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In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent
hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the
steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram
consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average
particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools
of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed
analysis of these solutions under different boundary conditions helps us obtain the equations for various phase
boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers
can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this
in detail through several examples of density profiles in various phases. The maximal-current phase appears to be
an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
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I. INTRODUCTION

Totally asymmetric simple exclusion processes (TASEPs)
are driven many-particle systems in which particles hop uni-
directionally along a one-dimensional lattice obeying exclu-
sion principle [1]. The exclusion principle rules out double
occupancy and hence a hopping is possible if the target site is
empty. In a system with open boundaries, particles are injected
into the lattice through one boundary at a given rate. After
injection, these particles hop towards the other boundary from
which they are withdrawn at a given rate. In the steady state
such systems are known to exhibit boundary induced phase
transitions as the particle injection and withdrawal rates at
the boundary are changed [2,3]. In different phases, the average
density of particles across the lattice are significantly different
and one of the important tasks in this context is to find out
the shape of the average density profile across the lattice and
characterize the phase transitions by studying the nature of
the steady-state particle current or the shape of the density
profile. The presence of such phase transitions is a speciality of
such nonequilibrium systems and no equilibrium counterpart
of this can be seen in one-dimensional equilibrium systems
with short-range interactions. This has been the reason for
extensive research in this area that has led to developments of
new methods and introduction of new models [4–10], some
of which have close resemblance with biological transport
processes [11–14].

In the present paper, we consider a TASEP with open
boundaries and with position-dependent hopping rates. In
general, TASEPs with variable hopping rates are found to
exhibit interesting dynamics [15–17]. Many of these models
are motivated from intracellular transport processes which
primarily involve motion of motor proteins on biopolymers
such as microtubules, actin filaments, etc. [18]. In the present
work, we consider the hopping rate to be linearly increasing

with the position of the particle. The motivation for such a
choice has connection to some of the recent experiments on
biopolymers. Biopolymers such as microtubules are known
to have their own polymerization-depolymerization dynam-
ics due to which the length of the microtubule becomes a
dynamically variable quantity. The polymerization dynamics
of microtubules is found to be regulated by motor proteins
functioning as polymerases or depolymerases [19]. These
motor molecules move towards the tip of the microtubule and
stabilize or destabilize the biopolymer on reaching the tip.
Recent experiments reveal that many such regulation processes
depend on the length of the microtubule [20–23]. It is believed
that the motor proteins near the microtubule tip experience a
“push” due to the motor proteins accumulated behind it [24].
As the length of the biopolymer increases, the number of motor
proteins landing on it increases. As a consequence, the “push”
generated by such motor molecules acquires a dependence
on the length of the microtubule. Additionally, some of the
recent experiments also predict that such destabilizing activity
triggered by the “push” due to motor proteins accumulated
behind depends linearly on the length of the microtubule [24].
In view of such observations, we assume that the hopping rate
of a particle or a motor protein in a given position is influenced
in a similar way by the number of particles behind it. Since the
number of trailing particles behind a specific particle depends
on its location along the lattice, we assume position-dependent
hopping rates for the particles. As a result, the farther the
particle is from the origin of the lattice, the larger its hopping
rate. In addition, following the earlier predictions, we consider
the hopping rate to be linearly dependent on the position of the
particle.

TASEP and partially asymmetric simple exclusion pro-
cesses with position-dependent hopping rates have been stud-
ied earlier using the mean-field approximation [15–17]. In
Ref. [15], TASEP with hopping rate increasing linearly with
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FIG. 1. Qualitative plot of the phase diagram. The solid lines
represent the phase boundaries.

the position of the particle was studied for both periodic and
open boundary conditions. In this case, the steady-state density
profile with periodic boundary condition is found to have
monotonically decreasing parts described through tan x-type
function and also increasing kink like parts described through
tanh x-type function, with x as the location along the lattice.
These conclusions have strong connections with earlier studies
on TASEP with uniform hopping rate and also with quenched
random-bond case where the shape of the density profile
depends crucially on whether the current density is greater or
less than a critical value [25–27]. In case of open boundaries,
TASEP with linearly increasing hopping rate shows boundary
induced phase transitions as the injection and withdrawal rates
are changed at the boundaries [15]. The phase diagram of
such an open system is similar to that of ASEP with uniform
hopping rate although there are distinct differences in the
shape of the phase boundaries and also in the shape of the
density profiles in these two models. The phase diagram, shown
in Fig. 1, contains low-density, high-density, and maximal-
current phases. As in the case of uniform hopping, in the low-
and high-density phases, the particle density across most of
the lattice remains smaller or larger than 1/2, respectively.
These two phases are separated from each other through a
coexistence line. On the coexistence line, the density profile
has both low- and high-density regions separated through a
shock like discontinuous jump. In the maximal-current phase,
the density allows maximum hopping current across the lattice.

It can be shown that in the continuum limit, the average
particle density profiles in TASEPs, in general, are described
through singular differential equations. Such a singular equa-
tion arises as one considers a continuum limit of the discrete
master equation that describes the time evolution of particle
occupancy at different lattice sites. The differential equation
derived in this manner is singular since the highest-order
derivative term (in our case, a second-order derivative term) in
the differential equation appears along with a small prefactor
proportional to the lattice spacing. In order to have a solution
for the density profile, this equation has to be solved along
with two boundary conditions which depend on the particle
injection and withdrawal rates at the boundaries. In the extreme
limit, i.e., when the second-order derivative term is completely
ignored, the resulting first-order differential equation cannot, in

general, satisfy two boundary conditions. In such a scenario,
the vanishing second-order term acts as a regularizing term.
As a consequence of the singularity, the solutions of such
differential equations have narrow boundary-layer parts whose
width depends on the small prefactor. Since the location, slope,
and height of the boundary layers vary significantly in various
phases, there have been attempts to understand the phase
transitions by studying various properties of boundary layers
under different boundary conditions [28,29].

The aim of the present paper is to show how the steady-state
density profile of TASEP with position-dependent hopping
rate and open boundaries can be obtained by solving directly
the differential equation for the average particle density using
the method of boundary-layer analysis. A careful analysis
of this solution under different boundary conditions helps us
obtain the phase boundaries associated with various boundary-
induced phase transitions. In particular, we show that the
coexistence line arises due to the deconfinement of the bound-
ary layer from the boundary [28]. Although the phases in
the phase diagram are similar to that of the ASEP with a
uniform hopping rate, the average particle distribution across
the lattice is significantly different from the uniform hopping
case. Next, we obtain the fixed points (critical points) of
the differential equation describing the boundary layers and
show the stability properties of these fixed points on a phase
portrait. Since the boundary-layer solution must be consistent
with the flow pattern towards or away from a fixed point, the
shape of the rest of the profile must also be appropriate to
support such boundary layers and also, at the same time, satisfy
the boundary conditions. Exploiting these conditions, it is
possible to predict the shape of the entire density profile under
different boundary conditions. Since this analysis is based on
the fixed points of the boundary-layer equation, this prediction
is possible even in the absence of any explicit solution for
the boundary layer. We explain this for the present problem
by considering possible density profiles in different phases.
In this formulation, the maximal-current phase turns out to
be a particularly interesting phase where the boundary-layer
solution flows to the bifurcation point on the phase portrait.

II. MODEL

On introducing the model through a discrete master equa-
tion, we obtain a continuum limit of this equation. The dif-
ferential equation obtained in the continuum limit is analyzed
using the method of boundary-layer analysis.

We consider a lattice with N sites and lattice spacing, a.
In the discrete picture, the dynamics of the particle can be
described in terms of a variable τi that denotes the particle
occupancy of the ith site. This variable can have values τi =
1 or 0 if the ith site is occupied or empty, respectively. The
time evolution of the variable τi can be expressed as

dτi

dt
= ri−1τi−1(1 − τi) − riτi(1 − τi+1), (1)

where the terms on the right-hand side of the equation arise
from particle hopping to the empty neighboring site. Here ris
are the position-dependent hopping rates. After a statistical
averaging of Eq. (1), we simplify the resulting equation
using the mean-field approximation scheme under which

032130-2



ASYMMETRIC SIMPLE EXCLUSION PROCESS WITH … PHYSICAL REVIEW E 97, 032130 (2018)

〈τiτj 〉 ≈ 〈τi〉〈τj 〉. Finally, a continuum limit is obtained by
considering N → ∞ and a → 0 limits with Na remaining
finite. For simplicity, we choose Na = 1 in the following.
Introducing the average particle density as 〈τi〉 = ρ(x,t) where
x(= ia) is the location along the lattice, we do Taylor ex-
pansions of ρ(x ± a) and r(x − a) in small a. The resulting
continuum mean-field equation in the steady state ( dρ

dt
= 0) is

a

2

[
r(x)

d2ρ

dx2
+ 2

dρ

dx

dr

dx
− 2ρ

dρ

dx

dr

dx

]

+
[

2r(x)ρ
dρ

dx
− r(x)

dρ

dx
− ρ

dr

dx
+ ρ2 dr

dx

]
= 0. (2)

In the following, we shall be considering a linearly varying
hopping rate as

r(x) = θ

(
x − 1

2

)
+ 1/2, (3)

where θ is a constant. Accordingly, while deriving Eq. (2), we
have considered d2

dx2 r(x) = 0. In general, the time-dependent
dynamics of the system can be expressed in terms of the
continuity equation

∂ρ

∂t
(x,t) = −∂J

∂x
, (4)

where J represents the particle current density. It is straight-
forward to find that for the present model

J = −a

2

[
r(x)

dρ

dx
+ (ρ − ρ2)

dr

dx

]
+ r(x)ρ(1 − ρ), (5)

where the last term in (5) indicates the hopping current and the
terms in the square bracket reflect the interaction of particles
with its neighbors; θ = 0 corresponds to the case of uniform
hopping. Another important case, with which the present
analysis may be compared, is the particle-nonconserving
TASEP with uniform hopping rate. In this case, the particle
number is not conserved due to the possibility of particle
adsorption or desorption to or from the lattice at given rates.
This system will be referred to in the following as TASEP
with Langmuir kinetics (TASEP-LK). In order to obtain the
steady-state density profile, Eq. (2) has to be solved for ρ(x)
with the boundary conditions ρ(x = 0) = α and ρ(x = 1) =
1 − β = γ . Although α and β are usually used in literature as
the injection and withdrawal rates at the boundary, respectively,
here we use the same notation for the boundary densities.

III. BOUNDARY-LAYER ANALYSIS

Equation (2) is a singular equation since the second-order
derivative term appears with the small prefactor a. The sin-
gularity arises from the fact that in the extreme limit, i.e.,
for a = 0, such equation reduces to a first-order equation
which cannot, in general, satisfy two boundary conditions.
Such singular equations are known to have solutions with
boundary layers the width of which strongly depends on the
small parameter, a.

In the first approximation, Eq. (2) can be solved for a = 0.
Such solution is expected to describe the major part of the
density profile. This wide, smoothly varying part of the density
profile solution will be referred below as the outer or the bulk
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FIG. 2. A typical density profile in the low-density phase with
a tanh-type boundary layer near x = 1 boundary. For this diagram,
θ = 0.2.

solution. Since this is a solution of a first-order equation, such
a solution can satisfy at most one of the boundary conditions.
To account for the other boundary condition, a boundary-layer
part appears in the density profile. Apart from satisfying the
other boundary condition, this boundary-layer part must also
saturate to the bulk solution at its other end. This forms a
typical scenario where the boundary layer appears near one
of the boundaries of the system and the rest of the density
profile is described by the outer solution which satisfies the
other boundary condition (see, for example, Fig. 2). Since
the boundary layer must satisfy two conditions—a boundary
condition and a condition for saturation to the outer solution,
the second-order derivative term of the differential equation
(2) becomes important for the description of the boundary
layer. There might be other scenarios where the boundary layer
appears somewhere in the interior of the system and merges
to two outer or bulk solution parts at the two ends. In this
case, each outer solution satisfies one boundary condition and
the boundary layer satisfies two saturation conditions at its
two ends. Thus, the location of the boundary-layer part of
the solution need not be restricted only near the boundary
of the system [12,28]. The boundary-layer analysis discussed
in the following is based on the determination of the boundary
layer and bulk parts of the solution and subsequently an
asymptotic matching of the two solutions to find the full density
profile [30].

In order to find the outer solution, we substitute a = 0 in
(2). The solution of the resulting first-order equation is

ρout,±(x) = 1
2 ± 1

2

√
1 + 4c/r(x), (6)

where c is the integration constant. Note that two possible
outer solutions are displayed in Eq. (6). The value of c can
be determined from the boundary condition that the outer
solution satisfies. For example, if this solution satisfies the
boundary condition at x = 0, i.e., ρout,±(x = 0) = α, then
c = α(α−1)(1−θ)

2 . On the other hand, if the outer solution satisfies
the boundary condition at x = 1, then c = β(β−1)(1+θ)

2 . With
α,β < 1, in general, c is negative in both cases for θ < 1.
Under these conditions, ρout,+ and ρout,− have +ve and −ve
slopes with x, respectively. Further, in accordance with Eq. (6),
if an outer solution lies in the range ρ > 1/2, the outer solution
is described by ρout,+ and it has a positive slope with x. On the
other hand, an outer solution with density value below 1

2 is
described by ρout,− which has a negative slope.
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In order to find the boundary-layer part, it is convenient to
introduce a rescaled variable x̃ = (x−x0)

a
, where x0 denotes the

location of the boundary layer. For example, for a boundary
layer appearing near the x = 1 boundary, x0 ≈ 1. Such a
boundary layer must saturate to the outer solution for x < 1.
Thus in the a → 0 limit, such a saturation must happen as
x̃ → −∞. In terms of x̃, the differential equation, Eq. (2), is

1

2a

[
1

2
+ θ (ax̃ + x0 − 1/2)

]
d2ρ

dx̃2
+ (1 − ρ)θ

dρ

dx̃

+ 2ρ

a

[
1

2
+ θ (ax̃ + x0 − 1/2)

]
dρ

dx̃

− 1

a

[
1

2
+ θ (ax̃ + x0 − 1/2)

]
dρ

dx̃
− θρ + θρ2 = 0. (7)

In the a → 0 limit, we arrive at the boundary-layer equation

1

2

d2ρ

dx̃2
+ 2ρ

dρ

dx̃
− dρ

dx̃
= 0. (8)

Possible solutions of this equation are

ρin(x̃) = 1

2
+ p

2
tanh[p(x̃ + k)] and

ρin(x̃) = 1

2
+ p

2
coth[p(x̃ + k)], (9)

where p and k are the integration constants whose values can
be determined through the two conditions that the boundary-
layer solutions must satisfy. For example, if the boundary layer
appears near one boundary, (i) it must satisfy the boundary
condition at that boundary, i.e., at x̃ = 0, and (ii) the other end
of the boundary layer must saturate to the bulk or the outer
solution. Since, in the boundary layer language, this solution
is often referred to as the inner solution, we have used subscript
“in” in ρin.

In the following, we consider different possibilities where
the outer solution and the boundary-layer parts satisfy different
conditions.

A. α-dominated phase or the low-density phase

In this case the outer solution satisfies the boundary condi-
tion at x = 0 and the boundary-layer solution accounts for the
other boundary condition at x = 1. Hence,

2α − 1 = ±
√

1 + 4c/r(x = 0). (10)

For such a phase, β should be above certain critical value
derived in the next subsection. Further, as we shall show in
Sec. IV, a density profile with the outer solution satisfying
the boundary condition at x = 0 is possible provided α < 1

2 .
Hence, as per Eq. (6), for α < 1

2 , the outer solution must
be described by ρout,− with c = 1

2α(α − 1)(1 − θ ). A density
profile of this kind has been displayed in Fig. 2. The boundary
layer must saturate to the outer solution as x → 1−(or x̃ →
−∞ since x0 ≈ 1). Thus

ρout,−(x = 1) = 1

2
− 1

2

√
1 + 4α(α − 1)(1 − θ )

1 + θ

= ρin(x̃ → −∞). (11)
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FIG. 3. A typical density profile in the low-density phase with a
coth-type boundary layer near the x = 1 boundary. For this diagram,
θ = 0.2.

Two different types of boundary-layer solutions may appear
near the x = 1 boundary.

(i) If 1 − β > ρout,−(x = 1), then the boundary layer must
have a positive slope to satisfy the boundary condition (as in
Fig. 2). This is possible through a tanh-type boundary-layer
solution which saturates to the outer solution if

1

2
− p

2
= 1

2
− 1

2

√
1 + 4α(α − 1)(1 − θ )

1 + θ
. (12)

A boundary layer of tanh kind would satisfy the boundary
condition at x = 1 (x̃ = 0) if

1

2
+ p

2
tanh[pk] = 1 − β. (13)

In the x̃ → ∞ limit, such a tanh-type solution saturates to

1

2
+ p

2
= 1

2
+ 1

2

√
1 + 4α(α − 1)(1 − θ )

1 + θ
, (14)

where the value of p has been substituted from (12). Clearly,
the saturation value of the tanh-type boundary-layer solution
as x̃ → ∞ depends on α.

(ii) If 1 − β < ρout,−(x = 1), then a boundary-layer solu-
tion of negative slope is expected (as in Fig. 3).

In this case, a coth-type boundary layer is expected to satisfy
the boundary condition at x = 1. Various constants of the
solution in this case can be found out in the same way as done
for the tanh boundary layers.

B. Coexistence line

The coexistence line can be approached from the low-
density phase by lowering the value of β, keeping α fixed. As
we have seen above [Eq. (14)], in the low-density phase, the
saturation value of the tanh-type boundary layer as x̃ → ∞
depends on α. Further, this saturation happens beyond the
physical size of the system (i.e., beyond x = 1). Thus in the
low-density phase, as we lower β, the tanh boundary layer
saturates much nearer to the x = 1 boundary than earlier.
Consequently, the height of the boundary layer increases. For
a given α, if the value of the right boundary density, 1 − β,
is increased beyond the saturation value of the tanh boundary
layer, then the boundary layer can no longer satisfy the bound-
ary condition at x = 1. In this situation, the tanh boundary
layer is deconfined from the boundary and it enters into the
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FIG. 4. The density profile in the maximal-current phase with two
boundary layers at the two boundaries. There is a boundary layer with
negative slope near x = 0 boundary. The other boundary layer near
x = 1 is of tanh type. For this diagram, θ = 0.2.

interior of the system. This condition for deconfinement gives
us the condition for coexistence. On the coexistence line, the
tanh-type boundary layer appears like a shock (domain wall)
separating the high-density and the low-density regions of the
density profile. From Eq. (14), the condition for deconfinement
of the tanh boundary layer can be expressed as

1

2
+ p

2
= 1

2
+ 1

2

√
1 + 4α(α − 1)(1 − θ )

1 + θ
= 1 − β. (15)

Solving this, we have the equation for the coexistence line as

(1 − θ )(α2 − α) = (1 + θ )(β2 − β). (16)

As in the case of TASEP with uniform hopping, on the
coexistence line, the tanh-type solution (kink) can be anywhere
in the interior of the system with uniform probability. This
is unlike the situation with TASEP-LK, which has a shock
phase in which the low-density and high-density parts of the
density profile are separated by a localized shock. In the next
section, we use the fixed-point diagram of the boundary-layer
differential equation to explain the origin of such similarities
and differences between different TASEPs.

C. Maximal-current phase

The phase transition from the low-density to the maximal-
current phase happens with the increase in the value of α for
given β. In the low-density phase, the outer solution, ρout,−,
satisfies the boundary condition at x = 0 until α reaches α =
αc = 1

2 from below. As we shall show through a fixed-point
analysis in Sec. IV, if α > 1/2 and β, for example, is suffi-
ciently large (β > 1/2), then the density profile cannot have an
outer solution that satisfies the boundary condition at x = 0. In
this case, the boundary condition at x = 0 must be satisfied by
a boundary layer which flows to a bifurcation point at density
ρ = 1

2 in the phase portrait (see the discussion in Sec. IV).
As Fig. 4 shows, the boundary layer near x = 0 satisfies
the boundary condition ρ(x = 0) = α as it approaches the
bifurcation point, ρ = 1/2, in x̃ → ∞ limit. At the bifurcation
point, the boundary layer saturates to an outer solution ρout,−.
This saturation to ρout,− happens near x = 0 and the saturation
condition can be expressed as ρin(x̃ → ∞) = ρout,−(x = 0) =
1/2. The outer solution, ρout,− extends until x = 1 boundary
where the boundary condition is satisfied again through a tanh-

or coth-type boundary layer depending on the value of β. Using
the condition, ρout,−(x = 0) = 1

2 , we find

c = −1 − θ

8
. (17)

The unknown constants in tanh or coth boundary layers near
x = 1 can be found out from the conditions ρin(x̃ → −∞) =
ρout,−(x = 1) and ρin(x̃ = 0) = 1 − β.

D. β-dominated phase or the high-density phase

Let us consider that in the maximal-current phase, the
boundary condition at x = 1 is satisfied through a tanh bound-
ary layer. For simplicity, we fix the value of α. Now, as the value
of β is decreased, the height of the boundary layer increases.
This is similar to the approach to the coexistence line from the
low-density phase. The tanh-type boundary layer continues to
be present until 1 − β becomes exactly same as the saturation
value of the tanh solution. Thus, the condition

1

2
+ p

2
= 1 − β (18)

leads to the critical value of β. The value of p can be found
from the condition of saturation of the boundary-layer solution
to the bulk solution in the x̃ → −∞ limit, i.e., ρout,−(x = 1) =
ρin(x̃ → −∞). With c as shown in Eq. (17), we have

p =
√

2θ

1 + θ
. (19)

Finally, from (18), we find

βc = 1

2
− 1

2

√
2θ

1 + θ
. (20)

For β < βc, the system is in the high-density phase in which
the outer solution satisfies the boundary condition at x = 1.
Further, since 1 − β > 1/2, we expect the outer solution to be
described by ρout,+ with c = 1

2β(β − 1)(1 + θ ). It can be seen

that ρout,+ = 1
2 + 1

2

√
1 + 2β(β−1)(1+θ)

θ(x−1/2)+1/2 is physically acceptable

(not imaginary) along the entire range of x if β < βc. Note
that, in the above expression, the second term under the square
root has the largest negative value when x = 0. The condition

of a real value of ρout,+ leads to β± = 1
2 ± 1

2

√
2θ

1+θ
. β−, which

is same as βc, corresponds to the boundary between the high-
density and maximal-current phase since for β > βc, the bulk
density given by ρout,+ becomes imaginary. β+ is not relevant
here since, for this value of β, the system is expected to be in
the maximal-current phase.

The boundary layer, in the high-density phase, appears near
the x = 0 boundary. Whether the slope of the boundary layer
is positive or negative depends on the boundary condition at
x = 0. If α > ρout,+(x = 0), then we have a boundary layer of
the form ρin(x̃) = 1

2 + p

2 coth[p(x̃ + k)]. As in the low-density
case, the integration constants p and k are determined from
the boundary condition and the saturation condition that the
boundary layer must satisfy. The boundary condition ρin(x̃ =
0) = α leads to the equation p coth[pk] = 2α − 1, and the sat-
uration condition ρin(x̃ → ∞) = ρout,+(x = 0) leads to p =√

1 + 4β(β−1)(1+θ)
(1−θ) . If α < ρout,+(x = 0), then the boundary
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FIG. 5. The density profile in the high-density phase. There is a
tanh-type boundary layer near x = 0. For this diagram, θ = 0.2.

layer is of the form ρin = 1
2 + p

2 tanh[p(x̃ + k)], with p and
k determined from similar conditions as described above. A
typical density profile in the high-density phase appears as
shown in Fig. 5.

IV. FIXED-POINT ANALYSIS OF THE BOUNDARY-
LAYER DIFFERENTIAL EQUATION

On one integration, the boundary-layer equation [Eq. (8)]
can be written in the form

1

2

dρ

dx̃
= c0 − (ρ2 − ρ), (21)

where c0 is the integration constant. Since the boundary layer
saturates to the outer solution in the appropriate limit, c0 =
ρb(ρb − 1), where ρb denotes the value of the bulk density to
which the boundary-layer solution saturates. Clearly, the value
of c0 lies in the range [− 1

4 : 0]. The fixed points (critical points)
of Eq. (21) are ρ∗

in = 1
2 [1 ± √

1 + 4c0]. Figure 6 displays the
two fixed-point branches as functions of c0 with a bifurcation
point (c0,ρ

∗
in) = (− 1

4 , 1
2 ). The vertical arrows in this diagram

0.6
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FIG. 6. The fixed-point diagram of the boundary-layer differ-
ential equation. The curves in solid and dashed lines indicate the
two fixed-point branches. The vertical arrows indicate that the upper
and lower fixed-point branches are, respectively, stable and unstable.
Thus, these arrows indicate the direction of the flow of the boundary-
layer solution as x̃ increases. The point (− 1

4 , 1
2 ) corresponds to the

bifurcation point. The flow towards or away from this special point is
indicated through vertical downward arrows on the y axis.
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ρ
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ρ
in,−

*

*

ρ

γ
α

x

outer solution

boundary layer

FIG. 7. (a) A typical density profile in the low-density phase is
shown on the fixed-point diagram for the boundary-layer equation
[Eq. (21)]. The density profile is indicated through the bold (dashed
and solid) line with double arrows. The double arrow indicates the
direction of increasing x. The vertical, bold solid line indicates the
boundary-layer part of the profile. This part is governed by Eq. (21)
with constant c0. The boundary-layer part of the solution satisfies the
boundary conditionρ(x = 1) = 1 − β = γ before reaching the stable
(upper) fixed-point branch. The bold dashed line indicates the outer
solution described by ρout,−. ρout,− has a negative slope with x. For
convenience of the reader, the boundary densities α and γ are marked
through horizontal dashed lines on this figure. The other details of the
fixed-point diagram are already indicated in Fig. 6. (b) A qualitative
plot for the same density profile as a function of x. As in panel (a),
the outer solution and the boundary layer are shown in bold-dashed
and bold-solid lines, respectively.

indicate the stability properties of the fixed points or in
other words, approach (or departure) of any boundary-layer
solution to (or from) the fixed-point branches as x̃ → ∞. For
different boundary conditions, the shape and the location of the
boundary layer may change but the boundary-layer solutions
must be consistent with what is predicted by the fixed-point
diagram. Below, we show three examples on predictions of the
shape of the density profile in the low-density, high-density,
and maximal-current phases.

A. Low-density phase

In the low-density phase, the density profile typically
appears as presented in Fig. 7. Such density profile appears for
α < 1/2. The outer solution satisfies the boundary conditions
at x = 0. Such an outer solution is described by ρout,− and has a
negative slope as shown through the smoothly varying dashed
bold line along the lower fixed-point branch. Such an outer
solution, if extended up to x = 1, does not in general satisfy the
boundary condition. Ifρout,−(x = 1) < 1 − β, then a tanh-type
boundary-layer solution appears near x = 1. The boundary-
layer solution is the solution of Eq. (21) and corresponds to
constant c0. As the figure shows, in the present case the solution
approaches the stable fixed-point branch (the upper branch). In
terms of the explicit tanh form of the solution, such saturation
corresponds to the saturation of the tanh function for large value
of its argument. Thus, the boundary-layer solution is consistent
with the flow lines approaching the upper (stable) fixed-point
branch from the lower (unstable) fixed-point branch. In the
low-density phase, the saturation to the stable fixed point
happens beyond the boundary at x = 1. The boundary layer
while approaching the stable, upper fixed-point branch satisfies
the boundary condition at x = 1 (see also Fig. 2). For β values
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FIG. 8. (a) A typical density profile in the maximal-current phase
is shown on the fixed-point diagram for the boundary-layer equation
[Eq. (21)]. The density profile is indicated through the bold (dashed
and solid) line with double arrows. The double arrows indicate the
direction of increasing x. The vertical parts in the bold solid line
represent the boundary layers which are governed by Eq. (21) with
constant c0. The boundary-layer part near x = 0, represented by a
bold line with a double arrow along the y axis, approaches the bifur-
cation point, (c0 = −1/4,ρ = 1/2). This boundary layer satisfies the
boundary condition at x = 0 as it approaches the bifurcation point.
The bold-dashed line indicates the outer solution described by ρout,−.
ρout,− has a negative slope with x. The boundary densities, α and γ

are marked through horizontal dashed lines on this figure. The other
details of the fixed-point diagram are already indicated in Fig. 6. (b)
A qualitative plot of the same density profile as a function x. As in
panel (a), the outer solution and the boundary layers are shown in
bold dashed and bold solid lines, respectively. As shown in panel (a),
both the boundary layers have negative slope with x.

for which ρout,−(x = 1) > 1 − β, there must be a negative-
slope boundary layer described by a coth-type solution. This is
consistent with the flow behavior shown through the downward
vertical lines below the lower fixed-point branch.

B. Maximal-current phase

For the maximal-current phase, the solution for the density
profile has been displayed on the fixed-point diagram of
Fig. 8(a). Such a situation occurs when α > 1/2 and β > βc.
Let us consider for simplicity β > 1/2 [i.e., ρ(x = 1) = 1 −
β < 1/2]. Given that ρout,+ has a positive slope with x and
the upper fixed-point branch is a stable branch, the only way,
the density profile, in this case, can satisfy both the boundary
conditions is through boundary layers both at x = 0 and x = 1.
The boundary layer at x = 0 has a negative slope with x.
It satisfies the boundary condition at x = 0 as it approaches
the bifurcation point at ρ = 1/2 [31]. On the fixed-point
diagram, such a boundary layer is represented by the downward
line approaching the bifurcation point along the y axis (the
solid bold line with double arrows along the y axis). Such a
boundary layer is consistent with the downward flow along
the y axis shown in Fig. 6. This boundary layer saturates to a
smoothly varying outer solution near x = 0. The outer solution
must be given by ρout,− since with the positive-slope outer
solution, ρout,+, the boundary condition at x = 1 cannot be
satisfied. The outer solution extends up to the x = 1 boundary
where the boundary condition is satisfied by a boundary layer.
This boundary layer can have upward (described by the tanh
solution) or a downward slope (described by a coth solu-
tion) depending on whether ρout,−(x = 1) < 1 − β or ρout,−
(x = 1) > 1 − β, respectively. Both these boundary-layer so-

−0.25

)

(b)(a)

α

outer solution

ρ
in,+

*
γ

0−0.05−0.1−0.2 −0.15
c0

0.2

0.8

1

boundary layer solution

in,+/−
ρ∗

0.4

0.6α

0

outer solution

ρ
in,−
*

γ
ρ

x

boundary layer solution
(constant c

0

FIG. 9. A typical density profile in the high-density phase is
shown on the fixed-point diagram for the boundary-layer equation
[Eq. (21)]. The density profile solution is shown through the bold
(solid and dashed) line with double arrows. The vertical part in the
bold solid line represents the boundary layer of positive slope with
x. This part is governed by Eq. (21) with constant c0. The boundary
layer satisfies the boundary condition at x = 0. The outer solution
shown in the bold dashed line is given by ρout,+. This solution has a
positive slope with x. The remaining details of the fixed-point diagram
are already indicated in Figs. 6, 7, and 8. (b) A qualitative plot of the
same density profile as a function x. As in panel (a), the outer solution
and the boundary layers are shown in bold dashed and bold solid lines,
respectively. The outer solution has positive slope with x.

lutions are consistent with the flow behavior representing flow
away from the unstable, lower fixed-point branch. Figure 8(b)
shows the density profile plot along x. This type of density
profile continues to be present for all β > βc and α > 1/2.

C. High-density phase

In the high-density phase, β < βc, the outer solution satis-
fies the boundary condition at x = 1. Such an outer solution
is described by ρout,+ and has a positive slope. The boundary
condition at x = 0 is taken care by a boundary layer of either
positive (tanh type) or negative slope (coth-type) solution.
While the tanh-type boundary layer is represented by the
vertical solid bold line approaching the stable fixed-point
branch from below see Fig. 9(a), the coth can be represented in
a similar way by a vertical line approaching the stable branch
from above. The density profile with a tanh-type boundary
layer has been plotted as a function of x in Fig. 9(b).

D. Coexistence line

The coexistence line can be approached from the high- or
low-density phases. As we have discussed in Sec. III B, if we
approach the coexistence line from the low-density phase by
decreasing β for a given α, then the height of the boundary
layer near x = 1 increases until the saturation value of the
tanh-type boundary layer exactly matches with the boundary
condition ρ(x = 1) = 1 − β. At this point, the vertical line in
Fig. 7, exactly reaches the upper fixed-point branch right at
the x = 1 boundary. This condition is expressed in Eq. 15.
The vertical line, representing the tanh boundary layer, always
approaches the upper fixed-point branch. However, in the low-
density phase, the saturation to the upper fixed-point branch
happens beyond the physical boundary of the system (i.e., at
x > 1). It is only at the coexistence line where the saturation
happens right at the boundary of the system.
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FIG. 10. Diagrams showing the deconfinement of the tanh bound-
ary layer for the present model (a) and for TASEP-LK (b). The outer
solutions in panel (a) and panel (b) have slopes of opposite signs. (a1)
The boundary layer, just deconfined, has a flexible location. The solid
bold line and the dashed bold line with double arrows indicate two
possible density profile solutions. Both the density profiles satisfy the
given boundary conditions although, for the dashed line, the boundary
layer appears in the interior of the system (away from the x = 1
boundary) and an outer solution satisfies the boundary condition
at x = 1. (a2) A qualitative plot for the density profiles of (a1) as
functions of x. (b1) The density profile in the solid bold line shows
the just-deconfined boundary layer. The dashed-bold line cannot be
a solution for the density profile (indicated by a cross mark) since it
does not satisfy the boundary condition ρ(x = 1) = γ at the x = 1
boundary. (b2) A qualitative plot for the density profiles of (b1) as
functions of x.

In case of TASEP with uniform hopping, in the low-
(high-)density phase, the bulk part of the density profile is
constant at a value α (1 − β). The boundary layers in low- and
high-density phases satisfy the boundary conditions at x = 1
and x = 0, respectively. As it is here, in both these phases,
the boundary layers are described by tanh-type solutions with
saturation to 1 − β (α) for x̃ → ∞(x̃ → −∞) in low- (high-)
density phases. The condition for coexistence is same as the
present model, except for the fact that for the uniform hopping
model the vertical line in the low-density phase saturates to
1 − β and α at its two ends i.e., for x̃ → ∞ and x̃ → −∞,
respectively. Since the bulk densities (outer solutions) are
constant at α and 1 − β, the location of the boundary layer
on the coexistence line need not be fixed at a given value of
x and, in principle, the boundary layer can be anywhere in
the interior of the system with equal probability. A somewhat
similar flexibility arises here also since the bulk density has
+ve or −ve slope for ρ > 1/2 or ρ < 1/2, respectively. The
shock, thus, joins a gradually decreasing low-density part with
a gradually increasing high-density part on its two sides as
shown in Fig. 10(a1). The location of the shock along x is
flexible since a change in its location only requires a change in
the width of the low- or high-density parts and the boundary
conditions can still be fulfilled by the low- and high-density
regions of the density profile as shown by the two profiles in
solid and dashed lines in Figure 10(a1). The density profile in
dashed line has the tanh-type boundary layer at a lower value
of x than that for the profile in solid line [see also Fig. 10(a2)].

In the following, we compare the properties of shocks that
appear in TASEP-LK and in the present model. Briefly, the
steady-state density profile of TASEP-LK in the continuum
limit is described by a similar equation,

a

2

d2ρ

dx2
+ (2ρ − 1)

dρ

dx
+ 	(1 − 2ρ) = 0, (22)

where a is a small constant proportional to the lattice spacing
and the last term proportional to 	 represents the particle
adsorption-desorption kinetics on the lattice. Here, we have
assumed that particle adsorption or desorption happens at the
same rate proportional to 	. The outer solution (or the bulk
solution) which is the solution of the above equation with
a = 0 is

ρ(x) = 	x + c, (23)

where c is the integration constant. It is straightforward to see
that the boundary-layer differential equation for TASEP-LK
is same as that in Eq. (8) or (21). Thus, the boundary-layer
equation has the same phase portrait as Fig. 6 along with
identical boundary-layer solutions as those in Eq. (9). Despite
having the same boundary-layer solutions, the shocks in the
present model and in TASEP-LK have different properties.
Unlike the present model where the shock location along x

is flexible on the coexistence line, in case of TASEP-LK, a
shock in the density profile is localized at a fixed value of x.
The difference with TASEP-LK arises due to the difference in
the nature of the outer solution (or the bulk solution). While
in the present case, the slope of the outer solution with x

is positive or negative if ρ > 1/2 and ρ < 1/2, respectively,
in case of TASEP-LK, the outer solution shown in Eq. (23)
has positive slope for the entire range of the density. In the
low-density phase, the density profile of TASEP-LK has a tanh-
type boundary layer near the x = 1 boundary. However, right
on deconfinement of the tanh boundary layer, the boundary
layer does not have the freedom to change its location towards
the interior of the system since such a boundary layer cannot
satisfy the boundary condition at x = 1 [see Fig. 10(b1) and
10(b2)]. However, the deconfined boundary layer can enter
into the interior of the lattice as β is decreased further. This
gives rise to a shock phase with the deconfined boundary
layer localized in the interior of the lattice TASEP-LK. As we
can see from Figs. 10(a1) and 10(a2), due to outer solutions
having opposite slopes in the ρ > 1/2 and ρ < 1/2 regions,
right at the deconfinement, the boundary conditions can be
appropriately satisfied even if the location of the boundary
layer shifts towards the interior of the lattice (located at x < 1).
Thus, it appears that the slope of the outer solution is crucial
for determining whether the system can have a localized shock
or not.

V. SUMMARY

In this paper, we study a TASEP with position-dependent
hopping rates of particles. The particles, after being injected
into the lattice at a given rate, hop to the neighboring forward
site obeying the exclusion principle that prohibits double
occupancy of a site. On reaching the other end of the lattice,
particles are withdrawn at given rates. In this paper, we consider
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the case where the hopping rate of a particle changes linearly
with the location of the particle on the lattice.

Depending on the values of the boundary rates, in the
steady state, TASEP, in general, can exist in various phases
where each phase is characterized by the distinct shape of
the average particle density profile. The density profiles, in
these systems, contain narrow boundary-layer parts whose
shape and location differ significantly in various phases. The
aim of the present study is to obtain the steady-state particle
density profile by directly solving the differential equation for
the average particle density under given boundary densities.
The differential equation is obtained through a continuum,
mean-field approximation of the master equation and it is
singular since its highest- (second-) order derivative term has a
negligibly small prefactor. Such singular equations are known
to have solutions with boundary-layer parts. We use the method
of boundary-layer analysis to solve such singular equations. In
this scheme, the boundary-layer part and the rest of the density
profile are obtained separately by solving the differential
equation in different limits. These two parts are then joined
through asymptotic matching to obtain the entire density pro-
file. Broadly, the phase diagram of the present model consists
of low-density, high-density, and maximal-current phases. We
obtain various phase boundaries by analyzing the solution for
the density profile under different boundary conditions.

A significant amount of insight regarding the nature of vari-
ous phases can be obtained from the fixed-point (critical-point)
analysis of the differential equation describing the boundary
layer. Since the boundary-layer solution must be consistent
with the stability properties of the fixed points, it is possible to
predict the shape and the location of the boundary layers even
in the absence of an explicit solution for the boundary layer.

In this formulation, the maximal-current phase arises as a
special phase where the boundary layer at the left boundary
(x = 0) of the system approaches a bifurcation point located
at particle density, ρ = 1/2, on the phase portrait of the
boundary-layer differential equation. The expressions for the
coexistence line [Eq. (16)] and the special boundary densities
αc and βc differ from the earlier results [15] in a subtle
way. These differences originate from the difference in our
original assumption regarding the boundary parameters. While
in the present work the boundary densities are ρ(x = 0) = α

and ρ(x = 1) = γ = 1 − β, in the earlier work, boundary
conditions are specified through the boundary injection and
withdrawal rates which we denote here as α′ and β ′, re-
spectively. A relation between the two parameter sets can
be found by equating currents at the two boundaries for the
two cases as α′(1 − α) = α(1 − α)(1 − θ )/2 and β ′(1 − β) =
β(1 − β)(1 + θ )/2.

The fixed-point diagram of the boundary-layer equation
is same as that of TASEP with uniform hopping and with
or without particle adsorption-desorption kinetics (Langmuir

kinetics). Consequently, some of the broad features of the
steady-state phase diagram such as the presence of low-density,
maximal-current, and high-density phases seem to be the
result of same flow properties of the boundary-layer solution
in all these models. The details associated with the phase
boundaries, however, depend also on the explicit form of
the outer solution. For example, in the present problem, the
high-density and the low-density phases are separated by a
coexistence line. On this line, the tanh-type boundary layer is
deconfined from the boundary and it has a uniform probability
to be anywhere inside the lattice. Similar deconfinement of the
boundary layer happens also in case of TASEP-LK. However,
in case of TASEP-LK, the boundary layer does not have similar
flexible location on deconfinement. Further, in TASEP-LK, on
reducing β, the system enters into a shock phase where the
boundary layer enters into the system in the form of a localized
shock. The fixed-point-based boundary-layer analysis allows
us to understand why such differences arise in these two
models. The phase boundaries for the present model differ
significantly from those of TASEP with uniform hopping.
However, Eqs. (16) and (20) provide the interpolation formula
for variation in θ . For example, as θ reduces, the coexistence
line approaches the form α = β, which is found for TASEP
with uniform hopping. In a similar way, βc, separating the
high-density and the maximal-current phase approaches 1

2 as
θ is reduced.

For different functional dependence of the hopping rate on
x, the outer solution is likely to change significantly. However,
qualitatively, this variation might not have significant effect
on the narrow boundary-layer regions. As a consequence,
we expect the boundary-layer solutions to remain unchanged.
Since the shape of the outer solution and its slope crucially
depend on the explicit form of the hopping rate, the shape of the
phase diagram and the phase boundaries are likely to change
significantly. It would be interesting to look at the details of
these features for other forms of hopping rates and find out
some of the generic features for such systems.

Finally, it appears that a lot of physical insight regarding
the phases and phase boundaries can be obtained from the
analysis of the phase portrait of the boundary-layer differential
equation. Since this method is based on only the knowledge
of the fixed points, their stability properties and the slopes
of the outer solutions, such methods might be useful for
understanding phases and phase transitions in different types
complex driven exclusion processes.
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