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Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force
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We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic
Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective
dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction
limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence
breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to
zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the
low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix
has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat
dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
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Recently, the dynamics of Brownian particles driven by
velocity-dependent forces has attracted growing interest. The
magnetic Lorentz force is a representative example of a
velocity-dependent force [1–13]. It can be realized in experi-
mental systems. In a superionic conductor, e.g., AgI, Ag+ ions
diffuse over the I− ion background. The Lorentz force can be
applied to Ag+ ions with an external magnetic field [14,15].
The active matters are modeled with velocity-dependent
forces. Such phenomenological forces are adopted in order
to study the collective phenomena of active matters [16–22].
In stochastic thermodynamics, theoretical works focus on the
extension of the entropy production, fluctuation theorems,
fluctuation-dissipation relations, and the detailed balance to
thermal systems driven by velocity-dependent forces [23–27].
In this paper, we investigate the low mass limit and the large
friction limit of Langevin dynamics for a charged Brownian
particle under a uniform external magnetic field. The magnetic
Lorentz force is one of the fundamental forces. We will show
that nonwhite noise emerges in the low mass limit in the
presence of a magnetic Lorentz force.

Without velocity-dependent forces, the dynamics of a
Brownian particle is described by the Langevin equation for
its position x and velocity v,

ẋ(t) = v(t),

mv̇(t) = f (x(t)) − γ v(t) + ξ (t), (1)

where f (x) is an external force, γ is a friction coefficient,
and ξ (t) is the Gaussian white noise satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξj (s)〉 = 2γ T δij δ(t − s) with the temperature T of the
environment. We set the Boltzmann constant to unity. Since the
last century, the Langevin equation has served as a framework
for the study of the equilibrium and nonequilibrium dynamics
of thermal systems [28–31]. It also plays a crucial role in
the recent development of stochastic thermodynamics, the
statistical physics theory at the level of microscopic stochastic
trajectories [32,33].

In experimental situations, the damping force usually dom-
inates the other forces [34,35]. Then, the velocity relaxes
quickly in a time scale τr = m/γ , and the inertia term mv̇

becomes negligible for t � τr . The effective equations of
motion in the limit are obtained in the following way: (i) One
considers the Fokker-Planck (FP) equation for the probability
distribution Pt (x,v) corresponding to the Langevin equation
(1). (ii) One then performs the 1/γ expansion to derive
the effective FP equation for the coarse-grained probability
distribution Qt (x) ≡ ∫

dvPt (x,v). The expansion can be done
systematically by using the Brinkman expansion [29,36] or
the projection operator method [30]. (iii) The FP equation
is transformed back to the Langevin equation. The resulting
overdamped Langevin equation reads

γ ẋ(t) = f (x(t)) + ξ (t). (2)

It has the same form as that obtained by setting m = 0 in (1).
Namely, the systems in the large friction limit, in the low mass
limit, and with zero mass are equivalent to each other. They all
share the same Langevin equation (2). The overdamped limit
of the Langevin equation with multiplicative noises was also
studied [37–43].

The large friction limit and the low mass limit of Langevin
dynamics has not been studied thoroughly in the presence
of velocity-dependent forces. Some literature has studied the
large friction dynamics of Lorentz force systems by settingm to
zero [2,10–13]. We raise the question whether the equivalence
between the low mass limit, the large friction limit, and the zero
mass case is still valid in the presence of a magnetic Lorentz
force, one of the simplest examples of velocity-dependent
forces. We will derive the stochastic differential equation for
motion in the low mass limit. It turns out that the low mass limit
is singular. The dynamics in the low mass limit is different
from that with zero mass and from that in the large friction
limit. We discover that nonwhite noise emerges in the low
mass limit. The nonwhite noise has an intriguing correlation
property which has yet to be studied. Our work will open
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up a different avenue in the study of stochastic differential
equations. It may also have an impact on experimental systems
such as the superionic conduction mentioned earlier.

Suppose that the magnetic field is directed to the z direction,
B = B0 ẑ. The Lorentz force does not have a z component.
Thus, we focus on the two-dimensional motion of the Brownian
particle. The position and the velocity are denoted by the
column vectors x = (x1,x2)T and v = (v1,v2)T , where the
superscript T stands for the transpose. The Langevin equation
becomes ẋ = v and

mv̇(t) = f (x(t)) − Gv(t) + ξ (t), (3)

where the 2 × 2 matrix G is defined as

G =
(

γ −B

B γ

)
, (4)

with B = qB0. The external force f (x) = (f1(x),f2(x))T and
the white noise ξ (t) = (ξ1(t),ξ2(t))T are also denoted by two-
dimensional column vectors.

The equations of motion in the low mass limit may be ob-
tained indirectly by using the FP equation representation. This
method works well for systems without velocity-dependent
force [29]. The probability distribution Pt (v,x) satisfies the
FP or Kramer equation

∂tPt (x,v) = (Lrev + Lirr)Pt (x,v), (5)

where Lrev (Lirr) is the reversible (irreversible) part of the time
evolution operator. They are given by

Lrev = −v · ∇x − f
m

· ∇v − q

m
∇v · (v × B),

Lirr = γ

m
∇v ·

(
v + T

m
∇v

)
. (6)

We use the shorthand notation ∂α for the partial derivative
with respective to a variable α. When one takes the cross
product, a two-dimensional vector should be regarded as a
three-dimensional one with a null z component.

Following the standard procedure [29], we first rewrite
(5) in terms of P̄t (x,v) = [ψ0(v1)ψ0(v2)]−1Pt (x,v) and
L̄rev,irr = [ψ0(v1)ψ0(v2)]−1Lrev,irr[ψ0(v1)ψ0(v2)]1 with
ψ0(v) ≡ (2πT/m)−1/4e−mv2/(4T ). Then, the transformed
distribution is expanded as

P̄t (x,v) =
∞∑

n1,n2=0

cn1,n2 (x,t)ψn1 (v1)ψn2 (v2) (7)

in terms of the orthonormal basis functions ψn(v) ≡
(−

√
T
m

∂v + 1
2

√
m
T
vi)

n
ψ0(v)/

√
n!. The FP equation yields the

coupled differential equations for the coefficients {cn1,n2},
called the Brinkman’s hierarchy [29]. Among all the coeffi-
cients, c0,0(x,t) is the most important one since it is equal to the
marginal distribution Qt (x) = ∫

dvPt (x,v). Orthonormality
of {ψn(v)} ensures the equality c0,0(x,t) = Qt (x). In the
low mass limit, the hierarchy is closed within the set of
three coefficients {c0,0,c1,0,c0,1}. Introducing the notation c =
(c1,0,c0,1)T , it becomes ∂tc0,0 = −∇x · (

√
T
m

c) and
√

T
m

c =
G−1( f − T ∇x)c0,0 + O(m). Combining these equations, we

obtain the effective FP equation

∂tQt (x) = −∇x · J, (8)

with the probability current

J = [G−1 f (x) − T G−1∇x]Qt (x). (9)

The first term represents the drift current and the second term
the diffusion current. Details of the derivation are presented in
Appendix A.

The diffusion current has an abnormal form. For the
Langevin system, the diffusion current is given by the product
of a symmetric diffusion matrix and the gradient of the
probability distribution [29–31]. By contrast, the matrix G−1

has antisymmetric components (G−1)12 = −(G−1)21. Such a
diffusion current cannot be realized by any Langevin system.
As a remedy, one may replace the probability current J
with J s = G−1 f − T G−1

s ∇xQ using the symmetrized matrix
G−1

s ≡ [G−1 + (G−1)T ]/2. Noting that ∇x · G−1∇x = ∇x ·
G−1

s ∇x , one finds that the symmetrized current leaves the
FP equation (8) unchanged. The symmetrized FP equation is
equivalent to the Langevin equation

ẋ(t) = G−1 f (x(t)) + ζ (t), (10)

where ζ (t) is the white noise satisfying 〈ζ (t)〉 = 0 and
〈ζ (t)ζ (s)T 〉 = 2T G−1

s δ(t − s).
We notice the equality G−1

s = γ G−1(G−1)T for the specific
matrix G in (4). It implies that the noise ζ (t) has the same
statistical property as G−1ξ (t) with the white noise ξ (t) in (3).
Thus, the effective Langevin equation (10) is equivalent to the
one obtained by setting m to zero from the original Langevin
equation (3). One may be tempted to conclude that the low mass
limit is also equivalent to the mass zero system in the presence
of the Lorentz force. However, the Langevin equation (10)
does not reproduce the probability current (9). Furthermore,
as will be shown later, the dissipations in the system (10) and
(3) are different from each other in the m → 0 limit. These
observations strongly suggest that the Langevin equation in
(10) is not the proper low mass limit.

As the FP equation approach fails, we derive the low mass
limit directly from the equations of motion. We start with the
formal solution

v(t) = 1

m

∫ t

0
dt ′e−G(t−t ′)/m[ f (x(t ′)) + ξ (t ′)] (11)

of the Langevin equation (3). We omitted the transient term
e− G

m
tv(0) because it is negligible for finite t in the small m

limit. The transient term will always be neglected. The formal
solution leads to the stochastic integrodifferential equation for
x(t),

ẋ(t) = 1

m

∫ t

0
dt ′ e−G(t−t ′)/m f (x(t ′)) + ηm(t), (12)

where the noise is given by

ηm(t) = 1

m

∫ t

0
dt ′ e−G(t−t ′)/mξ (t ′). (13)

We first reveal the statistical property of the noise.
The noise ηm is Gaussian distributed with 〈ηm(t)〉 = 0 and
〈ηm(t)ηm(s)T 〉 = Cm(t,s), where the correlation matrix is
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given by

Cm(t,s) = T

m
e− 1

m
(Gt+GT s)+ 1

m
(G+GT ) min(t,s)

=

⎧⎪⎪⎨
⎪⎪⎩

T

m
e− G

m
(t−s) if t � s,

T

m
e− GT

m
(s−t) if t < s.

(14)

As it depends on (t − s), we will use the notation Cm(t − s)
for the correlation matrix. It satisfies Cm(−u) = Cm(u)T . The
elements are given by

Cm(u) = T

m
e− γ

m
|u|

(
cos

(
B
m

u
)

sin
(

B
m

u
)

− sin
(

B
m

u
)

cos
(

B
m

u
)
)

. (15)

The magnetic field generates oscillating antisymmetric off-
diagonal components.

The correlation functions oscillate with an amplitude de-
caying exponentially. As m decreases, they become singular
with diverging oscillation frequency B/m, vanishing decay
time m/γ , and diverging amplitude T/m. In order to ex-
tract the limiting behavior, we consider the integral Iα ≡
1
m

∫ ∞
0 duuαe− γ+iB

m
u forα � 0. A straightforward algebra yields

that

Iα = 
(1 + α)

(γ + iB)1+α
mα, (16)

with the gamma function 
(z) = ∫ ∞
0 dxxz−1e−x . Thus, for any

function h(u) having a nonsingular expansion around u = 0,
we have 1

m

∫ ∞
0 du h(u)e− γ+iB

m
u = I0

∑∞
α=0(mI0)α dαh(u)

duα |
u=0

. It
can be approximated by the limiting value I0h(0) when the
first term with α = 0 is dominant over the other terms with
α > 0. This approximation is valid in the regime |mI0| =
m/

√
γ 2 + B2 
 τ with the characteristic time scale τ of h(u),

where the low mass limit provides a leading-order contribution.
The low mass limit yields that

lim
m→0

∫ ∞

0
duh(u)Cm(u) = h(0)T G−1,

lim
m→0

∫ 0

−∞
duh(u)Cm(u) = h(0)T (G−1)T . (17)

The second equality comes from the symmetry property
Cm(−u) = Cm(u)T . We introduce the notations δ±(u) as
the variants of the Dirac δ function. They are equal to
zero for u �= 0 while

∫ ∞
0 du δ+(u) = ∫ 0

−∞ du δ−(u) = 1 and∫ ∞
0 du δ−(u) = ∫ 0

−∞ du δ+(u) = 0. Then, the correlation ma-

trix in the m → 0 limit (m/
√

γ 2 + B2 
 τ to be more precise)
is represented as

C(u) ≡ lim
m→0

Cm(u) = T G−1δ+(u) + T (G−1)T δ−(u). (18)

We next consider the first term on the right-hand side
of (12). When one changes the integration variable from t ′
to u = (t − t ′), it is written as 1

T

∫ t

0 du Cm(u) f (x(t − u)). It
converges to G−1 f (x(t)) from (17). Therefore, we finally
obtain the effective equations of motion in the low mass limit,

ẋ(t) = G−1 f (x(t)) + η(t), (19)

where the noise η(t) has the correlation matrix C in (18). It is a
nonwhite noise whose correlation matrix C is nonsymmetric.
The antisymmetric components of C make (19) fundamentally
different from (10).

By analogy with the Wiener process W (t) = ∫ t

0 dt ′ξ (t ′)
with white noise ξ (t), one may consider the time-integrated
quantity �(t) = ∫ t

0 dt ′η(t ′). It will be called the � process.
The statistical properties of the � process are summarized as

〈�(t)�(s)T 〉 = 2γ T

γ 2 + B2
min(t,s)I, (20)

〈�(t)η(s)T 〉 =

⎧⎪⎨
⎪⎩

2γ T

γ 2+B2 I, if t > s,

T (G−1)T , if t = s,

0, otherwise,

(21)

with the identity matrix I. These are derived by taking the
m → 0 limit of the corresponding quantities with ηm.

Because of the nonwhite noise η(t), the stochastic equation
(19) does not have a corresponding FP equation. Never-
theless, the equation governing the time evolution of the
probability distribution can be derived by using the func-
tional derivative method [37,44–46]. The probability dis-
tribution is given by Qt (x) = 〈δ(x(t) − x)〉, where x(t) is
a functional of the noise {η(s)|0 < s < t} and 〈 〉 denotes
the average over the noise realizations. The time derivative
of Qt (x) involves ∂t δ(x(t) − x) = [ẋ(t) · ∇x(t)]δ(x(t) − x) =
−∇x · [ẋ(t)δ(x(t) − x)], where the last equality is obtained by
using the property of the δ function. Thus, the time evolution of
Qt (x) is governed by ∂tQt (x) = −∇x · J(x,t) with J(x,t) =
〈ẋ(t)δ(x(t) − x)〉. Eliminating ẋ(t) using (19), one obtains

J(x,t) = G−1 f (x)Qt (x) + 〈η(t)δ(x(t) − x)〉. (22)

In order to evaluate 〈η(t)δ(x(t) − x)〉, we use the Novikov
relation [47]

〈ηi(t)F [η]〉 =
∑

j

∫ t

0
dsCij (t − s)

〈
δF [η]

δηj (s)

〉
(23)

for any functional F [η] with the noise-noise correlation matrix
Cij . Taking F [η] = δ(x(t) − x) and noting that x(t) is a
functional of η, we have

〈ηi(t)δ(x(t) − x)〉 = −
∑
j,k

∫ t

0
dsCij (t − s)

× ∂

∂xk

〈
δxk(t)

δηj (s)
δ(x(t) − x)

〉
. (24)

It is a formidable task to find a closed form expression for the
functional derivative δxk(t)/δηj (s) at arbitrary values of t and
s. Fortunately, owing to the property of C in (18), it suffices
to consider the functional derivative at s = t−. It is given
by lims→t− δxk(t)/δηj (s) = δjk . Consequently, the probability
current in (22) is the same as that in (9). It confirms that the
stochastic differential equations (19) are indeed the proper
equations of motion in the low mass limit.

We add a remark on the large friction limit. In the
large γ limit, the quantity in (16) is given by Iα = 
(1 +
α)mα/γ 1+α[1 + O(B/γ )]. It yields that Cm(u) = T

γ
[δ+(u) +

δ−(u)]I + O(γ −2). Thus, in the leading order in 1/γ , the
equations of motion are given by γ ẋ(t) = f (x(t)) + ξ (t) with
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FIG. 1. Contour plot for wzm/wfm in (a) and wlm/wfm in (b) as
varying γ and B with fixed k = m = ε = 1.

white noise ξ (t) with a variance 2γ T . The Lorentz force
contributes as a O(B/γ 2) correction, and is discarded in the
leading order. It shows that the large friction limit is different
from the low mass limit.

We demonstrate the crucial role of nonwhite noise η(t)
with a linear system. Consider a two-dimensional motion of a
Brownian particle of charge q in the xy plane. It is trapped by
a conservative harmonic force f c(x) = −kx and driven by a
nonconservative rotating force f nc(x) = εx × ẑ. The uniform
magnetic field B = B0 ẑ is applied to the z direction. The
Langevin equation reads ẋ(t) = v and

mv̇(t) = −Kx(t) − Gv(t) + ξ (t), (25)

where the force matrix K is given by K = (k −ε

ε k ) and the
matrix G is given in (4) with B = qB0. The nonconservative
force performs a work on the particle and the injected energy
is dissipated into the heat bath as a heat. The linear system
has been studied extensively for its nontrivial steady state
properties and nonequilibrium fluctuation theorems of the
work and heat [48–52].

We focus on the average power w = 〈 f nc · v〉s = ε〈(x ×
ẑ) · v〉s = −ε〈(x1v2 − x2v1)〉s of the work done by the noncon-
servative force f nc in the steady state. 〈 〉s denotes the steady
state average. We calculate the power for three systems: wfm

from the original Langevin equation in (25) with finite m, wzm

from (10) where m is set to zero, and wlm from the low mass
limit in (19). They are given by

wfm = 2ε2T

γ k + εB − mε2/γ
, (26)

wzm = 2ε2T

γ k + εB
− 2εBT

γ 2 + B2
, (27)

wlm = 2ε2T

γ k + εB
, (28)

whose derivations are presented in Appendix B. They are
compared in Fig. 1. The ratio wlm/wfm approaches unity as m

decreases irrespective of the relative strength of γ and B, while
wzm/wfm is singular in the low mass limit. It demonstrates
that nonwhite noise is essential for the proper prediction
of the dissipation in the low mass limit m/

√
γ 2 + B2 


τ � √
m/K . The difference wlm − wzm = 2εBT

γ 2+B2 represents a
physical effect due to the emergence of nonwhite noise.

We can pinpoint the origin for the discrepancy be-
tween wzm and wlm. The equations of motion (19), ẋ(t) =
−Ax + η(t) with A ≡ G−1K, have the formal solution x(t) =∫ t

0 ds e−A(t−s)η(s). The power involves the correlation matrix
〈x(t)ẋ(t)T 〉s = −〈x(t)x(t)T 〉sAT + 〈x(t)η(t)T 〉s . We can use
the formal solution to evaluate the correlation functions in
terms of the noise-noise correlation matrix C. Especially, the
second term becomes 〈x(t)η(t)T 〉s = ∫ t

0 dse−A(t−s)C(s − t) =
T (G−1)T using (18). On the contrary, if one adopts the equa-
tions of motion (10), one obtains 〈x(t)ζ (t)T 〉s = T (G−1

s )T ,
which misses the antisymmetric component of G−1. It makes
wzm deviate from wlm = limm→0 wfm.

In summary, we have discovered a different type of stochas-
tic dynamics from the low mass limit, valid in the regime
m/

√
γ 2 + B2 
 τ , of Langevin dynamics in the presence

of a magnetic Lorentz force. One cannot obtain the limiting
dynamics by setting the mass to zero. The low mass limit
is also different from the large friction limit. The stochastic
dynamics in the low mass limit is characterized by nonwhite
noise whose correlation matrix has antisymmetric components.
The importance of the noise correlation is demonstrated in a
linear driven system. The dissipation is correctly accounted
for by nonsymmetric noise correlations. Our discovery will be
relevant for the study of driven charged Brownian particles.
Experiments using charged colloidal particles may be useful
for observing the properties of nonwhite noise. The stochastic
noise η and the corresponding � process are different from
the white noise and the Wiener process. It will be interesting
to study the extent to which the � process and the Wiener
process differ. Finding a numerical algorithm that generates the
� process may help one understand the differences between the
two processes. It requires one to understand the discretization
scheme of nonwhite noise, which is left for a future work. We
hope that our paper triggers a thorough and rigorous study on
the properties of nonwhite noise and the associated stochastic
differential equation.

This work was supported by the the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (No. 2016R1A2B2013972). We thank Prof.
Hyunggyu Park, Prof. Chulan Kwon, and Prof. Su-Chan Park
for helpful discussions.

APPENDIX A: LOW MASS LIMIT OF THE
FOKKER-PLANCK EQUATION

The Fokker-Planck (FP) equation for the probability distri-
bution Pt (x,v) is given by

∂tPt (x,v) = (Lrev + Lirr)Pt (x,v), (A1)

where Lrev (Lirr) is the reversible (irreversible) part of the time
evolution operator L = Lrev + Lirr. They are given by

Lrev = −v · ∇x − f (x)

m
· ∇v − q

m
∇v · (v × B),

Lirr = γ

m
∇v ·

(
v + T

m
∇v

)
. (A2)
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Following the procedure in Ref. [29], we introduce the trans-
formed probability distribution P̄t (x,v) = Pt (x,v)ρ(v)−1/2

and the operators L̄rev,irr = ρ(v)−1/2Lrev,irrρ(v)1/2 with ρ(v) ≡
(2πT/m)−1/2e−mv2/(2T ). The transformed operator L̄irr be-
comes Hermitian and given by

L̄irr = − γ

m
(b†1b1 + b

†
2b2), (A3)

where bi =
√

T
m

∂vi
+ 1

2

√
m
T
vi and b

†
i = −

√
T
m

∂vi
+ 1

2

√
m
T
vi

are the lowering and raising operators satisfying the commu-
tation relations [bi,b

†
j ] = δij and [bi,bj ] = [b†i ,b

†
j ] = 0. The

operator L̄rev is given by

L̄rev = −
√

T

m
∇x · (b + b†) + f (x)√

mT
· b† + q

m
B · (b† × b),

(A4)

where b = (b1,b2)T and b† = (b†1,b
†
2)T denote the column vec-

tors of the lowering and raising operators. With the transformed
operators, the FP equation (A1) becomes

∂t P̄t (x,v) = (L̄rev + L̄irr)P̄t (x,v). (A5)

We now consider the expansion

P̄t (x,v) =
∞∑

n1,n2=0

cn1,n2 (x,t)ψn1 (v1)ψn2 (v2) (A6)

in terms of the eigenfunctions {ψn(vi)} of L̄irr. They are given
by

ψ0(vi) = (2πT/m)−1/4e−mv2
i /(4T ),

ψn(vi) = (b†i )nψ0(vi)/
√

n!

= Hn(vi/
√

2T/m)ψ0(vi)/
√

n!2n (n � 1), (A7)

with the Hermite polynomial Hn. They are orthonormal ba-
sis functions such that

∫ ∞
−∞ dvψl(v)ψn(v) = δl,n. Note that

ρ(v)1/2 = ψ0(v1)ψ0(v2). Inserting this expansion into Eq. (A5)
and using the algebra of the lowering and raising operators,
one can extract the hierarchy of differential equations for
cn1,n2 (x,t),

∂tcn1,n2 = − γ

m
(n1 + n2)cn1,n2 −

√
n1 + 1D1cn1+1,n2

−√
n1D̂1cn1−1,n2 −

√
n2 + 1D2cn1,n2+1

−√
n2D̂2cn1,n2−1 + B

m

√
n1(n2 + 1)cn1−1,n2+1

−B

m

√
(n1 + 1)n2cn1+1,n2−1, (A8)

where Di =
√

T
m

∂xi
and D̂i =

√
T
m

∂xi
− 1√

mT
fi .

We are interested in the marginal distribution Qt (x) =∫
dvPt (x,v) = ∫

dv1
∫

dv2P̄t (x,v)ψ0(v1)ψ0(v2). Orthonor-
mality of {ψn(v)} yields that Qt (x) = c0,0(x,t). Its time evo-
lution is governed by

∂tc0,0 = −D1c1,0 − D2c0,1, (A9)

where c1,0 and c0,1 are governed by

∂tc1,0 = − γ

m
c1,0 + B

m
c0,1 − D̂1c0,0 −

√
2D1c2,0 − D2c1,1,

∂t c0,1 = − γ

m
c0,1 − B

m
c1,0 − D̂2c0,0 −

√
2D1c0,2 − D1c1,1.

(A10)

Now we take the low mass limit by requiring that B
m

cn1,n2 ∼
γ

m
cn1,n2 � ∂tcn1,n2 ; it is equivalent to neglecting ∂tcn1,n2 for

n1 + n2 > 0 in the hierarchy of Eq. (A8). The power counting
yields that cn1,n2 = O(m(n1+n2)/2). Thus, up to leading order in
m, (A10) becomes

Gc =
√

mT ∇xc0,0 −
√

m

T
f (x)c0,0, (A11)

where c = (c1,0,c0,1)T and

G =
(

γ −B

B γ

)
. (A12)

We ignored the higher-order terms ∂tc1,0, ∂tc0,1, c2,0, c0,2, and
c1,1. Inserting c into (A9) and identifying c0,0 = Qt (x), we
obtain that

∂

∂t
Qt (x) = −∇x · J, (A13)

with the probability current

J = [G−1 f (x) − T G−1∇x]Qt (x). (A14)

APPENDIX B: AVERAGE POWER OF THE WORK DONE
BY NONCONSERVATIVE FORCE

In this Appendix, we calculate the average power w =
〈 f nc · ẋ〉s of the work done by a nonconservative force f nc =
εx × ẑ in the steady state. First, we consider the Langevin
equation ẋ(t) = v(t) and

mv̇(t) = −Kx(t) − Gv(t) + ξ (t) (B1)

with finite m, where the white noise satisfies 〈ξ (t)〉 = 0 and
〈ξ (t)ξT (s)〉 = 2γ T δ(t − s)I with the identity matrix I. The
matrices K and G are given by

K =
(

k −ε

ε k

)
, G =

(
γ −B

B γ

)
. (B2)

This system falls into the class of the multivariate Ornstein-
Uhlenbeck process. To make it clear, we introduce col-
umn vectors q(t) = (x1(t),x2(t),v1(t),v2(t))T and ξ̃ (t) =
(0,0,m−1ξ1(t),m−1ξ2(t))T , and a matrix

F = 1

m

(
0 −mI

K G

)
. (B3)

Then, the Langevin equation (B1) is written as q̇(t) =
−Fq(t) + ξ̃ (t). The noise ξ̃ (t) satisfies 〈ξ̃ (t)ξ̃

T
(s)〉 = δ(t −

s)Dfm with the diffusion matrix Dfm = 2γ T

m2 diag{0,0,1,1}.
The power wfm = −ε〈(x1v2 − v1x2)〉s is determined by the

moments 〈xivj 〉s in the steady state. We define the covariance
matrix as �(t) = 〈q(t)q(t)T 〉. During the infinitesimal time
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interval dt , it changes by the amount of

d�(t) = −[F�(t) + �(t)FT ]dt

+
∫ t+dt

t

dt ′
∫ t+dt

t

dt ′′〈ξ̃ (t ′)ξ̃
T

(t ′′)〉

= [−F�(t) − �(t)FT + Dfm]dt. (B4)

Hence, the steady state covariant matrix �s should satisfy
F�s + �sFT = Dfm [30]. This relation provides the coupled
linear equations for the elements of �s . The solution is given
by

�s = T

m
diag{0,0,1,1} + T

γ k + εB − mε2/γ

×

⎛
⎜⎜⎜⎝

γ 0 0 −ε

0 γ ε 0

0 ε ε2/γ 0

−ε 0 0 ε2/γ

⎞
⎟⎟⎟⎠. (B5)

Therefore, the average power is given by

wfm = 2ε2T

γ k + εB − mε2/γ
. (B6)

Second, we consider the system where the mass m is set to
zero. The Langevin equation is given by

ẋ(t) = −Ax(t) + ζ (t), (B7)

where A ≡ G−1K and the noise ζ (t) = G−1ξ (t) satisfies
〈ζ (t)〉 = 0 and 〈ζ (t)ζ T (s)〉 = δ(t − s)Dzm with the diffusion
matrix

Dzm = 2γ T G−1(G−1)T = 2γ T

γ 2 + B2
I. (B8)

For the average power wzm, one needs to evaluate
the steady state moments covariance matrix 〈xẋT 〉s =
limt→∞〈x(t)ẋT (t)〉. Eliminating ẋ(t) using the equations of
motion, one obtains

〈xẋT 〉s = −〈xxT 〉sAT + 〈xζ T 〉s , (B9)

with 〈xxT 〉s ≡ limt→∞〈x(t)xT (t)〉 and 〈xζ T 〉s ≡
limt→∞〈x(t)ζ T (t)〉. The Langevin equation has the solution
x(t) = e−At x(0) + ∫ t

0 dse−A(t−s)ζ (s). Inserting this solution

into each term on the right-hand side of (B9), we obtain

〈xxT 〉s = lim
t→∞

∫ t

0
dt ′

∫ t

0
dt ′′e−A(t−t ′)〈ζ (t ′)ζ T (t ′′)〉e−AT (t−t ′′)

= Dzm(A + AT )−1 = γ T

γ k + εB
I,

〈xζ T 〉s = lim
t→∞

∫ t

0
dse−A(t−s)〈ζ (s)ζ T (t)〉 = 1

2
Dzm

= γ T

γ 2 + B2
I. (B10)

Therefore, the covariance matrix is given by

〈xẋT 〉s = γ T (γ ε − kB)

(γ k + εB)(γ 2 + B2)

(
0 −1

1 0

)
(B11)

and the average power is given by

wzm = 2ε2T

γ k + εB
− 2εBT

γ 2 + B2
. (B12)

Finally, we consider the equation of motion

ẋ(t) = −Ax(t) + η(t) (B13)

in the low mass limit. It has the same form as (B7) but with
different noise statistics characterized by 〈η(t)〉 = 0 and

〈η(t)ηT (s)〉 = T G−1δ+(t − s) + T (G−1)T δ−(t − s). (B14)

The covariance matrix 〈xẋ〉s can be obtained by using the same
formulas (B9) and (B10) with the noise correlator in (B14).
One can easily derive that

〈xxT 〉s = γ T

γ k + εB
I and 〈xηT 〉s = T (G−1)T . (B15)

Therefore, the covariance matrix is given by

〈xẋT 〉s = εT

γ k + εB

(
0 −1

1 0

)
, (B16)

and the average power is given by

wlm = 2ε2T

γ T + εB
. (B17)

Notice that 〈xζ T 〉s of the system with m = 0 and 〈xηT 〉s of
the system in the low mass limit are different. It leads to the
difference between wzm and wlm.
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