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Cooperativity in plastic crystals
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A statistical mechanical model previously adopted for the analysis of the α-relaxation in structural glass formers
is rederived within a general theoretical framework originally developed for systems approaching the ideal glassy
state. The interplay between nonexponentiality and cooperativity is reconsidered in the light of energy landscape
concepts. The method is used to estimate the cooperativity in orientationally disordered crystals, either from
the analysis of literature data on linear dielectric response or from the enthalpy relaxation function obtained by
temperature-modulated calorimetry. Knowledge of the specific heat step due to the freezing of the configurational
or conformational modes at the glass transition is needed in order to properly account for the extent to which the
relaxing system deviates from equilibrium during the rearrangement processes. A number of plastic crystals have
been analyzed, and relatively higher cooperativities are found in the presence of hydrogen bonding interaction.
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I. INTRODUCTION

Orientationally disordered (or plastic) crystals (ODICs)
consist of molecules which, although regularly arranged in
a lattice, still maintain the ability to change their mutual
orientations in a more or less constrained fashion. The re-
laxation dynamics associated to these degrees of freedom
shares two main features with the α-relaxation observed in
ordinary supercooled liquids, namely, a relatively broad and
asymmetric frequency profile, and a super-Arrhenian temper-
ature dependence of the central relaxation time. On cooling,
the orientational motions progressively slow down until, at a
certain temperature Tg , a process similar to a structural glass
transition takes place and an orientational glass forms.

These circumstances make ODICs particularly interesting
in the perspective of an understanding of the glass transition
phenomenon. Brownian-like diffusion, for example, is absent
in these systems, and the observed “glassy” dynamics involves
only part of the whole ensemble of the degrees of freedom.
Issues like the nature of the super-Arrhenian behavior, which
in structural glasses is customarily associated to cooperative
diffusional motion, within regions that progressively enlarge
on cooling [1] must be reconsidered from a different and more
general point of view.

The problem of the characteristic length associated to the
structural glass transition and, more generally, the problem of
estimating the cooperativity Nα (the average number of units
participating in a rearrangement) as a function of temperature
came about also in relation to the hypothesis that the large
apparent activation energy of the α-relaxation near Tg would
depend on Nα itself [2]. This association finds its roots in the
idea that large energies should accompany the simultaneous
displacement or activation of large numbers of units. When
treating the orientational dynamics in plastic crystals, the
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concept of cooperativity may still be a reference, but of course
in a generalized form.

Concerning instead the origin of the dynamical heterogene-
ity, the eventuality that relatively low cooperativities can be
found even close to Tg [cf., e.g., Ref. [3] for adamantanes; see
also the discussion in Refs. [4,5] with reference to levoglu-
cosan (LG)] put forward the question whether the observed
nonexponentiality in the orientational relaxation might not
be necessarily associated to large characteristic relaxation
lengths, but rather that it is intrinsic in nature. This is not
a trivial issue, considering also that there is experimental
evidence pointing in this direction (cf., e.g., Ref. [6]).

The above arguments highlight the importance of estimating
the cooperativity in glass formers in general, whatever the
mechanisms through which it shows up. In this scenario, a
multiple-point correlation function approach [7,8] was adopted
for the description of the α-relaxation, with the aim of
extracting the cooperativity length in a system (at a certain
temperature) from its linear response [9]. Later a related
method was developed [10,11], based on the analysis of the
nonlinear response. Its application to structural as well as to
orientational glass formers can be found, e.g., in Refs. [1] and
[12], respectively.

Recently, an independent method for estimating the
cooperativity has been presented [13,14]. In this approach,
Nα is worked out from an analysis of the relaxation function,
based on the idea that in any cooperative rearrangement the
spontaneous regression of a local, pretransitional dynamic state
formerly established by fluctuations is inherent. A thermo-
dynamic potential is associated to this pretransitional state,
while cooperativity is in fact introduced by imposing that
the deviation from thermodynamic equilibrium is stationary.
The presence of constraints to the configurational or con-
formational motion is expressed in terms of (fluctuating)
energy barriers, without specific reference to their nature. With
this construction, reasonable estimates of the cooperativity
in structural glass formers, close to Tg , were worked out

2470-0045/2018/97(3)/032116(9) 032116-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.032116&domain=pdf&date_stamp=2018-03-16
https://doi.org/10.1103/PhysRevE.97.032116


MARCO PIERUCCINI AND ELPIDIO TOMBARI PHYSICAL REVIEW E 97, 032116 (2018)

on the basis of relaxation measurements (e.g., calorimetric,
mechanical, or dielectric) carried out in the linear regime.
Knowledge of the configurational entropy as a function of
temperature also made possible improving the reliability of
the estimates above Tg .

In this paper we provide a new derivation of the model,
which is then used for the analysis of cooperative relaxation in
ODICs.

II. THEORY

The present section is devoted to a brief qualitative illustra-
tion of a semiphenomenological model originally developed
for the α-relaxation in supercooled liquids (cf. Refs. [13,14]
for further details). In order to better address the point, we
proceed from a known theoretical scheme proposed to describe
systems close to the ideal glass transition [15].

Consider a glass former in contact with a heat bath, and
let � be its configurational phase space. On cooling, the
representative point of the system tends to dwell ever longer
within subregions �k ⊂ � of relatively limited extension (here-
after called “components” as in Ref. [15]). These regions are
mutually disjointed and such that

� =
⋃
k

[�k ∪ ∂�k], (1)

where ∂�k is a boundary region surrounding �k . Within each
of them, thermal equilibrium is reached rapidly, the associated
free energy being given by Fk ≡ F [�k] = −kBT ln Zk , with
Zk the appropriate local partition function and kBT the ther-
mal energy. Migration to another component �k′ is possible
provided a suitable fluctuation

�Fk ≡ F [∂�k] − F [�k] (2)

takes place.
Reference [15] focuses in particular on the case in which

confinement into any component whatsoever lasts much longer
than the observation time. This situation has been later consid-
ered for the treatment of liquids close to the ideal glassy state
[16]. In such conditions the free energy F [�], which would
characterize the system should it be capable of exploring the
whole phase space, cannot be representative of an actual physi-
cal state. On the other hand, if pk stands for the probability that
the system resides in �k , one can define an average free energy

F ≡
∑

k

pkFk; (3)

its significance involves issues like the appropriate
pk-distribution to choose or the influence thermal history
has on it. One assumes that

F = F [�] − kBT
∑

k

pk ln pk. (4)

Indeed, this relation follows wherever the distribution
pk ≡ Zk/

∑
k Zk can be adopted, since neglecting

contributions to Zk from states at the boundaries, one
has F [�] � −kBT ln(

∑
k Zk); on the other hand, in the case

that pk is not known, Eq. (4) would properly describe, e.g., a
condition of maximum missing information [15].

The logarithmic contribution in Eq. (4) is extensive provided
the number of components grows exponentially with the size

of the system. This problem has to do with the dependence of
the number of inherent structures (i.e., the number of minima
in � of the global potential energy �) on the number of units of
which the whole system is made. The exponential form follows
if it is assumed that there always exists a minimal volume
wherein units can be relocated without significantly affecting
the surroundings [17]; this is a basic concept characterizing
also our idea of cooperativity.

Here we consider the case in which transitions among
different components are possible within the observation time
scale, so that F [�] does have a physical counterpart.

In a stationary state, each free energy Fk associated to the
corresponding �k may be conveniently expressed as a sum of a
“bulk” term Fb,k plus a contribution �Fk related to the crossing
of boundaries. The distribution pk extremizes the expression

F [�] =
∑

k

pk{Fb,k + �Fk + kBT ln pk} (5)

under the constraint that the average chemical potential re-
mains constant (cf. also Ref. [15]); this is the basis of our
approach to the analysis of the α-process.

Since any component may be probed by the system during
the observation time, all bulk terms must be equal, i.e., Fb,k ≡
Fb ∀k; their contributions to the whole free energy is thus ir-
relevant for the determination of pk because the normalization
condition

∑
k pk = 1 holds. On the other hand, the remainder

of Eq. (5) comes into play when the rearrangement barriers are
being crossed and is central to finding pk through a proper
analysis of the α-process. That is indeed the way through
which the cooperativity Nα has been eventually estimated in
Refs. [13,14] [cf. Eq. (14) below and the preceding Eqs. (7)
and (13)]. Of course, this procedure implicitly selects a subset
of components within which transitions from one �k to another
are observable through degrees of freedom relevant to the
α-process (not mentioning the further limitations inherent to
the experimental technique that is used in practice).

In considering ordinary (polymeric) liquids, configurational
transitions have been treated as regressions of energy fluctu-
ations. Rearrangements of a few units take place first, as a
manifestation of a pretransitional dynamic state characterized
by nondiffusional motion (small-scale rearrangements); then,
under the conditions expressed by Eq. (9) below, large-scale
diffusional motion may follow by facilitation, contributing to
(part of) the configurational entropy.

This picture is consistent with the idea that, in supercooled
liquids, motion is mainly nondiffusional with infrequent large
length jumps [18,19].

In the pretransitional state the system explores phase space
regions of relatively limited extension, given the nondiffusional
character of the motion and the expected limits in the peak
values of the momenta; the units involved in these configura-
tional transitions are not more than the typical number filling
a minimal volume of those mentioned above. As large-scale
diffusional motion sets in, the representative point of the
system has the possibility to reach regions of the phase space
which are located at some distance from those just left; this is
the way the system tends to equilibrium.

The treatment is now restricted to the case in which the
free energy of Eq. (5) refers to one of these minimal volumes,
i.e., in fact to what can be called a cooperatively rearranging
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region (CRR). The pretransitional state (which was referred to
as the “interfacial dynamic state” in Ref. [14]) will represent the
main focus in the following, since it amply suffices as a basis
for the discussion of the results; facilitation, instead, whose
rough description in Ref. [14] needs be improved, will be duly
considered in future work.

We proceed by splitting the excess chemical potential
associated to the nondiffusional dynamic regime as μk ≡
μ0 + �μk . The first term (which must not be confused with a
bulk contribution) is common to all components’ boundaries
and may carry a temperature dependence; it accounts for
possible intermediate processes necessary for the attainment
of the pretransitional state. For example, the weakening of hy-
drogen bindings (where present) before a local rearrangement
dynamics sets in would contribute to μ0. Once the intermediate
μ0-state has been reached, the subsequent redistribution among
different �k’s takes place as a thermalization process. (In
past accounts of the theory μ0 was not considered, since
applications to polymeric liquids did not suggest this term
could be relevant [13]; on the other hand, approximate analyses
on low molecular weight systems have been carried out in such
a way that a finite μ0 could be overlooked [14,20].)

In this way we are led to find the minimum of the
configurational part of F [�] − Fb, under the condition that
�μ ≡ ∑

k pk�μk = const. More explicitly, switching to a
single-unit description, the extremum of the function

A ≡ U − T S + λ�μ + μ0 (6)

has to be found, where λ is the Lagrange multiplier associated
to the constraint on �μ, while S is the entropy introduced
by the logarithmic term of Eq. (5). The energy involved in
the boundary crossings consists of a fluctuating part U , which
together with S and �μ is a functional of pk , and a possible
steady contribution encompassed in μ0.

Inspired by the work of Adam and Gibbs [2], who mainly
focused on energy fluctuations for the treatment of cooperative
rearrangements, we chose to partition the phase space in
components which differ from one another by the height of
the energy barrier that needs be overcome to cross their own
boundaries. If ζ stands for the barrier height referred to a
single unit, then S ≡ −kB

∑
ζ p(ζ ) ln p(ζ ) is the entropy in

the new representation; its meaning is now associated to the
random change of ζ accompanying each configurational or
conformational transition [21].

Denote by wζ the probability that a unit, formerly trapped in
a well of depth ζ , reaches mobility after gaining energy enough
to overcome the barrier; then its excess chemical potential is
�μ(ζ ) = −kBT ln wζ , and the extremization of A yields

p(ζ ) = Z−1
p e−[wζ 〈E〉ζ +λ�μ(ζ )]/kBT , (7)

where Zp ≡ ∑
ζ exp[−(w〈E〉 + λ�μ)/kBT ] normalizes p;

〈E〉ζ is the weighted mean of the single-unit energies above
ζ , and wζ 〈E〉ζ is its further average over long times [indeed,∑

ζ p wζ 〈E〉ζ gives U in Eq. (6)].
In Eq. (7) exp[−λ�μ(ζ )/kBT ] = wλ

ζ , that is, a unit may
reach the state of mobility provided λ further units interacting
with it do the same; in other words, the “specific cooperativity”
λ relates with the condition that �μ must be a constant.

The probability p of Eq. (7) reflects, by its intrinsic nature,
the random wandering of a mobile unit among different “trap
states,” each characterized by its own ζ -value. This is further
clarified by the form of the potential

−kBT ln Zp = w〈E〉 + λ�μ − T S, (8)

which can be immediately obtained by substituting Eq. (7) in
the expression of the entropy. Equation (8) points out the role
of “missing energy” played by the term containing the specific
cooperativity λ (i.e., that λ�μ adds to w〈E〉 to give 〈E〉);
equivalently, one may notice this directly from the argument
of the exponential in Eq. (7). This is more than a formal
adscription and leads to an important relation to be derived
shortly [Eq. (11) below].

The deviation from equilibrium at temperatures below Tg

can be related to the lack of specific configurational entropy,
sc, through the relation sc = (�μ + μ0)/T (cf. Sec. 20 in
Ref. [22], and in particular Fig. 3). An out-of-equilibrium
condition persists also around Tg , and above this temperature
as long as the activated character of the configurational motion
dominates. The triggering of a facilitation process is an attempt
to recover this equilibrium and the condition for its occurrence,
starting from a pretransitional state with chemical potential
�μ(ζ ) + μ0, is that

�μ(ζ ) + μ0 � T sc. (9)

Equation (9) is to say that the probability exp[−(T sc −
μ0)/kBT ], associated to a state of diffusional motion, must be
larger than the probability exp[−�μ/kBT ] of a nondiffusional
dynamic state with excess energies E > ζ .

We now focus on the average of the barrier values, ζ ∗,
for which Eq. (9) is fulfilled, that is, we limit our interest
to the fluctuations which may eventually be observed in a
relaxation experiment. Close to Tg , one has 〈E〉ζ � ζ ∗, and the
adscription mentioned above, referred to the densities around
ζ ∗ in Eq. (8), leads to

λ�μ∗ ≡ (1 − w∗)ζ ∗ (10)

(where the asterisk denotes any function of ζ whatsoever,
evaluated at ζ = ζ ∗), that is, using Eq. (9):

λ ≈ ζ ∗

T sc − μ0
. (11)

Equations (10) and (11) say that a finite specific cooperativity
is intrinsically connected with the existence of a rearrangement
barrier ζ ∗; the second one, in particular, stresses a bit more the
fact that this connection inheres an out-of-equilibrium state.

Although referring to just one mobile unit, the entropy S

increases linearly with λ. This sort of extensivity is peculiar:
it connects the multiplicity of well depths randomly probed
by a single mobile unit whatsoever (cf. S), to the number λ of
other units which are dynamically correlated with it; Eq. (11)
eventually links this multiplicity to the rearranging energy bar-
rier ζ ∗. In the end, recalling note [21], a relationship between
number of potential energy wells and the rearrangement barrier
is recovered.

In order to apply the above construction to the analysis
of relaxation, a suitable form has to be given to wζ . The
assumption that the pretransitional motion is nondiffusive in
character is introduced in our model by associating a unit the
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TABLE I. Measurement and glass transition temperatures, T and Tg , respectively (both in K), specific heat step �Cp (approximate) at
Tg in units of kB , fitting parameters [n, λ, z, τ ∗ ≡ 1/ν∗ (in s) and μ0 (in kJ/mol)], and relevant outcomes for the thermodynamic variables
[�μ, �μ(ζ ∗,n) and ζ ∗, all in kJ/mol] for the systems considered: Levoglucosan (LG), cyclo-hexanol (Cy-Hex), cyclo-octanol (Cy-Oct),
cyano-adamantane (Cn-Adm), iso-cyano-cyclo-hexane (i-Cn-Cy-He), and propylene carbonate (PCA). The source of relaxation data is indicated
by the index following the acronym of each system; references from which the Vogel temperature T0 and �Cp are extracted are also indicated.
The specific configurational entropy times the temperature, T sc (in kJ/mol), is explicitly reported for easy checks of both the difference T sc − μ0

associated to the large-scale rearranging motion, and its ratio with ζ ∗ (which relates to Eq. 11). The cooperativity Nα [Eq. (14)] is reported in
last column. Except in the case of LG, for all other systems the analysis has been performed on dielectric relaxation data.

T �Cp T0 Tg τ ∗ tmin ζ ∗ �μ �μ(ζ ∗,n) μ0 T sc

System [K] [kB ] [K] [K] n λ z [s] [s] [ kJ
mol ] [ kJ

mol ] [ kJ
mol ] [ kJ

mol ] [ kJ
mol ] Nα

LG 250 13.2 204.7[28] 247.8[4] 45 48.3 5 0.06 0.3 95 1.05 1.53 4.31 5.37 250
Cy − Hex[34] 150 3.9[35] 110[34] 151[34] 23 31.6 3.1 4.8 20 31.5 1.09 1.29 0.83 1.48 101
„ 154 21 23.3 3.2 0.1 2 31.4 1.5 1.7 0.63 1.64 78
„ 160 18 16.7 3.7 10−3 0.02 30 1.84 2.19 0.44 1.9 66
Cy − Oct[12] 168 5[36] 73.6[36] 151[36]a 25 32.7 1.6 24 40 37.8 1.07 1.35 4.91 5.65 54
„ 172 25 31.7 1.7 3.8 6 38.7 1.12 1.4 5.15 5.93 55
„ 178 23 27.4 1.5 0.43 0.6 37.5 1.22 1.55 5.48 6.34 43
„ 182 24 28.5 1.5 0.1 0.2 39.7 1.2 1.54 5.8 6.7 45
Cn − Adm[37] 173 3.2[38] 70.3[38] 170[38] 11 5.9 1.5 0.03 0.1 27.5 3.08 4.97 0 4.12 10
„ 183 10 6.5 1 0.01 0.02 25.5 2.68 4.85 0 4.61 8
i − Cn − Cy − He[39] 134 3.2[40] 84.66[39] 129[38] 8 8.9 1 1.2 2 13.7 1.58 2.28 0.2 1.63 10
„ 145 7 7.3 1 0.005 0.01 14 1.74 2.72 0.25 2.06 8

PCA[41] 163 9.09[42] 134[41] 159[41] 40 62.7 2 0.02 0.04 54.7 0.78 0.95 1.92 2.36 130
173 21 24.7 1.2 2 × 10−5 3 × 10−5 34 1.27 1.63 2.29 3.26 30
183 13 11.9 0.9 2 × 10−7 3 × 10−7 26.2 1.83 2.63 2.3 4.19 11

a.The dielectric glass transition is Tg|diel
≈ 169 K [12].

partition function proper of a collection of oscillators [23].
Thus we set wζ ≡ Zζ/Z0, with

Zζ ≡ Zζ,n =
∞∑
ζ

εn e−ε/kBT , (12)

being the exponent n appropriate for n + 1 oscillators. By
adopting this form, a dynamic coupling with (and among)
the λ units of Eq. (11) is implicitly considered too. This is
easily grasped by analogy with the harmonic approximation in
the vibrational motion of polyatomic molecules, which gives
rise to a number of normal modes (n + 1 in the present case)
for suitably defined collective coordinates. Implementation of
Eq. (12) in data analysis always yields λ ∼ O(n), as can be
seen, e.g., in Table I (λ/n ∼ 1 would point to one-dimensional
dynamic correlations).

At this stage, all the ingredients for estimating the coopera-
tivity from relaxation data have been introduced. All we have to
do is fit the relaxation function obtained experimentally (e.g.,
by mechanical, dielectric, or calorimetric spectroscopies) with
the expression

φ(t) ∼
∫ ∞

0
dζ p(ζ ) exp{−t ν∗e−z �μ(ζ )/kBT }, (13)

where t is the time, ν∗ is a characteristic attempt rate, and z

is the average number of units initiating the configurational
transition (i.e., those rearranging at the small scale); the values
of λ and z thus obtained yield the cooperativity through the
expression

Nα ≈ z(λ + 1). (14)

(It is worth recalling that the number of units participating
in a pretransitional state is approximately the same as that
involved in the subsequent large-scale rearrangement which
follows facilitation [14].)

The general arguments outlined above have been initially
applied to structural glass formers; in that case it is evident what
diffusive or nondiffusive motion means. In the case of ODICs,
the same concepts would be borrowed for the rotational degrees
of freedom; thus, in a pretransitional state a unit’s director
would explore a limited portion of the solid angle, whereas the
whole of it would be traced after facilitation has occurred.

III. EXPERIMENTAL

Levoglucosan or 1,6-anhydro-β-glucose (C6H10O5, molar
mass 162.14 g/mol) was purchased as crystalline powder of
99% purity from Aldrich Chemicals and kept in dry conditions
until use. This precaution is necessary because the sample
absorbs moisture from air, and the presence of moisture was
found to promote transformation to the orientationally ordered
crystal phase on cooling its ODIC phase and on heating its
orientational glass.

Calorimetric measurements were performed using a Perkin-
Elmer differential scanning calorimeter DSC 8500 equipped
with an Intracooler III as a refrigerating system. The instrument
was calibrated in temperature at a zero heating rate and in
energy with high purity standards (indium, naphthalene, and
cyclohexane), according to the procedure for standard DSC
[24]. The sample, of about 20 mg, was contained in an
aluminum DSC pan. Dry nitrogen was used as purge gas at
a rate of 30 ml/min.
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For preparing the ODIC phase the as-received sample was
first heated up to 463 K at a rate of 20 K/min and kept at that
temperature for 1 min to complete the transition to the liquid
phase; then the sample was immediately cooled down to 273 K
at −20 K/min.

To obtain accurate specific heat DSC data, Cp,DSC, mea-
surements were done during repeated cycles between the
temperatures of 273 K and 233 K at the scanning rates of
±20 K/min. The same procedure was adopted for the empty
pans under identical conditions; the sample pan mass was
known within a ±0.02 mg error.

The analyses by temperature-modulated differential scan-
ning calorimetry (TMDSC) were done using a sawtooth
modulation temperature program. The temperature modulated
measurements were performed between 258 K and 238 K with
a peak-to-peak temperature amplitude of 1.0 K, a modulation
period of 60 s, and an underlying cooling rate of 0.1 K/min. The
determination of the complex heat capacity Cp ≡ C ′

p − iC ′′
p,

and in particular the correction to the measured phase angle,
was performed as described in Ref. [25]. The calibration factor
of the complex heat capacity modulus was chosen so that the
C ′

p values below and above the glass transition matched with
the corresponding Cp,DSC values measured before.

IV. RESULTS AND DISCUSSION

The calorimetric data are processed like in Ref. [14].
An approximate enthalpy relaxation function, φH (t), can be
obtained from the complex heat capacity Cp by means of the
general fluctuation-dissipation relation [26]

Cp(ω,T ) = − 1

kBT 2

∫ +∞

0
dt e−iωt ∂φH (t,T )

∂t
(15)

and then associated to the peak temperature of the imaginary
part C ′′

p . This derivation rests on the assumption that the
time-temperature superposition applies, i.e., that φH (t,T ) ≡
φH (t/τ ), with τ (T ) a characteristic relaxation time through
which the temperature dependence is conveyed in φH ; this
implies that the integral in Eq. (15) is a function of just
the product ωτ . The normalized heat capacity Cp,norm ≡
[Cp − Cp,glass]/[Cp,liq − Cp,glass], where Cp,liq and Cp,glass are,
respectively, the relaxed and unrelaxed contributions to C ′

p

extrapolated at the peak temperature (cf. Fig. 1), fulfils a
relation similar to Eq. (15) where the prefactor 1/kBT 2

is absent and the relaxation function is normalized so that
φH,norm(0) = 1. We then chose for Cp,norm an Havriliak-Negami
(HN) representation:

Cp,norm = 1

[1 + (iωτHN)a]b
, (16)

with a and b the width and asymmetry shape parameters,
respectively (both lying in the interval ]0,1]) and τHN is the
temperature-dependent central relaxation time.

The upper panel of Fig. 1 shows the real and imaginary
parts of the heat capacity; the asymmetry of the loss peak can
be perceived by comparison with a Gaussian fit (short-dashed
line).

The corresponding normalized Cole-Cole plot is reported in
the lower panel of the figure (part of the data points have been
skipped for clarity). Unlike the case of isothermal, scanning

FIG. 1. Real and imaginary parts of Cp for LG (upper panel)
obtained for a cooling rate of 0.1 K/min and a modulation frequency
of 0.017 s−1. The short-dashed line is a Gaussian fitting on C ′′

p for
the calculation of the cooperativity via Eq. (21); the straight dashed
lines, C ′

p,liq and C ′
p,glass are the relaxed and unrelaxed contributions

to C ′
p , respectively, extrapolated to the whole temperature interval

displayed. The Havriliak-Negami expression of Eq. (16) (solid line)
is adjusted to the corresponding Cole-Cole plot of Cp,norm (lower
panel) in the highlighted temperature interval. Inset “a” reports the
T dependence of the central relaxation time (open squares) and the
best fitting linear regression (solid line); inset “b” shows how the
different modes contribute to C ′′

p,norm depending on their characteristic
relaxation time.

frequency measurements, here we have a fixed modulation
frequency, while τHN varies with T . Since C ′

p,norm(ωτHN) is
invertible, we can construct the composite function C ′′

p,norm ≡
C ′′

p,norm(C ′
p,norm; a,b), which, upon fitting the data (solid line),

yields a = 0.8 ± 0.04 and b = 0.63 ± 0.06 as optimal shape
parameters (after Ref. [27]; these values would approximately
correspond to a stretching exponent β � 0.57 in a Kohlrausch-
Williams-Watts relaxation function). The T -dependence of the
central relaxation time, obtained from the inverse function
ωτHN ≡ ωτHN(C ′

p,norm) and the temperature dependence ofC ′
p,norm

found experimentally, is shown in the inset “a” by open squares.
Probably also due to the relatively high T -range of the analysis,
ln[τHN(T )] appears to be close to Arrhenian, with an activation
energy Ea � 400 kJ/mol (solid line). This is only apparently
in disagreement with the behavior observed by recent dielectric
spectroscopy measurements [28], which indicate for the ODIC
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phase a Vogel-Fulcher-Tammann dependence

τHN = τ∞ eB/(T −T0) (17)

with τ∞ = 1.1 × 10−13 s, B � 1376 K, and T0 = 204.7 K as
fitting parameters; an apparent activation energy of about 350
kJ/mol is found indeed at T = 250 K from Eq. (17) (cf. also
Ref. [4] for an independent analysis). We wish to point out
that, despite its empirical nature, Eq. (16) reproduces the data
very well in the interval of the analysis, the only assumption
being that the time-temperature superposition holds.

The normalized enthalpy relaxation function is derived by
inversion of Eq. (15), i.e., from the Fourier cosine transform of
C ′′

p,norm as expressed by Eq. (16) with the HN shape parameters
set at their best fit values, this time considering ω as integration
variable and τHN fixed at its C ′′

p -peak temperature:

φH,norm(t) = 2

π

∫ ∞

0
C ′′

p,norm cos(ωt)
dω

ω
. (18)

Isothermal measurements in an appropriate range of frequen-
cies would be preferable, where possible, like in the case
of dielectric spectroscopy. In that case, the assumption of
time-temperature superposition would not be that central for
the derivation of φ from the data. We note that the HN analysis
of the dielectric loss at T � 255 K [cf. the inset of Fig.
3(a) in Ref. [28]] provides comparable results: a = 0.77 and
b = 0.51.

Inset “b” of Fig. 1 shows how the different relaxation
modes contribute to the loss peak, depending on their own
relaxation time; clearly, the glass transition regime could not
be closely approached, given the available modulation setting
of the calorimeter.

The analysis of the relaxation function is done by adjusting
Eq. (13) on φH,norm(t); in our experience a fitting interval for
which 0.7 � φH,norm � 0.07 can be suggested. However, among
the best fitting results one has to chose that for which the
quantity

Sq ≡
[

1 − ζ ∗

λ(T sc − μ0)

]2

+
[

1 − �μ(ζ ∗) + μ0

T sc

]2

(19)

is minimal, that is, a solution characterized by the minimum
“distance” from both the conditions of Eqs. (9) and (11) set as
equalities. Since μ0 is not known in advance, one has to carry
out a nested minimization procedure, that is, for initial μ0 and
n [cf. Eq. (12)] one fits φH,norm and finds temporary values of
λ, ζ ∗, and �μ(ζ ∗) [these latter via Zζ,n and Eq. (9)]; once Sq
is computed, μ0 and n are varied in order to minimize it.

The specific configurational entropy has been taken as

sc = �Cp ln

(
T

T0

)
, (20)

where �Cp is the specific heat step at Tg [which we set equal
to Cp,liq − Cp,glass at the peak temperature of C ′′

p (T ), that is,
�Cp/kB � 13.2 from the data of Fig. 1] and T0 is the Vogel
temperature of Eq. (17).

The results of the analysis are shown in Table I. Note that
the cooperativity is rather high (Nα � 250), while μ0 � 4.31
kJ/mol; thus, a significant fraction of the configurational
entropy (T sc = 5.37 kJ/mol) relates to the attainment of
the pretransitional state, and only a small part of it has to

be associated to the large-scale diffusional motion which
eventually establishes at the end of the facilitation process;
the latter initiates with rearrangements of just z = 5 molecules
on average.

Of course, this result has to be considered an estimate
of the cooperativity. There exist other independent methods
for the evaluation of this or related quantities; given the
difficulties in measuring “directly” the number of correlated
units, this circumstance is particularly favorable because the
result obtained by one method whatsoever can be taken as a
reference for the others. For this reason we also derive below
the LG cooperativity through Donth’s approach [29,30] and
discuss, from our point of view, about the number Ncorr,T of units
whose relaxation dynamics is correlated with a local enthalpy
fluctuation [9,31].

According to Donth’s approach, we calculate the coopera-
tivity through the formula

Nα = kBT 2

δT 2
�

(
1

Cp

)
, (21)

where �(1/Cp) = 1/Cp,glass − 1/Cp,liq at the C ′′
p -peak temper-

ature and δT 2 is the mean square of the temperature fluctua-
tions accompanying the energy exchanges among degrees of
freedom within a CRR. From the data of Fig. 1, the amplitude of
these temperature fluctuations can be estimated in δT � 2 K by
fitting C ′′

p (T ) with a Gaussian [32,33] (cf. the short-dashed line
in the upper panel of Fig. 1); we then obtain Nα ∼ 300. Note
that the same approach has been implemented in Ref. [28],
yielding the rather smaller value of Nα � 60 at T = 250 K.

The most direct relation of Eq. (21) with our theory, is
through the expression of the temperature fluctuations. In
Ref. [13], indeed, it was shown that δT ≈ T (�μ∗ − �μ)/ζ ∗.
From the data of Table I one finds δT � 1.3 K, which,
given the unavoidable error propagation, can be considered an
acceptable approximation; however, it would not be convenient
to use this value in Eq. (21) to derive Nα .

A further independent approach to the problem of
cooperativity is through the dynamic susceptibility
functions. In particular we focus on χNV T

T (t) ≡
(ρ/kBT 2)

∫
d3r 〈δe(0; 0)δφ(r; 0,t)〉NV T , with ρ the number

density, which describes how an energy fluctuation δe,
occurring initially (t = 0) at a certain point 0, affects the
relaxation dynamics, δφ, a distance r apart. This three-point
correlation is sensitive to what is considered to be a primary
cooperativity mechanism [9] and is directly accessible
experimentally because it is connected to the ordinary
two-point relaxation function φ by the fluctuation-dissipation
relation χNV T

T = ∂φ/∂T . Assuming an energy fluctuation
δe ≈ √

�CpkBT 2, the number of units whose dynamics is
affected by it is in the order of [9,31]

Ncorr,T ∼
√

kBT 2

�Cp

max
t

{∣∣χNV T
T

∣∣}. (22)

The maximum is reached for t close to the central relaxation
time τ of the process. (For the relationship of Ncorr,T with the
nonlinear dielectric susceptibility, cf. Refs. [10,11].)

If the relaxation function is expressed with a stretched
exponential exp{−(t/τ )β} and Eq. (17) is used for τ , then
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χNV T
T |

t∼τ
= (β/e)B T/(T − T0)2 at its maximum. Hence,

inserting the above values for LG, Eq. (22) would give
Ncorr,T ∼ 10.

Once the relaxation data have been fitted, estimating Ncorr,T

through Eq. (22) by means of our function would not yield a
very different result. The point, however, is that the existence of
a pretransitional state underlies the energy threshold expansion
of Eq. (13); thus, in the present context, the reference state
should be the excited one.

The role of primary dynamic correlation number is naturally
played here by λ; in the cases where μ0 ≈ 0, its relation
with Ncorr,T follows from Eq. (22). Indeed, approximating the
distribution in Eq. (13) as p ∼ e− ζ/kBT [cf. Eq. (10)], one finds
∂φ/∂T |t∼τ ∼ ζ ∗/kBT 2 [the contribution ∝ ∂τ/∂T , being
O(z/λ), is neglected]; this implies Ncorr,T ≈ λ sc/

√
�CpkB . In

cyano-adamantane, for example, the results listed in Table I
yield Ncorr,T ∼ 9 at the temperature at which λ ∼ 6 (note
that Ncorr,T � Nα in this case, conforming to the class of
non-Newtonian systems envisaged in Ref. [31]). However,
when μ0 �= 0 like in LG, the definition of Ncorr,T in the present
framework may be not so obvious, in particular with regards
to the appropriate energy δe to adopt as a reference.

A different context would characterize the formation of
a pretransitional state, but this issue cannot be dealt with
presently.

Turning now to the main track, Table I also shows the results
of similar analyses carried out from the isothermal dielectric re-
sponse of other ODICs [43], namely, cyclo-hexanol (Cy-Hex),
cyclo-octanol (Cy-Oct), cyano-adamantane (Cn-Adm), and
iso-cyano-cyclo-hexane (i-Cn-Cy-He). Although not able to
form an ODIC, propylene carbonate (PCA) has been analyzed
as well to help comparing with the results from nonlinear
dielectric response [12]. More specifically, at about 183 K the
ratio of PCA and Cy-Oct cooperativities found here seems to
match rather well that obtained from the nonlinear analysis
[the value 45/11, as from Table I, would be reasonably close
to the ratio that can be extrapolated from the data of Fig. 4(b)
in Ref. [12]]. On the other hand, we find a somewhat large
cooperativity in PCA at 163 K (in Ref. [12] it would be as low
as Nα ≈ 35, assuming Nα = 11 at 183 K; this value seems too
small, given the proximity to Tg).

Excluding LG, the results of Table I are reported in Fig. 2
for better clarity. From this figure it is evident how larger
the cooperativities are in Cy-Oct and Cy-Hex compared to
Cn-Adm and i-Cn-Cy-He; note, in addition, that the last two
ODICs show quite the same cooperativities (approximated to
the closest integer) in similar conditions with respect to their
own Tg .

With respect to structural glass formers in general, of
which PCA is one example, the temperature dependence of
cooperativity in the ODICs considered here (apart from LG,
which has been analyzed at just one temperature) seems to
be weaker in proximity of their respective Tg’s (also the T -
dependence of ζ ∗, if any, conforms to this trend). Concerning
μ0 we usually find that it slightly increases with temperature,
thus following the same trend of T sc. The case of Cy-Hex,
instead, is special because a significant decrease on heating is
found for this quantity; hereby, we are inclined to relate this
observation to the instability of the Crystal-I phase (wherein

FIG. 2. Cooperativities found for the systems of Table I (LG ex-
cluded); the associated glass transition temperatures are also indicated
by the dotted arrows. The lines are guides for the eye.

orientational relaxation occurs) on heating towards T ∼ 160 K
[35]. In Ref. [34], the significant reduction in amplitude of
the α-peak on approaching T = 200 K from above, and its
disappearance on heating in the interval between 160 K and
200 K, have been ascribed to this instability mechanism too.

Comparison between Cy-Hex and i-Cn-Cy-He close to the
respective Tgs suggests that hydrogen bonding interactions
enhance cooperativity; the best fitting ζ ∗ values of Table I
support this interpretation (although these systems have similar
values of T sc in proximity of their Tg , this does not follow
directly from the fact that μ0 is much larger in Cy-Hex,
as Eq. (11) would suggest, because the ζ ∗ values differ
significantly in the two cases). If one thinks of cooperativity
as the effect of a “drag” accompanying the diffusional motion
of a unit, then this picture seems reasonable. However, the
arguments of the theory section allow for an interpretation
that entirely refers to the pretransitional dynamic regime.
Consider indeed that diffusional motion is characterized by
very low values of ζ ∗, that are reached after the facilitation
process has come to completion [14]; Eq. (11), instead,
refers to the pretransitional state, where facilitation has not
started yet and ζ ∗ is still large. Recalling the comments about
the peculiar character of the apparent extensivity in S, just
following Eq. (11), it is immediate to relate the cooperativity
to the number of possible values the rearrangement barrier
probed by a (constrained) rotating unit may take; in turn,
this number depends on how many mobile units mutually
interact, either as nearest neighbors or through mediation by
other units (by construction, this is a necessary consequence
of the constraint on �μ). In the case of i-Cn-Cy-He the
interaction is limited to a reduced number of neighbors, the
multiplicity of well depth values lowers, and the same do both
the entropy and the threshold energy ζ ∗; this motivates a lower
cooperativity.

The effect of hydrogen bondings may be also highlighted
by comparing Cy-Oct and Cn-Adm. In the temperature range
considered for the analyses, these systems have similar values
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of T sc, z and ζ ∗; however, quite larger specific cooperativities
are found in Cy-Oct as an effect of just μ0 as, this time, Eq. (11)
points out.

On its turn, LG is a system with strong hydrogen bonding
interactions. In this case the entropy associated to diffusional
motion, i.e., sc − μ0/T , is comparable with that of Cy-Oct
at the measuring temperatures; in addition, the values of
the specific cooperativity, λ, are similar too. However, the
number of units initiating the large-scale diffusional motion
is significantly larger than in the case of Cy-Oct (z = 5 against
z � 1.5), and, after Eq. (14), this provides a major reason for
so high a cooperativity worked out.

V. CONCLUDING REMARKS

We based our analysis focusing on the pretransitional state,
an intermediate dynamical regime separating the glass from
a condition in which configurational motion is unconstrained.
Within the theoretical framework proposed above, it is possible
to relate cooperativity to basic ideas concerning the character
of the energy landscape in glass formers [44]. The emer-
gence of broad spectral patterns in the dynamical response
of amorphous systems is indeed connected to the existence of
a mixing entropy, S, that is central in defining the potential
of Eq. (8) [the multiplicity of ζ values, giving rise to S as
an effect of their random changes, causes a broadening of the
spectra which is probed through the analytical expression of
φ via the term ν∗ exp[−z �μ(ζ )/kBT ] in Eq. (13)]. The fact
that such an entropy contribution maintains its relevance in a
single-unit potential, i.e., that it does not vanish in the infinite
size limit (consistently with an appropriate size dependence of
the inherent structures’ multiplicity), provides an a posteriori
consistency support for cooperativity.

Concerning the issue whether nonexponentiality in the
correlation decay might be or not an intrinsic feature of
the relaxing mechanism, as when cooperativities are small,
the picture given here points at encompassing all cases into
a common view: in any case it is the number of minima
(or better, the multiplicity of their depth values) probed by
a rearranging unit that matters. In structural glass formers

this nonexponentiality is usually depicted as a superposition
of contributions from disjointed cooperatively rearranging
regions, each of them relaxing with its proper, instantaneous,
characteristic time. Here nonexponentiality is still described as
a superposition of independent contributions, as is evident from
Eq. (13), but its local character, even if influenced by the inter-
action with neighbors, has by no means been highlighted in our
physical interpretation [Eq. (11) and subsequent comment];
this still poses some connection between nonexponentiality
and size of the rearranging regions, but no Brownian motion
needs be invoked for this.

There are issues left over, a thorough consideration of
which this contribution cannot afford. The first is of course
the origin of the super-Arrhenian dependence of the central
relaxation time. Large rearranging domains do not necessarily
imply non-Arrhenian behavior; for instance, LG and Cy-Oct
are both highly cooperative, but the T -dependence of the
apparent activation energy of the latter is significantly weaker.
Other fragile ODICs, e.g., a recently studied succinonitrile-
glutaronitrile mixture [45], would be of interest in order to
compare with less fragile ones and hopefully figure out, at
least, a trend in the fitting parameters highlighting this feature.
The topic, however, does not seem to be trivial at the outset,
and we must defer it to future work.

Another point deserving attention is the particular behavior
of μ0 as a function of T in the case of Cy-Hex. We have
presently no information enough to help drawing conclusions
from the results of the above analysis; one can only guess, as a
possibility, that the decrease of μ0 on heating (which may be
due to a decrease in the average, steady, energy contribution
of the rearranging units) could result from a progressive
decoupling between the observed rearranging domains and an
environment in which the presence of orientationally ordered
regions dominates ever more. These regions, as orientationally
frozen, would not intervene in establishing the fluctuating
potential wells to which rearrangement is so sensitive, thus the
cooperativity would be reduced. In other words, the decrease
of Nα on heating would also be enhanced by a genuine
confinement effect.
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