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Through a kinetic approach, in which temperature fluctuations are taken into account, we obtain generalized
fractional statistics interpolating between Fermi-Dirac and Bose-Einstein statistics. The latter correspond to the
superstatistical analogues of the Polychronakos and Haldane-Wu statistics. The virial coefficients corresponding
to these statistics are worked out and compared to those of an ideal two-dimensional anyon gas. It is shown that
the obtained statistics reproduce correctly the second and third virial coefficients of an anyon gas. On this basis,
a link is established between the statistical parameter and the strength of fluctuations. A further generalization is
suggested by allowing the statistical parameter to fluctuate. As a by-product, superstatistics of ewkons, introduced
recently to deal with dark energy [Phys. Rev. E 94, 062115 (2016)], are also obtained within the same method.
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I. INTRODUCTION

The statistics of all observed particles are covered by the
two well-known realizations of quantum statistics: the Bose-
Einstein (BE) statistics and the Fermi-Dirac (FD) statistics.
Bosons, obeying BE statistics, are characterized by a wave
function that does not change under the exchange of any two
particles, while the many-body wave function of a system
of fermions, obeying FD statistics, changes sign under the
same process; that is, |ψ2,1〉 = ±|ψ1,2〉, where + (−) refers
to bosons (fermions). While this is true for all elementary
particles, for some time already there has been an ongoing
interest in the physics of quasiparticles obeying fractional
statistics. Aside from being interesting in their own right in the
context of mathematical physics, current interest in fractional
statistics is motivated by its relevance in a number of physical
processes, such as the fractional quantum Hall effect [1,2],
high-temperature superconductivity [3–5], low-dimensional
interacting systems [6], cold atomic gases [7], nuclear matter
[8], and models of dark matter [9].

Fractional statistics arises when the many-body wave func-
tion of a system of indistinguishable particles is allowed to
acquire an arbitrary phase under the exchange of two particles.
Leinaas and Myrheim [10] showed that the wave function
in a two-dimensional system can pick up an arbitrary phase
eiπα , where α is a real number, α ∈ [0,1] (mod. 2), when
two particles are swapped; that is, |ψ2,1〉 = eiπα|ψ1,2〉. Later
Wilczek [11] coined the name anyons for particles obeying
these peculiar statistics.1

*kam.ourabah@gmail.com
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1Anyons are generally classified as Abelian and non-Abelian.

Excitations corresponding to Abelian anyons have been detected
experimentally; they play an important role in the fractional quantum
Hall effect [12]. Non-Abelian anyons have not been definitively
detected, although actively studied.

Numerous extensions of the conventional BE and FD statis-
tics have been suggested, either from quantum mechanical
considerations or more rooted in statistical mechanics. In
the formalism of fractional exclusion statistics, Haldane [13]
defined a generalized Pauli exclusion principle, allowing an
interpolation expression between the bosonic and fermionic
limits. Later, Wu [14] obtained a distribution function for
particles obeying the Haldane principle. Polychronakos [15]
defined a different form of fractional statistics, with the
advantage of being generalizable to interacting particles.

Nevertheless, the relation between fractional statistics and
anyons is quite elusive. So far, the expression for the occupation
numbers in an ideal gas of anyons has remained unknown, and
statistical mechanical models of anyons are still incomplete. A
promising idea to circumvent this issue is to consider a more
general form of fractional statistics by adding one or a few
parameters into the occupation numbers. In the seminal work
of Rovenchak [16,17], fractional statistics are generalized in
the sense of Tsallis statistics [18] or incomplete statistics [19].
Such generalized fractional statistics allow establishing an
approximate correspondence within an anyon gas, because of
the extra-parameter that underpins the occupation numbers. In
such an approach, the generalization is introduced phenomeno-
logically. It can also be justified by maximizing a more general
form of entropy [20,21].

In this paper we take a different path. The key idea is to
consider that the temperature has small fluctuations around
some mean value and to use basic probability rules to establish
the occupation numbers. The statistics are then given by a
mixture of statistics, characterized by the mean temperature
and a parameter that defines the strength of fluctuations. Such
an approach has two advantages : first, the generalization of the
statistics is based upon an empirical fact, namely, fluctuations,
which opens the door for an experimental validation. Second,
fractional statistics à la Tsallis represent only a particular case
of the present approach, as a consequence of a specific type of
fluctuations. More general statistics can be generated following
different forms of fluctuations [22,23]. Note that experimental
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evidence for statistics close to Tsallis statistics but with tiny
corrections can be found in the literature [24].

A picture of this paradigm can be given using the adiabatic
ansatz: Let ζ be some fluctuating intensive quantity. The state
space X covered by the system during its evolution can be
partitioned into small cells characterized by a sharp value of
ζ . Within each cell, the system is described by the conditional
distribution p(A | ζ ), to be found in a state A ∈ X. As ζ varies
adiabatically from cell to cell, the joint distribution of finding
the system with a sharp value of ζ in a specific state A is given
by a mixture of probabilities: p(A,ζ ) = p(A | ζ )p(ζ ) (Bayes
theorem). The resulting statistics p(A) for finding the system
in the state A is obtained through marginalization:

p(A) =
∫

p(A | ζ )p(ζ ) dζ. (1)

Such an approach is usually referred to as superstatistics
since it consists of a superposition of statistics. The formalism
has been introduced in Ref. [22], but such a pattern has a long
tradition in statistical mechanics, and some features have been
anticipated earlier [25–28].

The paper is organized as follows. In Sec. II we derive frac-
tional superstatistics following mostly the approach introduced
in Refs. [21,29], but allowing for temperature fluctuations. We
establish the superstatistics corresponding to Polychronakos
and Haldane-Wu statistics. We also obtain a generalization
of “ewkons” statistics, introduced recently as a candidate to
model dark energy [30,31]. In Sec. III we derive the virial
coefficients corresponding to those statistics and compare them
to those of a two-dimensional ideal anyon gas. In Sec. IV a
further generalization is proposed by allowing the statistical
parameter to fluctuate within a distribution function assigned
to it. We comment and summarize in Sec. V.

II. FRACTIONAL SUPERSTATISTICS FROM A
KINETIC APPROACH

Consider a system at thermal equilibrium at a fixed temper-
ature T , β = 1/T (hereafter the Boltzmann constant is set to
unity), and focus on the change of the level mean occupation
ni(t) ≡ n(t,Ei) due to the transition to and from the level Ei . In
the decorrelation approximation, valid in the thermodynamic
limit, the change of ni(t) is governed by the following master
equation:

dni(t)

dt
= π (t,Ei+1 → Ei) + π (t,Ei−1 → Ei)

−π (t,Ei → Ei+1) − π (t,Ei → Ei−1), (2)

where π (t,Ei → Ei+1) defines the transition probability from
the state Ei to the state Ei+1. The latter is related to the
transition rate r(t,Ei,�E) from the state Ei to the state Ei+1

as [21]

π (t,Ei+1 → Ei) = r(t,Ei,�E)φ(ni)ψ(ni+1), (3)

where φi ≡ φ(ni) and ψi+1 ≡ ψ(ni+1) are some functions
depending, respectively, on the occupational distribution of
the initial state Ei and the arrival state Ei+1. The functions φi

and ψi can inhibit or enhance the transition probability from
a site to another and hence define the underlying exclusion
principle governing the particle kinetics. φi is proportional to

the probability of finding the occupation number ni in the state
Ei , and ψi is proportional to the probability of introducing an
extra particle into a state with occupational number ni . In this
sense, they can be thought of as the semiclassical analogues
of the quantum creation and annihilation operators matrix
elements in second quantization:

φ(ni) ∝ |〈ni−1 |̂ani
|ni〉|2,

ψ(ni) ∝ |〈ni+1 |̂a†
ni
|ni〉|2. (4)

Notice that the transition probability from an empty state
must be zero, hence φ(0) = 0. Also, if the arrival state is
empty, there is no manifestation of the exclusion principle,
and the probability transition is not affected, that is, ψ(0) = 1.
Rewriting Eq. (2) as a continuity equation and considering
Brownian particles, one can relate the functions φi and ψi in
the following fashion [21]:

φi

ψi

= e−βεi , (5)

where εi ≡ Ei − μ is the single particle energy defined up
to the chemical potential μ. The left-hand side of Eq. (5)
contains the classical or quantum behavior of the system and
expresses the underlying exclusion principle, and the right-
hand side is just the probability of the state Ei at temperature
T . We note that up to now, we have been considering a system
at equilibrium, within a single temperature T . Let us now allow
the temperature, or equivalently β, to fluctuate following some
distribution, say, f (β), and seek a natural generalization of
Eq. (5). In this case, the right-hand side of (5) becomes a
conditional probability, p(Ei | β), and as β varies adiabatically
from cell to cell, the resulting probability for finding the system
in the state Ei is obtained through marginalization (1),

φi

ψi

= B(εi), (6)

where

B(εi) =
∫ ∞

0
dβf (β)e−βεi . (7)

At this stage, one should point out that behind Eq. (7) there
is the assumption that β fluctuates on a large spatiotemporal
scale, which makes this approach a form of slow modulation
(see Refs. [32,33] for an elaborate discussion). Equation (6)
has a very simple and general form; the right-hand side, whose
form is defined by the type of fluctuations, f (β), defines the
effective Boltzmann factor that would appear in the distribution
number, and the functions φi and ψi appearing in the left-hand
side define the form of extension beyond BE or FD statistics,
due to the underlying exclusion principle governing the particle
kinetics. A proper choice of φi and ψi allows us to construct
superstatistics corresponding to Polychronakos or Haldane-
Wu statistics, but before doing so, let us briefly discuss the
classical case corresponding to the Maxwell-Boltzmann (MB)
distribution. In this case, the transition probability does not
depend on the occupational distribution of the arrival site,
hence φi = ni and ψi = 1. Equation (6) gives then the classical
superstatistics [22]:

ni = B(εi), (8)
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where B(εi) is related to f (β) through Eq. (7). Clearly, the
form of the distribution f (β) fixes the kind of superstatistics
(8). A meaningful case is that when β follows a χ2 distribution:

f (β) = 1

b�(c)

(
β

b

)c−1

e−β/b. (9)

The latter appears when many independent microscopic ran-
dom variables are contributing to β in an additive way. In this
case, the resulting superstatistics (8) corresponds to Tsallis
statistics [22]:

B(εi) = eq(−β0εi) eq(x) ≡ [1 + (1 − q)x]1/(1−q), (10)

where β0 is the average of β and q ≡ 〈β2〉/〈β〉2 is a universal
parameter measuring the strength of fluctuations [22]. Of
course, other forms of the distribution f (β) lead to different
superstatistics. In particular, instead of being a sum of many
contributions, the random variable β may be generated by
multiplicative random processes. In this case β follows a
lognormal distribution,

f (β) = 1

βs
√

2π
exp

{−[log(β/m)]2

2s2

}
, (11)

which leads to different superstatistics. This time, the su-
perstatistics cannot be evaluated in closed form, but can be
obtained numerically or evaluated in the case of sufficiently
small energies as

B(εi) = e−β0εi

[
1 +

∞∑
l=2

gl(q)(β0εi)
l

]
, (12)

where the first correction terms read as [22]

g2(q) = (q − 1)

2
and g3(q) = −1

6
(q3 − 3q + 2); (13)

the parameter q keeps the same definition: q ≡ 〈β2〉/〈β〉2. In
this sense, it constitutes a universal parameter measuring the
strength of fluctuations regardless of the type of superstatistics.
Note that according to its definition, one has q � 1. However,
one can generalize the above superstatistics to cover the q <

1 case (see Ref. [34]). In the following, both cases will be
considered.

As we have previously outlined, a proper choice for the
functions φi and ψi can lead to fractional superstatistics.
In particular, one can obtain superstatistics corresponding to
Polychronakos statistics. In this statistics, the particle kinetics
is that the first particle in a system composed of many particles
can occupy one of G states, the second particle one of G − γ

states, the third particle one of G − 2γ states, and so on, where
γ (−1 � γ � 1) is a real parameter related to the exchange
statistical parameter α appearing in the quantum phase eiπα .
In this case, the function ψi depends on the particle distribution
of the arrival site and on the parameter γ , in such a way that
the transition probability is enhanced for γ > 0 (boson-like
particle) and inhibited for γ < 0 (fermion-like particle). Then
one has φi = ni and ψi = 1 + γ ni . Equation (6) gives then

nP
i = 1

B−1(εi) − γ
. (14)

In the absence of fluctuations, i.e., f (β) ≡ δ(β − β0), B−1(εi)
reduces to eβ0εi and Eq. (14) reduces to the usual Polychronakos
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FIG. 1. Plot of the Polychronakos statistics against x ≡ β0(Ei −
μ) for different values of γ : (a) in the absence of fluctuations and (b)
for a χ 2 distribution within q ≡ 〈β2〉/〈β〉2 = 1.2.

statistics [15]. If β follows a χ2 distribution (9), it reduces to
the Polychronakos statistics à la Tsallis [16,21],

nP
i = 1

eq(β0εi) − γ
, (15)

within the change q → 2 − q. In Fig. 1 we show the behavior
of the statistics (15) with x ≡ βo(Ei − μ), for different values
of γ : (a) in absence of fluctuations and (b) with a fluctuation
corresponding to the χ2 distribution.

In a similar way, one can construct superstatistics
corresponding to Haldane-Wu statistics. Consistent with
Refs. [21,35], one has ψi = [1 − gni]g[1 + (1 − g)ni]1−g

with φi = ni . It follows from Eq. (6) that

nHW
i = 1

w[B−1(εi)] + g
, (16)

where w[B−1(εi)] is the solution of the transcendental equation

wg(1 + w)1−g = B−1(εi). (17)

Here the effect of the fluctuations appears in Eq. (17) satisfied
by the Wu function w(x). Equation (17) is highly nonlinear for
arbitrary values of g, but it is easy to see that the distribution
function (16) reduces to the BE superstatistics for g = 0 and
FD superstatistics for g = 1 [36]. Classical superstatistics are
recovered when B−1(εi) is very large such that w(x) 
 x.
Equation (17) can be solved analytically for some values of g

beyond Bose and Fermi limits. The simplest result is obtained
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FIG. 2. Plot of the Haldane-Wu statistics against x ≡ β0(Ei − μ)
for different values of g: (a) in the absence of fluctuations and (b) for
a χ 2 distribution within q ≡ 〈β2〉/〈β〉2 = 1.2.

for g = 1/2 corresponding to so-called semions:

nHW
i = 1√

1/4 + B−2(εi)
. (18)

It is interesting to note that Eq. (17) preserves the duality
property that relates the statistics for g and 1/g [37]. In the
case of superstatistics, the latter reads as

1 − gng[B−1(εi)] = 1

g
n1/g[B1/g(εi)]. (19)

In Fig. 2 we show the behavior of the statistics (16) with x ≡
βo(Ei − μ), for different values of g; (a) in the absence of
fluctuations and (b) with a fluctuation corresponding to the χ2

distribution.
Beyond fractional statistics, extending BE and FD statistics,

one may also consider extensions of the classical statistics.
In this vein, ewkons statistics has been introduced recently
from the assumption that noninteracting particles imply a free
diffusion coefficient in energy space [30]. Ewkons statistics
reads as

newk
i = σ + e−βεi . (20)

The latter is equal to the MB distribution displaced by some
fixed quantity σ , with σ a positive integer. Particles obeying
such statistics have the propriety to spread in whole space,
assuming a homogeneous number of states per unit volume,
and have a negative relation between pressure and energy
density, two features that make them suitable to describe dark
energy [31]. Like classical particles, ewkons are not subject to
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FIG. 3. Plot of ewkons statistics against x ≡ β0(Ei − μ) for
different values of σ : (a) in the absence of fluctuations and (b) for
a χ 2 distribution within q ≡ 〈β2〉/〈β〉2 = 1.2.

an exclusion principle, and there is no maximum occupation
number of a state, that is ψi = 1. Furthermore, ewkons have
a nonvacuum ground state, and their kinetics is such that any
energy level is occupied by at least σ particles. Accordingly, the
transition probability is inhibited by subtracting some quantity
σ , that is, φi = ni − σ . Ewkons superstatistics follows from
Eq. (6) as

newk
i = σ + B(εi). (21)

Figure 3 displays the behavior of ewkons superstatistics (21)
with x ≡ βo(Ei − μ), for different values of σ : (a) in absence
of fluctuations and (b) with a fluctuation corresponding to the
χ2 distribution.

III. VIRIAL AND CLUSTER EXPANSIONS

Consider a two-dimensional system of density ρ2, ρ2 =
N/A where N is the number of particles and A the area. The
virial expansion for the equation of state of such a system
reads as

p

T
= ρ2[1 + b2(ρ2λ

2) + b3(ρ2λ
2)2 + · · · ], (22)

where p and T stand for the pressure and the temperature,
respectively, and λ ≡

√
2πh̄2/mT is the thermal de Broglie

wavelength of a particle of mass m. The dimensionless factors
bi appearing in the expansion (22) are the virial coeffi-
cients. For a system of bosons or fermions, the second virial
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coefficients are known as [38]

bF
2 = 1

4 and bB
2 = − 1

4 , (23)

while for an ideal anyon gas, the virial coefficients are functions
of the statistical parameter α:

b
anyon
2 = − 1

4 (1 − 4α + 2α2),

b
anyon
3 = 1

36 + sin2 πα

12π2
+ c3 sin4 πα

c3 = −(1.652 ± 0.012) × 10−5, (24)

where the expression for the second coefficient b
anyon
2 is exact

whileb
anyon
3 is obtained through numerical calculations [39]. To

seek for the fractional statistics that describes the best a system
of anyons, one can proceed to a comparison between the virial
coefficients corresponding to different statistics and b

anyons
i .

In this respect, both Polychronakos statistics and Haldane-Wu
statistics allow us to establish a correspondence with the second
virial coefficient of anyons as

bP
2 = − 1

4 |γ | with

γ = 4α − 2α2 − 1 (Polychronakos),

bHW
2 = 1

4 (2g − 1) with

g = 2α − α2 (Haldane-Wu). (25)

However, none of the above-mentioned statistics can reproduce
correctly the third virial coefficient [38], which suggests
therefore the introduction of a more general class of fractional
statistics. Such a generalization has been done phenomeno-
logically by Rovenchak [17], with the Tsallis q-exponential
standing instead of the conventional one in the expressions
for occupation numbers. The obtained statistics allows us
to reproduce correctly the third virial coefficient, within a
difference only in the fourth one, leading to small correction
in the equation of state. In this section, we establish the virial
coefficients corresponding to the fractional superstatistics (14)
and (16) in a very general form, as a function of the distribution
f (β), within special attention given to the correspondence that
can be established for the χ2 distribution (9) and the lognormal
distribution (11).

The virial coefficients of the different statistics can be
determined through the cluster integrals Bl appearing in the
expansion of the grand-canonical partition function � as a
series over the fugacity z ≡ eμ/T :

1

A
ln � =

∞∑
l=1

Blz
l. (26)

By virtue of the relation linking the pressure and the density to
the grand-canonical partition function, the virial coefficients
are linked to the cluster integrals Bl in the following way [40]:

b2λ
2 = −B2

B2
1

b3λ
4 = −2

B3

B3
1

+ 4
B2

2

B4
1

,

b4λ6 = −3
B4

B4
1

+ 18
B2B3

B5
1

− 20
B3

2

B6
1

,

· · · . (27)

Having in mind that the total number of particles and the
density are given as

N =
∑

j

gjnj ,
N

A
= 1

A

∑
j

gjnj =
∑

l

lBlz
l, (28)

where the sum runs over all the energy levels with degeneracies
gj , one can establish the cluster integrals Bl for a particular
statistics nj and obtain immediately the virial coefficients
through Eq. (27). At this stage, a crucial point is the definition
of the fugacity z over which the expansion is made. Following
Ref. [17], we define z such that the occupation numbers (14)
and (16) read as

nP
j = 1

z−1B−1(Ei)− γ
, nHW

j = 1

w[z−1B−1(Ei)]+ g
. (29)

Note that in general z is different from B(μ) since for
an arbitrary distribution, B−1(Ei − μ) �= B−1(Ei)B(μ). The
expansion of the statistics (29) over z is then given as

nP
j =

∞∑
l=1

Bl(Ei)γ
l−1zl = B(Ei)z + B2(Ei)γ z2

+B3(Ei)γ
2z3 + · · · , (30)

nHW
j =

∞∑
m=0

(−1)m
�[g(m + 1)]

m!�[g(m + 1) − m]
Bm+1(Ei)z

m+1

= B(Ei)z − (2g − 1)B2(Ei)z
2 + (3g − 2)(3g − 1)

2!

×B3(Ei)z
3 ∓ · · · ; (31)

(see Ref. [41]). Assuming that the energy gaps are small com-
pared to the average energy, the sum over states is transformed
into an integral, ∑

j

· · · →
∫ ∞

0
dεG(ε) · · · , (32)

where G(ε) = mA/2πh̄2 is the density of states of a two-
dimensional ideal gas. Cluster integrals Bl are then straight-
forward to calculate from the expansions (30) and (31), giving
in turn the virial coefficients through Eqs. (28) and (29).
One obtains the general form for the second and third virial
coefficients for Polychronakos superstatistics:

b2 = −γ

2

∫ ∞
0 B2(x) dx[ ∫ ∞
0 B(x) dx

]2 ,

b3 = −2

3
γ 2

∫ ∞
0 B3(x) dx[ ∫ ∞
0 B(x) dx

]3 + γ 2

[ ∫ ∞
0 B2(x) dx

]2[ ∫ ∞
0 B(x) dx

]4 , (33)

and Haldane-Wu superstatistics:

b2 = (2g − 1)

2

∫ ∞
0 B2(x) dx[ ∫ ∞
0 B(x) dx

]2 ,

b3 = − (3g − 2)(2g − 3)

3

∫ ∞
0 B3(x) dx[ ∫ ∞
0 B(x) dx

]3

+ (1 − 2g)2

[ ∫ ∞
0 B2(x) dx

]2[ ∫ ∞
0 B(x) dx

]4 . (34)
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Note that, for an arbitrary distribution f (β), the evaluation of
the integrals appearing the coefficients (33) and (34) is not
straightforward and may necessitate a numerical estimation.

However, in the case of χ2 superstatistics, they can be obtained
analytically, and the virial coefficients may be written in a very
simple form as follows:

b2 = − γ q2

2(1 + q)
, b3 = γ 2q4

[
1

(1 + q)2
− 1

3q(2 + q)

]
(Polychronakos),

b2 = 2g − 1

2

q2

1 + q
, b3 = q4

[
(2g − 1)2

(1 + q)2
− (3g − 2)(3g − 1)

3q(2 + q)

]
(Haldane-Wu), (35)

which corresponds to the virial coefficients established by
Rovenchak [16] in the context of Tsallis statistics. One can
check that the coefficients (35) allow us to establish a partial
correspondence with the virial coefficients of an ideal anyon
gas (see Ref. [16], Table 1). In the case of lognormal super-
statistics, the coefficients (33) and (34) cannot be obtained in
closed form, but a numerical evaluation allows us to establish
such a correspondence between the parameters (γ , q) of the
Polychronakos superstatistics and (g, q) of the Haldane-Wu
superstatistics, by equating the coefficients (33) and (34) and
the virial coefficients of an ideal anyon gas (24). The results
are displayed in Table I.

IV. A POSSIBLE GENERALIZATION

To obtain the fractional superstatistics (14) and (16), the
fluctuating quantity was identified with the inverse temperature
β. In other words, we were considering a nonequilibrium
system with a long-term stationary state composed of smaller
parts that are temporarily in thermal equilibrium. In many
systems however, another quantity may exhibit spatiotemporal
fluctuations, or even more than one quantity at the same
time. In practice, such a fluctuating quantity may be the
chemical potential, an effective friction constant, a changing
mass parameter, a changing amplitude of Gaussian white noise,
the fluctuating energy dissipation in turbulent flows [33], and
so on. In the context of fractional statistics, it is natural to
ask what kind of statistics may emerge from a fluctuating
statistical parameter? Note that some alternative generaliza-

TABLE I. Dependence of the parameters of the lognormal frac-
tional superstatistics on the statistical parameter α.

Polychronakos Haldane-Wu

α γ q g q

0.00 1.00000 1.00000 0.00000 1.00000
0.10 0.32995 0.80307 0.31097 0.82656
0.20 0.00379 1.70443 0.37630 0.17609
0.30 0.00365 1.64577 0.50856 0.18452
0.40 − 0.00117 1.65859 0.62007 0.18409
0.50 − 0.00978 1.68433 0.67562 0.86253
0.60 − 0.44921 1.40585 0.73963 0.23038
0.70 − 0.73162 1.31812 0.76343 0.24905
0.80 − 0.79936 0.92959 0.78294 0.25727
0.90 − 0.94408 0.97738 0.87794 0.19115
1.00 − 1.00000 1.00000 1.00000 1.00000

tions of fractional statistics, entering through modifications
of the statistical parameter itself, have been addressed in
the literature, for example, by considering a complex-valued
parameter [42–44]. Let us address here the simple case of the
Polychronakos statistics where the parameter γ ∈ [−1,1] is
subject to fluctuations according to some distribution, say,
h(γ ). As γ varies slowly from cell to cell, the resulting
distribution arises out of the occupational numbers associated
with the cells that are averaged over the various fluctuating γ ,

nP =
∫ +1

−1

dγ h(γ )

eβεi − γ
, (36)

where the function h(γ ) must be a normalized probability
density that reduces to δ(γ − γ0) in some limit, in which
case Eq. (36) reduces to the usual Polychronakos statistics.
Let us consider the simple case where γ follows a two-
level distribution for which the occupational number (36) is
straightforward to deduce. In this very simple model, the
parameter γ can switch between two discrete values γ1 and
γ2 with probabilities a1 and a2:

h(γ ) ≡ a1δ(γ − γ1) + a2δ(γ − γ2), (37)

where a1 + a2 = 1. In this case, the statistics (36) reads as a
mixture of two fractional statistics with different parameters:

nP = a1

eβεi − γ1
+ a2

eβεi − γ2
, (38)

which reduces to the Polychronakos statistics if a1 = 0 or a2 =
0. The form of the statistics (38), as a sum of different statistics,
is reminiscent of the Gentile statistics [45] introduced in 1940.
As a final remark to close this section, we note that in the case
of a fluctuating β, the distribution f (β) can be obtained by
maximizing the entropy under appropriate constraints [46,47].
A similar approach can be done to determine the possible
distributions h(γ ), considering an adequate set of constraints.
This, however, is out of the scope of the present work.

V. SUMMARY

In summary, through a semiclassical kinetic approach that
accounts for temperature fluctuations, a class of fractional
statistics was derived. The latter are the superstatistical ana-
logues of the Polychronakos and the Haldane-Wu statistics.
Superstatistics of “ewkons,” introduced recently as a plausible
model for dark energy, was also obtained within the same
approach. In contrast to the one-parameter generalizations of
fractional statistics previously reported in the literature, the
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peculiar feature of such statistics is that the generalization
is made through a distribution function characterizing tem-
perature fluctuations. A particular case is when the inverse
temperature follows a χ2 distribution, which results in the
Tsallis form of fractional statistics known in the literature
[16,20,21]. Special attention was given to the examination of
superstatistics that follows from the χ2 distribution and the log-
normal distribution, emerging respectively from additive and
multiplicative random processes. The virial coefficients corre-
sponding to these superstatistics were derived and compared to
those of an ideal anyon gas. In addition, a further generalization

was suggested by allowing the statistical parameter to fluctuate,
which may result in another form of fractional statistics,
reminiscent of Gentile statistics. The obtained statistics are
expected to model systems obeying fractional statistics in a
fluctuating environment. Potential application areas include
anyons and dark energy models, exhibiting spatiotemporal
fluctuations. Furthermore, the present approach opens some
prospects for further studies on a more fundamental ground.
A closer look at superstatistics characterized by another type
of fluctuations, such as the inverse χ2 distribution or the F

distribution, seems worthwhile to pursue.
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