29], rods [30–33], rectangles [34–37],
disks [38,39], and hexagons [40]. The hard hexagon model on
the triangular lattice is the only solvable model.

In this paper, we focus on hard Y-shaped particles on the
triangular lattice. Particles with this shape arise in different
contexts. A well-known example is immunoglobulin-G (IgG),
an antibody present in human blood, consisting of four peptide
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chains, two identical heavy chains and two identical light
chains [41]. IgG has many therapeutic usages and the study of
different phases of Y-shaped particles [26,27,42] is important
to understand the effect of density on the viscosity of the liquid.
Another example of a Y-shaped particle that is relevant for
applications is trinaphthylene. It has been useful to create a NOR

logic gate on an Au(111) surface [43,44], in which napthylene
branches of the molecule come in contact with the Au atom
and act as the input of the logic gate.

Motivated by these applications, there have been a few
numerical studies [26,27] of systems of Y-shaped particles on
a triangular lattice. Each particle constitutes a central site and
three of its nearest neighbors chosen alternately. There are two
types of particles possible depending on which of the neighbors
are chosen. In Refs. [26,27], in addition to the hard core
constraint, there are additional attractive interactions between
the arms of neighboring particles. At low temperatures, a
single first-order phase transition from a disordered phase to
a high-density ordered phase was observed. The high-density
phase consists of mostly only one of the two types of Y-shaped
particles, and has a solidlike sublattice order. For temperatures
above a critical temperature, there are no density-driven phase
transitions [26,27]. At the critical temperature, the transition
has been argued to belong to the Ising universality class [27].
For Y-shaped particles with larger arm lengths, other phases
are also seen [26].

In this paper, we determine the different phases and nature
of the phase transitions when only excluded volume interac-
tions are present, corresponding to the infinite temperature
limit of the model studied in Refs. [26,27]. We show that
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FIG. 1. (a) Schematic diagram of a triangular lattice and the two
types of Y-shaped particles. A- and B-type particles are represented
by blue and red colors, respectively. (b) The lattice sites are labeled
as 1,2,3,4 depending on the sublattice they belong to.

the sublattice phase at high densities which breaks particle
symmetry is unstable to a sliding instability in the presence of
vacancies. This results in the phase near full packing having
columnar order, where there is translational order only in one
of the three directions. This phase also has a roughly equal
number of both types of particles. In the presence of attractive
interactions between the arms of the particles, we argue, using
a high-density expansion at finite temperatures, that this result
continues to hold. Thus, irrespective of whether attractive
interactions are present, neither does the high-density phase
have sublattice order nor is there a critical temperature above
which there is no phase transition, in contradiction to the results
reported in Refs. [26,27]. We also demonstrate the presence of
an intermediate phase, and that there are two entropy-driven
phase transitions with an increasing density of particles: first,
from a disordered phase to an intermediate-density sublattice
phase where the symmetry between the two kinds of particles is
broken, and second, from the sublattice phase to a high-density
columnar phase where the symmetry between the two types
of particles is restored. In addition, we also study the special
case of the model when only one kind of Y-shaped particle
is present, and show that it undergoes a single first-order
transition from a disordered phase to an ordered sublattice
phase.

The remainder of the paper is organized as follows. In
Sec. II, we define the model precisely and explain the algorithm
that we use to equilibrate the system in grand canonical Monte
Carlo simulations. The different phases of the model and the
nature of the phase transitions for systems with only one type
of particle and both types of particles are numerically obtained
in Secs. III and IV, respectively. Section V contains a summary
and discussion of the results.

II. MODEL AND ALGORITHM

Consider a two-dimensional triangular lattice of linear
dimension L with a periodic boundary, as shown in Fig. 1(a).
A lattice site may be empty or occupied by one of two types of
particles. Particles are Y shaped and occupy four lattice sites,
consisting of a central site and three of its six neighbors chosen
alternately. The three neighbors can be chosen in two different

ways, and hence there are two types of particles, examples of
which are shown in Fig. 1(a). We will refer to the two types
as A- and B-type particles. The particles interact through an
excluded volume interaction, i.e., a site may be occupied by at
most one particle. Activities zA = exp(μA) and zB = exp(μB)
are associated with each A- and B-type particle, respectively,
where μA and μB are the reduced chemical potentials. We will
refer to the central site of a particle as its head.

We study the system using grand canonical Monte Carlo
simulations. Conventional algorithms involving local evapo-
ration and deposition of a single particle are inefficient in
equilibrating the system at densities close to full packing. We
implement an improved version of a recently introduced algo-
rithm with cluster moves that is able to efficiently equilibrate
systems of particles with large excluded volume interactions
at densities close to full packing [31,45], as well as at the fully
packed density [24].

We briefly describe the algorithm. First, a row is chosen
at random (the row can be in any of the three directions of
the triangular lattice). Then all the A-type (or equivalently B-
type) particles with heads on this row are evaporated. The row
now consists of empty intervals separated from each other by
B-type particles with heads on the same row as well as A-
and B-type particles with heads on neighboring rows. These
empty intervals are now reoccupied with A-type particles with
the correct equilibrium probabilities. The calculation of these
probabilities reduces to determining the partition function of
a one-dimensional system of dimers. Details may be found
in Refs. [24,31,39,45]. For each row, we choose at random
whether A- or B-type particles are to be evaporated. A Monte
Carlo move is completed when 3L rows are updated.

Though the above algorithm is able to equilibrate the system
at densities close to full packing, we find that the equilibration
times as well as the autocorrelation times are large. In order to
improve the efficiency of the algorithm, we introduce a sliding
move in addition to the evaporation-deposition move. The first
step in the sliding move is to select a site at random. If the
site is not occupied by the head of a particle, then another
site is chosen. If the site is occupied by the head of a particle,
then one direction out of six possible directions is chosen, and
we identify a cluster of the same type of particles, defined as
a set of consecutive particles separated by two sites, starting
from the randomly chosen site along the chosen direction. An
example of such a cluster is shown by the highlighted box
in Fig. 2(a). The cluster of particles is slid by one lattice site
in the chosen direction and the particle type is changed from
A ↔ B [see Fig. 2(b)]. The new configuration is accepted if it
does not violate the hard core constraint. It is straightforward
to confirm that the sliding move obeys a detailed balance as
the reverse move occurs with exactly the same probability. A
Monte Carlo move is completed when 3L rows are updated
through the evaporation-deposition move and L2/10 sliding
moves are attempted. We have chosen a ratio of sliding to
evaporation-deposition moves that is efficient but has not

optimized the ratio.
We compare the efficiency of the algorithm with and

without the sliding move in Fig. 3. Starting from a disordered
phase, the system is evolved in time at a value of chemical
potential μ = μA = μB for which the equilibrium density is
high (≈ 0.967), and the system is ordered. From Fig. 3, we
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FIG. 2. Schematic diagram to illustrate the sliding move. A
cluster is identified [highlighted box in (a)] by randomly choosing
a site and one of the six directions (shown by arrow). The cluster is
slid by one lattice site in the chosen direction and the particle type is
switched from A ↔ B to obtain a new configuration as shown in (b).

see that the density reaches the equilibrium value in 105 steps
when the sliding move is present compared to 4 × 106 steps
when the sliding move is absent. Second, we calculate the
density-density autocorrelation function, defined as

C(t) = 〈ρ(t + t0)ρ(t0)〉 − 〈ρ〉2

〈ρ2〉 − 〈ρ〉2
, (1)

where ρ(t) is the density at time t , and the average is over t0. We
determine the autocorrelation time τ by fitting the correlation
function to an exponential,

C(t) ≈ e−t/τ . (2)

From the inset of Fig. 3, we find the autocorrelation time
τws for the algorithm with a sliding move is τws ≈ 82, while
the autocorrelation time τns for the algorithm with no sliding
move is τns ≈ 731. Thus, the inclusion of the sliding move

FIG. 3. The increase in density ρ to its equilibrium value for a
system of size L = 300 and μ = μA = μB = 6.0 for the algorithms
with (blue) and without (red) the sliding move. The initial condition
is disordered and the equilibrium configuration has ρ ≈ 0.967, and
is ordered. A logarithmic scale has been used for the t axis. Inset:
Equilibrium density-density autocorrelation function C(t) as a func-
tion of time t . When fitted to an exponential as in Eq. (2), we obtain
τws ≈ 82 when the sliding move is present and τns ≈ 731 when the
sliding move is absent.

(a) (b)

FIG. 4. Snapshot of typical equilibrated configurations of the
system obtained from grand canonical Monte Carlo simulations with
only one type of particle (zA = 0) for two different values of chemical
potential: (a) Disordered phase at μB = 1.420 (ρB ≈ 0.710) and
(b) sublattice phase at μB = 1.765 (ρB ≈ 0.775). The particles on
the four sublattices 1, 2, 3, and 4 are represented by green, red, blue,
and magenta, respectively. The data are for a system of size L = 300.

results in considerably shorter equilibration times as well as
autocorrelation times, and results in much better statistics.
We have also checked that the autocorrelation function is
independent of different choices of t0, showing that time
translational invariance has been achieved and the system has
equilibrated.

The evaporation and deposition of particles along a row
depends only on the configuration of the four neighboring
rows. Thus, rows that are separated by three can be updated
simultaneously, and the implementation of the algorithm is
easily parallelizable. All the results presented in this paper
are obtained using the parallelized algorithm. Equilibration is
checked by starting the simulations with different initial con-
ditions, corresponding to different phases, and confirming that
the equilibrated phase is independent of the initial condition.

III. ONE TYPE OF PARTICLE (zA = 0)

We first obtain the phase diagram for the case when only B-
type particles are present, corresponding to zA = eμA = 0 and
zB = eμB > 0. To demonstrate the different types of phases
present in the system, we divide the lattice into four sublattices
as shown in Fig. 1(b). A particle occupies four sites that belong
to four different sublattices. We color the four sites occupied
by a particle by one of four colors depending on the sublattice
that the head of the particle belongs to. Snapshots of typical
equilibrated configurations are shown in Fig. 4 for both small
densities [Fig. 4(a)] and high densities [Fig. 4(b)]. From the
snapshots, it is clear that at small densities, all four colors
are roughly equally present. We will refer to this phase as the
disordered phase, in which

ρB
1 ≈ ρB

2 ≈ ρB
3 ≈ ρB

4 , disordered phase, (3)

where ρB
i is the fraction of sites in sublattice i that are occupied

by B-type particles.
The snapshot of the system at higher densities, as shown in

Fig. 4(b), is predominantly of one color, implying that the heads
of the particles preferably occupy one of the four sublattices.
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FIG. 5. Plot of (a) order parameter QB , (b) total density ρB ,
(c) Binder cumulant UB , and (d) χL−2, as a function of chemical
potentialμB for three different system sizesL = 300 (blue), 450 (red),
and 600 (green). Plot of probability density function (e) P (|QB|), (f)
P (ρB ) for μB = 1.753, 1.754, and 1.755 with system size L = 300.

We will refer to this solidlike phase as the sublattice phase.
The sublattice phase has translational order.

To quantify the phase transition from the disordered phase
to sublattice phase, we define the vector

QB = |QB |eiθB =
4∑

n=1

ρB
n ei(n−1)π/2, (4)

where the sublattice densities ρB
i are as defined in Eq. (3). We

define the sublattice order parameter QB to be

QB = 〈|QB |〉, (5)

where the average 〈· · · 〉 is over equilibrium configurations.
Clearly, QB is zero in the disordered phase and nonzero in the
sublattice phase.

The variation of QB with chemical potential μB is shown
in Fig. 5(a) for different system sizes. It increases sharply
from zero to a nonzero value as μB crosses a critical value
μBc ≈ 1.75 and critical density ρB

c ≈ 0.750. The transition
becomes sharper with increasing system size. The total density
of the system ρB has a system size dependence for intermediate
densities [see Fig. 5(b)]. We also study the Binder cumulant

FIG. 6. Two-dimensional density plots of P (QB) for different
values of μB near the transition: (a) μB = 1.745, (b) μB = 1.754,
(c) μB = 1.755, and (d) μB = 1.757. The data are for a system of
size L = 600.

UB defined as

UB = 1 − 〈|QB |4〉
2〈|QB |2〉2

. (6)

The variation of UB with μB is shown in Fig. 5(c) for
three different system sizes. For small μB , it is zero for the
disordered phase and close to 0.5 for the ordered phase, as
expected. Near the transition point, UB becomes negative and
the minimum value decreases with increasing system size. This
is a clear signature of a first-order transition, as for a continuous
transition UB is positive and the data for different system sizes
intersect at the critical point. We conclude that the transition is
first order. Now, consider the susceptibility χ defined as

χ = L2(〈|QB |2〉 − QB2
). (7)

For a first-order transition, the singular behavior of χ near
the transition obeys the finite-size scaling χ ∼ L2f [(μB −
μBc)L2], where f is a scaling function. The data for χ for
different system sizes collapse onto one curve when scaled as
above with μBc � 1.756, as shown in Fig. 5(d).

We now give further evidence of the transition being first
order. At a first-order phase transition, the system keeps tran-
siting from the disordered phase to the sublattice phase. This
results in the probability distributions for the order parameter
and density having multiple peaks. The probability distribution
for |QB| and the density ρB are shown in Figs. 5(e) and 5(f),
respectively, for values of μB near the transition point. The
plots show two clear peaks for μB ≈ 1.75, one corresponding
to the disordered phase and the other to the sublattice phase,
consistent with a first-order transition. The two-dimensional
color plot of the probability distribution of the complex order
parameter QB near the critical point is shown in Fig. 6, and is
consistent with the above observation.
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FIG. 7. Snapshot of a typical equilibrated configuration of the
system obtained from canonical Monte Carlo simulations with one
type of particle having fixed density ρB = 0.740. The particles on
the four sublattices 1, 2, 3, and 4 are represented by green, red, blue,
and magenta, respectively. The snapshot shows the coexistence of the
sublattice and disordered phases. The data are for a system of size
L = 300.

To further establish the first-order nature of the transition,
we show coexistence of the disordered phase and sublattice
phase at the transition point. To do so, we do simulations in the
canonical ensemble, conserving density, of a system having
density that lies between the density of the disordered system
just below the transition and the density of the sublattice phase
just above the transition. We choose ρB = 0.74, which lies
between the two maxima of the probability distribution for
density, as shown in Fig. 5(f). The system is evolved in time
through an algorithm that conserves the density of the system.
A lattice site is chosen at random. If it is occupied by the
head of a particle, the particle is removed and deposited at
another randomly chosen lattice site. If the deposition does not
violate the hard core constraint, the move is accepted, else the
particle is placed at its original position. The algorithm obeys
a detailed balance as each move is reversible and occurs at the
same rate. The snapshot of a typical equilibrated configuration
of the system is shown in Fig. 7. There are regions where the
color is uniform (blue), showing a sublattice phase, while there
are other regions where all four colors appear, corresponding to
a disordered phase. We conclude that there is phase segregation
and coexistence, both signatures of a first-order transition.

IV. TWO TYPES OF PARTICLES (zA = zB)

Now consider the case where both types of particles are
present with equal activity zA = zB = z. It is natural to expect
that the fully packed phase has a sublattice order where the
heads of particles occupy only one sublattice. We first argue
that at densities close to full packing, sublattice order is not

FIG. 8. (a) Schematic diagram showing the creation of a vacancy
consisting of four empty sites (black solid circles), when a particle is
removed from the fully packed sublattice phase. (b) The vacancy may
be split into two half vacancies, and separated along a row by sliding
particles along the row and changing the type.

stable due to the presence of vacancies, and the system prefers
a columnar order with densities of both types of particles being
roughly equal. We illustrate this instability through an example.

Consider a fully packed configuration with sublattice order.
Such a configuration can have only one type of particle (say,
B type). Removal of a single particle creates a single vacancy
made of four empty sites, as shown by the solid circles in
Fig. 8(a). These empty sites may be split into two unbound pairs
of half vacancies by sliding a number of consecutive particles
adjacent to the empty sites and flipping their type to A, each
of these configurations having the same weight. An example
of two particles being slid is shown in Fig. 8(b). Introducing
more vacancies results in destabilizing the sublattice phase.
Sliding results in restoring translational invariance along two
of the three directions. However, translational order is still
present in the third direction. We will refer to this phase as
the columnar phase. We note that in this phase, two sublattices
are preferentially occupied, one with A-type particles and the
other with B-type particles. The stabilization of the columnar
phase by creating vacancies is an example of order by disorder,
a prototypical example being the hard square gas [13–17,19].

If additional attractive interactions are present between
neighboring arms, then the above argument may also be
extended to account for the energy cost of creating vacancies. It
may then be shown that even for this case, that at high densities,
the columnar phase is preferred over the sublattice phase, at
all finite temperatures. To preserve continuity of presentation,
we postpone the description of the generalized argument to
Sec. V.

We now give numerical evidence for the high-density phase
being columnar and also determine numerically the different
phases of the system at densities away from full packing.
Snapshots of equilibrated configurations of the system for
different values of μ are shown in Fig. 9. Here, the lattice
sites are colored using eight colors depending on the type
of particle (two types) and sublattice (four sublattices) that
the head belongs to. For small values of μ, the snapshot
contains all eight colors distributed uniformly [see Fig. 9(a)],
corresponding to the disordered phase. For intermediate values
of μ, the snapshot shown in Fig. 9(b) is predominantly of
one color. This phase corresponds to a sublattice phase. The
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(a) (b) (c)

FIG. 9. Snapshots of equilibrated configurations of the system
with two types of particles obtained from grand canonical Monte
Carlo simulations for different values of μ: (a) Disordered phase with
μ = 4.5 (ρ ≈ 0.88), (b) sublattice phase with μ = 5.4 (ρ ≈ 0.947),
and (c) columnar phase with μ = 6.0 (ρ ≈ 0.967). The particles on
the four sublattices 1, 2, 3, and 4 are represented by yellow, olive,
cyan, and orange for type A and by green, red, blue, and magenta for
type B. The data are for a system of size L = 300.

sublattice phase breaks the A-B symmetry and one type of
particle is preferred over the other. Finally, for larger values
of μ, the snapshot shown in Fig. 9(c) has mostly two colors
that appear in strips. This phase corresponds to the columnar
phase. This is in agreement with our argument presented above
that the phase close to full packing is columnar due to the
sublattice phase being unstable due to a sliding instability. We
thus identify two phase transitions, the critical values of μ

being denoted as μDS and μSC .
The sublattice phase has an eightfold degeneracy. To quan-

tify it, consider the vector Qs ,

Qs = |QA| − |QB |, (8)

where QB is given in Eq. (4) and QA has a similar definition
with ρB

n replaced by ρA
n . We define the sublattice order

parameter Qs to be

Qs = 〈|Qs |〉. (9)

Qs is zero in the disordered phase and nonzero in the sublattice
phase. It is also straightforward to check that Qs ≈ 0 in
the columnar phase. We characterize the fluctuations of Qs

through the susceptibility χs defined as

χs = L2(〈|Qs |2〉 − Q2
s ). (10)

We also define the Binder cumulant associated with Qs as Us ,

Us = 1 − 〈|Qs |4〉
2〈|Qs |2〉2

. (11)

To characterize the symmetry breaking between the two
types of the particles in the disordered phase, we introduce an
order parameter ρd defined as

ρd = 〈|ρA − ρB |〉, (12)

where ρA and ρB are the fraction of sites occupied by A-
and B-type particles, respectively. We denote the associated
susceptibility as χd and Binder cumulant as Ud ,

χd = L2
[〈(ρA − ρB)2〉 − ρ2

d

]
, (13)

Ud = 1 − 〈|ρA − ρB |4〉
2〈|ρA − ρB |2〉2

. (14)

FIG. 10. Plot of (a) sublattice order parameter Qs and (b) density
difference ρd as a function of μ. Plot of probability distribution:
(c) P (|QA| − |QB |) and (d) P (ρA − ρB ) near disorder to the sub-
lattice transition for a system of size L = 300. Plot of rescaled
susceptibilities: (e) χsL

−2 and (f) χdL
−2 associated with Qs and ρd ,

respectively about the critical point μDS . Plots are for systems of size
L = 300, 450, and 600.

The variation of the order parameters Qs and ρd with μ

is shown in Figs. 10(a) and 10(b), respectively. They increase
from close to zero to a nonzero value, showing the presence
of the sublattice phase. The curves for different system sizes
cross close to μ ≈ 5.07, and density ρ ≈ 0.930. While a
clear discontinuity in the order parameters is not discernible
from Figs. 10(a) and 10(b), we now present evidence for
the transition being first order in nature. The probability
distributions for Qs and |ρA − ρB | near the transition point
are shown in Figs. 10(c) and 10(d), respectively. As μ is
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increased, the probability distributions change from being
single peaked, corresponding to the disordered phase, to a
three-peaked distribution, corresponding to a coexistence of
the sublattice and disordered phase, to a symmetric double-
peaked distribution, corresponding to the sublattice phase.
Coexistence close to the transition is a clear signature of the
first-order nature of the transition. We note that the distributions
sharpen with increasing system size. The variation of Binder
cumulant Us and Ud with μ is shown in Figs. 10(g) and 10(h),
respectively. It becomes negative for certain values of μ, which
is a clear signature of a first-order transition. In a first-order
transition, the susceptibilities scale as

χ ∼ L2f [(μ − μc)L2]. (15)

When scaled as described with μDS ≈ 5.07, ρDS ≈ 0.930, the
data for different system sizes collapse onto a single curve, as
shown in Figs. 10(e) and 10(f). We conclude that the disordered
to sublattice transition is first order in nature.

In the columnar phase, two sublattices are preferentially
occupied by the particles. This selection can be done in six
different ways and each way has two possibilities of filling,
as A-type and B-type particles can choose either one of the
selected two sublattices. Thus, the columnar phase has a 12-
fold degeneracy. To quantify this phase illustrated in Fig. 9(c),
we define a columnar order parameter Qc as follows. In the
columnar phase, the particles occupy alternate rows along one
of the three orientations, and occupy all rows in the other two
orientations. The breaking of the translational invariance in a
direction is reflected in the difference in the density of heads
between even and odd rows and is captured by

Q1 = |ρ1 + ρ2 − ρ3 − ρ4|,
Q2 = |ρ1 + ρ3 − ρ2 − ρ4|, (16)

Q3 = |ρ1 + ρ4 − ρ3 − ρ2|,
where ρi is the fraction of sites belonging to sublattice i that is
occupied by a particle, irrespective of the type. In Q1, (ρ1 + ρ2)
measures the density of occupied sites in odd horizontal rows
[see Fig. 1(b)] and (ρ3 + ρ4) the density of occupied sites in
even horizontal rows. Thus, Q1 is nonzero only when there
is translational order along the horizontal rows, and similar
interpretations hold for Q2 and Q3. Now, consider the vector

Qc = |Qc|eiθc = Q1 + Q2e
2πi/3 + Q3e

4πi/3. (17)

We define the columnar order parameter to be

Qc = 〈|Qc|〉. (18)

In the columnar phase, Qc is nonzero. In the disordered
phase Qc ≈ 0, as each of the Qi in Eq. (16) is approximately
zero. In the sublattice phase, one sublattice is preferentially
occupied and each of the Qi in Eq. (16) becomes nonzero but
approximately equal in magnitude, and hence again Qc ≈ 0.
Thus, a nonzero Qc is a signature for the columnar phase. We
define the corresponding susceptibility as

χc = L2
(〈|Qc|2〉 − Q2

c

)
. (19)

In the columnar phase the sublattice order parameter Qs

[see Eq. (9)] and the density difference ρd [see Eq. (12)]
both becomes zero. The variation of Qs and ρd with μ is
shown in Figs. 11(a) and 11(b), respectively. The probability

FIG. 11. Plot of (a) sublattice order parameter Qs and (b) density
difference ρd as a function of μ. Plot of probability distribution:
(c) P (|QA| − |QB |) and (d) P (ρA − ρB ) near the sublattice to
columnar transition for the system size L = 300. Plot of rescaled
susceptibilities: (e) χsL

−2 and (f) χdL
−2 associated with Qs and ρd ,

respectively, about the critical point μSC . Plot of (g) columnar order
parameter Qc and (h) associated rescaled susceptibility χcL

−2 as a
function of μ and (μ − μSC), respectively. Plots are for systems of
size varying from L = 300 to 900.

distributions for Qs and (ρA − ρB) near the transition point
are shown in Figs. 11(c) and 11(d), respectively. As μ is
increased, the probability distributions change from symmetric
double-peaked, corresponding to the sublattice phase, to a
three-peaked distribution, corresponding to a coexistence of
the sublattice and columnar phase, to a dominant single-
peaked distribution, corresponding to the columnar phase. The
coexistence of both the columnar phase and sublattice phase
is a signature of a first-order transition. For the first-order
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transition susceptibilities follow the scaling law as described in
Eq. (15). With this scaling we get the collapse of susceptibilities
χs and χd onto a single curve, as shown in Figs. 11(e) and 11(f),
for a critical value of the chemical potential μSC ≈ 5.61 with
density ρSC ≈ 0.956.

The variation of the order parameter Qc with μ for different
system sizes is shown in Fig. 11(g). It acquires a nonzero value
in the columnar phase. The susceptibility χc also obeys the
scaling law as described in Eq. (15). This is confirmed from
Fig. 11(h) in which the collapse of curves for different system
sizes with the described scaling is shown.

V. CONCLUSION

In this paper, we studied the different phases and phase
transitions of hard Y-shaped particles on a two-dimensional
triangular lattice. There are two types of Y-shaped particles
depending on their orientation on the lattice, which are mirror
images of each other. By incorporating cluster moves, we
were able to equilibrate the system at densities close to full
packing, allowing us to unambiguously determine the phases
at all densities. In addition to the low-density disordered phase,
we find two other phases. At intermediate phases, the phase
has a solidlike sublattice order. In this phase, the symmetry
between the two types of particles is broken, resulting in a
majority of one type of particle. In addition, these particles
preferentially occupy one of the four sublattices of the lattice.
At high densities, the phase has columnar order. In this phase,
the symmetry between the two types of particles is restored.
However, there is translational order in one of the three direc-
tions, wherein particles preferentially occupy either even or
odd rows. The first transition from the disordered to sublattice
phase occurs at μDS ≈ 5.07 and the second transition from
the sublattice to columnar phase occurs at μSC ≈ 5.61. Both
the transitions are first order in nature. Y-shaped particles
give a simple example of a system where a small number
of vacancies destabilizes the sublattice phase into a columnar
phase while a larger number of vacancies again stabilizes the
sublattice phase. When only one type of particle is present,
the model undergoes a single first-order phase transition from
a low-density disordered phase to a high-density sublattice
phase, and occurs at μBc ≈ 1.756.

The high-density phase that we observe in this paper has
columnar order with both types of particles equally present,
which is in contradiction to the results obtained from Monte
Carlo simulations of Y-shaped particles with attractive in-
teractions in Refs. [26,27], wherein it was shown that the
high-density phase has sublattice order in which only one kind
of particle is present. For only excluded volume interactions,
we argued in Sec. IV that the introduction of vacancies results
in the destabilization of the sublattice phase into a columnar
phase, because the vacancies split into two unbound half
vacancies that can be separated away from each other, resulting
in a gain in entropy. We now argue that this instability is present
even in the presence of an attractive interaction between the
nearest-neighbor arms of different particles. Consider the case
when a vacancy is created by removing a single particle from
a sublattice phase at full packing, as shown in Fig. 12(a). If −ε

is the energy of each nearest-neighbor pair of arms, then this
vacancy costs an energy 12ε. On splitting the vacancy into two

FIG. 12. Schematic diagrams to calculate, in a fully packed
sublattice phase of B-type particles, the energy cost to create (a) a
vacancy consisting of four empty sites (black solid circle), (b) two
half-vacancies separated by oneA-type particle, (c) two half vacancies
separated by two A-type particles, and (d) two half vacancies separat-
ing three A-type particles. Compared to the background sublattice
phase, green bonds increase the energy by ε while black bonds
decrease the energy by ε. The energy cost is 12ε for (a), and 13ε

for (b)–(d).

half vacancies and sliding them away from each other by one,
two, or three particles [see Figs. 12(b)–12(d)], the energy cost
increases to 13ε, but does not increase with separation between
the half vacancies. Thus, the partition function Z of the system
may be written as

Z = 4zN/4e3Nβε/2

[
1 + Ne−12βε

4z

+ 3N
(

L
2 − 1

)
e−13βε

8z
+ O(z−2)

]
, (20)

where β = (kT )−1 is the inverse temperature. The free energy
βf = − ln Z is then

βf = − ln z

4
− 3βε

2
− e−12βε

4z
− 3Le−13βε

16z
+ O(z−2).

(21)

Clearly, the first-order correction term proportional to z−1

diverges with system size, as is indicative of systems with
columnar order. If the divergent terms are resummed correctly,
taking into account the columnar nature of the phase, then the
first correction term becomes O(z−1/2) [16,18]. The term of
order z−1 being divergent implies that the expansion about the
sublattice phase is not convergent, and thus we conclude that
the high-density phase is columnar even when interactions are
present. We note that in Ref. [26], attractive interactions were
included for neighboring central sites, too. However, it may be
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easily checked that the above expansion is true for this case
also, albeit with an energy cost of 2ε for half vacancy when
compared to bound vacancy. From Eq. (21), it may also be
seen that for temperatures less than or of the order of ε/ ln L,
it would be possible to see a sublattice phase, but this is purely
a finite-size effect.

In addition, it was argued in Refs. [26,27] that, for the model
with attractive interactions and hard core constraints, there is
no phase transition above a critical temperature. In the limit of
infinite temperature, the attractive interactions play no role, and
the model reduces to a problem with only hard core interactions
between the particles, which is the model studied in the current
paper. For the latter model, we established the presence of
two density-driven phase transitions, in contradiction to the
results implied in Refs. [26,27]. Reanalyzing the model with
interactions to make the results consistent with those in the
current paper is a promising area for future study. Another
area for future study is the system of Y-shaped particles with
larger arm lengths which could be symmetric [26]. For these
systems with only an excluded volume interaction, we expect
the high-density phase to be columnar [26].

It is tempting to analyze the high-density columnar phase
using high-density expansions as developed for squares and
rectangles [13–17,19,24,25]. These expansions are in terms
of number defects (which could be extended). However, the
columnar phase of Y-shaped particles is different from that of
these simpler models, in which the types of particles occupy
preferred sublattices in the columnar phase. This makes it
difficult to even write the zeroth-order term for the partition
function corresponding to no defects.

One may also consider kinds of lattices such as the honey-
comb lattice. The honeycomb lattice (see Fig. 13 ) is different
from the triangular lattice in that the site decides what type of
Y molecule may be placed on it. We argue that the nature of
the high-density phase is different on the honeycomb lattice
as compared to the triangular lattice. Consider a fully packed
phase, as shown in Fig. 13(a), in which translational order is
broken, and the system is in a solidlike phase. Four vacancies
may be created by removing one particle from site S1, as
shown in Fig. 13(b). The four vacant sites that are created
remain bound to each other, and the solidlike order is stable.
To next order in perturbation, consider creating eight vacant
sites by removing two adjacent particles, as shown in Fig. 13(c).
These eight vacancies may be split into two sets and moved
arbitrarily far from each other by sliding particles along the
direction shown by dotted lines in Fig. 13(c). This instability
will lead to the phase becoming columnar (as argued by the
high-density expansion for the triangular lattice). Thus, we
have the following interesting scenario. As density is decreased
from one, the system will first undergo a transition from a
solidlike phase to a columnar phase. A further decrease in
density may result in a transition to a solidlike phase as in

FIG. 13. Schematic diagrams of configurations on a honeycomb
lattice when (a) no vacancy is present (full packing), (b) four bound
vacancies are created by removing a particle from the site labeled
S1, and (c) eight unbounded vacancies are created by removing two
particles from the sites labeled S1 and S2, followed by sliding particles
in the directions shown by the dotted magenta lines. Black dots
represent empty sites.

the triangular lattice followed by a disorder phase, or directly
into a disordered phase. It would be interesting to verify these
conjectures in Monte Carlo simulations.

HCLGs sometimes show multiple phase transitions with
increasing density, but only when the excluded volume per
particle is large. For instance, for multiple phase transitions to
be present, the minimum range of interaction is seventh nearest
neighbor for rods [31,33], fifth nearest neighbor for rectangles
[34,35], fourth nearest neighbor for HCLG models for disks
[18,39] while nearest-neighbor exclusion models such as the
first-nearest-neighbor (1-NN) model on the square lattice
[13,15,38,46–62] or the hard hexagon model on the triangular
lattice [40] show only one transition from a disordered phase to
a sublattice phase. The excluded volume of Y-shaped particles
consists of nearest-neighbor sites, as in the hard hexagon model
and half of the next-nearest-neighbor sites depending on the
pair of particles being considered. It is quite surprising that
despite the short-ranged nature of the interaction, the system
undergoes two density-driven phase transitions. It is possible
that this feature may also be extended to mixtures on a square
lattice. From the insights gained from the current paper, we
expect that if there are two kinds of particles A and B on
a square lattice, where the A-A and B-B excluded volume
interactions are up to second nearest neighbor, but the A-B
excluded volume interaction is up to the third nearest neighbor,
then the high-density phase will be columnar and there will be
multiple transitions. Confirming this conjecture in simulations
would be interesting.
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