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In most interacting many-body systems associated with some “emergent phenomena,” we can identify
subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind
is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in
such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience
a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape
arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast
variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation
of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective
temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape
for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical
system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting
configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore
demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring
about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive.
We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the
exploration of slow variable space, as if in search of fine tuning for a “least-rattling” response in the fast coordinates.
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I. INTRODUCTION

A broad range of many-body nonequilibrium systems have
in common that different degrees of freedom within them
undergo motion on two well-separated time scales, and that
the faster degrees of freedom are the only ones directly subject
to external driving. Such separation can occur if a faster set of
active particles acts as a bath for a heavier, more slowly relaxing
set of larger, extended degrees of freedom, such as in the
example of a polymer immersed in a mixture of self-propelling
particles [1]. Alternatively, in many systems one can usefully
identify coarse-grained variables describing global features of
the many-body dynamics, which may relax more slowly than
the coordinates of individual particles. Such order parameters
might then be thought of as a set of slowly varying constraints
on the driven fast dynamics, as, for example, in [2].

In all such cases, it is possible in principle for the particular
configuration of a set of slow variables to have a significant
influence on the specific nonequilibrium steady state reached
by the fast variables. Thus, in general, a feedback loop can arise
in which the slow variables first establish the features of the fast
steady state, and then the statistics of this steady state in turn
determine the stochastic dynamics of the resulting local motion
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in slow variable space. The goal of this paper is to characterize
the dynamical attractors of slow variable evolution in terms
of the particular, special properties of the fast steady states to
which they give rise.

Nonequilibrium systems with time-scale separation have
been extensively studied over the last several decades. The
most common context where they have come up is in formal-
izing the concept of a “thermal bath”—explicitly modeling
the fast bath degrees of freedom as a Hamiltonian system,
and studying their effects on the slow variables. In this way,
one can in some cases recover the effective friction tensor [3],
and the corresponding noise term, related by the fluctuation-
dissipation theorem [4]. There is also extensive literature
studying the conditions and effects of deviations from this basic
result, which are generally termed “anomalous diffusion”—
see, e.g., [5]. Within this context, the “slow” degrees of freedom
lack their own dynamics, and are considered only as probes of
the fast bath. More recent studies have considered the minimal
dissipation required from an external agent to slowly move
such probes. A geometric interpretation of this bound was
presented in [6], and extended to nonequilibrium baths in [7],
as well as to reversible external protocols in [8]. Systems where
slow variables have their own dynamics under a conservative
coupling to the fast bath have received relatively little attention,
excepting notable recent work for a simple harmonic oscillator
probe in [9], and a more general exploration in [10,11], where
some formal results relating dissipation and forces on the slow
variables were derived.

Most of this previous work has relied on the projection
operator technique to adiabatically eliminate fast variables
and obtain the reduced Fokker-Planck equations for the slow
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variables, as in Chap. 6.4 of [12], or see [13] for a recent
review. The straightforward implication of this approach is
that at long times probability density in slow variable space
is expected to accumulate in locations where inward mean
drift is strong, and where local diffusion is low. Here, we first
derive this effect for a general class of Langevin systems using
a response-field path-integral framework that makes clear the
relationship between the reduced Fokker-Planck parameters
and the absorption and thermalization of drive energy in the
fast steady state. Some related path-integral system reduction
techniques have been studied before (e.g., [14,15]), but in
substantially different contexts. Having established a means
of explicitly calculating the parameters of the multiplicative
noise stochastic process governing the slow variables, we
then proceed to analyze the implications for what we term
“least-rattling feedback,” in which slow variables dynamically
fine tune themselves to bring about fast variable steady states
that attenuate force fluctuations so as to lower the slow variable
effective temperature.

The tendency of slow variables in driven systems to move
thermophoretically towards regions of lower effective tempera-
ture has been noticed in the past, most commonly in situations
where the slow variables find a way to reduce the influx of
energy from the drive (as in [16,17]). As we shall see here,
however, a striking alternative can arise if the fast variables are
capable of exhibiting regular, integrable dynamics; in such a
case, least-rattling stability can coexist with strongly coupling
to and absorbing work from the external drive.

In Sec. II of this paper, we will present the derivation
of our main analytical result, which establishes a relation-
ship between force fluctuations in fast driven variables and
the resulting effective temperature experienced by the slow
variables in a driven system. In Sec. III, we will carry out a
numerical analysis of the kicked rotor on a cart—a time-scale
separated, damped, driven dynamical system that is ideally
suited for demonstrating the predictive power of the least-
rattling framework. Not only will this analysis draw clear
connections to methods of equilibrium statistical physics and
show how they generalize in such a nonequilibrium scenario,
but it will also underline how least rattling helps to explain
the nontrivial relationship between dissipation rate and local
kinetic stability in driven systems.

II. ANALYTICAL SLOW DYNAMICS

In this section, we lay out a general formalism for extracting
slow dynamics in stochastic systems with strong time-scale
separation. We will model “slow” variables x, and “fast”
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variables y; that evolve according to a coupled system of
Langevin equations. Our approach will be to integrate out the
fast degrees of freedom and develop an effective theory for the
dynamics of the slow variables that is controlled by a small
number € which quantifies the time-scale separation between
fast and slow. As we carry out this integration, we will show that
the effects on x, from the fast steady state of the y; variables
at leading order in € are an average force and, more subtly, a
random force and renormalized drag that are calculated from
the two-point correlation function of the forces acting between
x, and y;. These latter effects are identified as an emergent,
position-dependent effective temperature experienced by the
slow coordinates.

A. Setup

While the method we present here is not restricted to this
context, it is easiest to illustrate on systems the dynamics
of which can be given by first-order equations, as below.
In particular, it works the same way for other types of fast
dynamics—such as inertial, or discrete—as long as there is a
fast relaxation to a steady state:

nxu = Fa(xa,yi,t)‘f‘ V 2Tn$a7
wyi = fi(xa,yi,t) + V2T pé;. ey

Here the noise & is usual Gaussian white noise: (£,(1)) = 0
and (‘&,°()‘€p°(s)) = ‘84,b°6(¢ — ). Taking the limit u/n =
€ < 1 amounts to explicitly separating x, as slow modes,
and y; as fast ones (a,b, and ¢ index the slow configuration
space, and 7, j, and k index the fast one). The natural physical
interpretation of this system as overdamped dynamics in a
thermal bath of temperature 7', with two different damping
coefficients u and 7, the noise amplitudes given by Einstein’s
relation, and with the forces F,, and f; will be implied from now
on for concreteness, but is not at all necessary. With a slight
adjustment the system could as well represent underdamped
dynamics, such as in the kicked rotor model system we
characterize below.

B. Results

The detailed derivation of the effective slow dynamics is
relegated to Appendix A. Here we mention only the key steps in
the derivation. First, we rescale time t — u f, making the slow
dynamics obey x, = € F, + ~/2 T €&,, while the relaxation
time of fast variables becomes that of O[1]. Second, we
express the probability of slow trajectories in terms of the
Martin-Siggia-Rose path integral (also termed the response-
field formalism) [18]. Third, we do a cumulant expansion
controlled by e:
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where Z, is the normalization, and %(¢) is the auxiliary
“response” field. In the last line, we see that the O[€?] term

(

in the expansion, like temperature 7', comes in %2, and thus
gives a correction to the noise on the slow dynamics—this is

032115-2



LEAST-RATTLING FEEDBACK FROM STRONG TIME- ...

PHYSICAL REVIEW E 97, 032115 (2018)

the effect that we will focus on throughout the rest of this paper.
Doing this more carefully (as shown in the Appendix A) the
resulting slow dynamics, our main analytical result, are

Yab - ).Cb = G(Fa>y|ﬁxx + v ZeDah : %‘/)7
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where the matrix square root is defined by B = /D <
B.BT = D. Dots denote Itd products, which will be typical
here (see Appendix A2). Note that only the connected com-
ponents of the expectations appear in the expressions for y (x)
and D(x) (denoted by commas), and thus are insensitive to any
deterministic motion of the fast variables. Further note that
there is also an O[e] correction of the damping coefficient,
which, for a fully conservative (undriven) system, matches the
noise correction to preserve Einstein’s relation, as it must (see
Appendix A 4). For nonconservative forces, however, this will
not be the case, and the ratio of the effective noise to damping
amplitudes can be used to define an effective temperature
tensor To(x,) =y~ ! .D.(y’l)T, which will generally depend
on the slow coordinates—i.e., the noise on slow variables
becomes multiplicative.

C. Least rattling

The significance of the above formal result is that to extract
the effective slow dynamics we need not know everything
about the fast modes, but only the mean and variance of the
force fluctuations F, in the y; (fast) steady state at fixed x,
(slow degree of freedom). All other details of the fast dynamics
become irrelevant by the same mechanism as for the central
limit theorem (CLT). The slow dynamics thus follow the simple
Eq. (3), which can often be solved analytically. Its qualitative
behavior is guided by a competition between the mean drift
along the average force (F(x)) and a median drift down the
effective temperature gradients T.g(x). While the former effect
is larger by a factor 1/¢, itis a vector quantity and, as such, may
be suppressed by averaging in the case of high-dimensional
disordered fast dynamics. This is in contrast to T.¢, which
comes in as a positive-definite tensor, making it robust to
averaging out. Without rigorously exploring this tradeoff for
now, in this paper we simply choose to focus on the effect of
T.:(x), which guides the slow variables towards regions in their
configuration space that yield more orderly, less chaotic, or less
rattling fast dynamics (see Appendix A5). We suggest that this
effect might result in the self-organization lately studied in
many nonequilibrium systems [19,20].

We now expand on a few of the points mentioned above.
First, how general is this method? Its scope is basically
inherited from the regime of applicability of the CLT: our
requirement of strong time-scale separation amounts to the
condition that fast fluctuations decorrelate faster than the
dynamical time scale of slow variables. This way their effect
on the slow coordinates adds up as independent and identically
distributed random variables, satisfying the conditions of the
CLT. Thus any fast fluctuations must either decorrelate quickly
(e.g., due to thermal noise or chaos)—thus contributing to the

Gaussian noise amplitude—or not decorrelate at all (as with
integrable behavior), contributing to the mean force (F'). This
requirement could notably be broken if some fast fluctuations
decay slower than exponentially—a scenario that leads to
effective colored noise and anomalous diffusion, but retains
much of the general intuition from Eq. (3).

This framework is particularly useful in cases where fast
dynamics can be in several qualitatively different dynamical
phases, controlled by the slow variables. E.g., if a fast variable
undergoes a transition from chaotic to integrable behavior as
a function of some slow coordinate, then we will typically
expect its effect to transition from a noise contribution to an
average force contribution, respectively—as we will see in
the toy system below. Making this precise and describing the
relevant universality classes of these transitions based on their
symmetry structure can be done within the broader framework
of renormalization group flow. This could allow extracting the
effective slow dynamics, much like it allows finding large scale
physics for quantum or statistical fields [21].

Finally, we mentioned above that while the average force
(F) causes the mean of the x, ensemble (slow variables)
to drift, the multiplicative Itd6 noise given by the effective
temperature bath Tig(x), affects only a drift of the median
of that same ensemble. This latter effect is realized by virtue of
the p(x,) probability distribution growing increasingly heavy-
tailed with time (e.g., log-normal distributions are typical), and
so while the mean remains fixed the median will drift towards
the low-noise regions. This means that any finite ensemble of
trajectories will also settle in the low-noise region, and the
mean will never be realized experimentally. Some aspects of
this ergodicity-breaking phenomenon were discussed in [22],
and a similar problem was considered in [23]. The key for us
is that the least-rattling effect is inherently nonergodic, and is
observed only by monitoring the system over time.

III. TOY MODEL

To illustrate the above results, we consider a toy model
that is designed to be the simplest possible example capturing
all the qualitative features we might expect of more general
scale-separated driven systems of interest. Specifically, we take
akicked rotor on a cart setup shown in Fig. 1(a). The fast kicked
rotor (Chirikov standard map) dynamics here are chosen as the
simplest system that can realize both the chaotic and integrable
behaviors under different parameter regimes. Essentially, the
system is a rigid pendulum that experiences no external forces
except for periodic kicks of a uniform force field (as though
gravity gets turned on in brief bursts), and is given by the first
two lines in Eq. (4). We modeled the system to be immersed in
a thermal bath by adding a small damping and noise [see the
third line in Eq. (4)], the effects of which have been studied
in [24,25]. The point relevant for the following analysis is that
when the driving force amplitude (henceforth called “kicking
strength”) is large, the rotor dynamics are fully chaotic, but
if the kicking strength drops below a critical value (K < 5)
periodic orbits appear in the configuration space, and are made
globally attractive in the presence of damping, thus quickly
making the dynamics integrable (we refer to this phenomenon
below as “dynamical regularization”). Thus, by controlling the
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FIG. 1. (a) Schematic of the kicked-rotor-on-a-cart toy model.
(b) Numerical realizations of typical cart trajectories over time for
driving force below (K = 3: regular/ordered regime) and above
(K = 8: chaotic regime) the ordering transition (at K, ~ 5), along
with samples of the corresponding fast (6,v) dynamics. (c, d, e)
Average force, fluctuations, and dissipation rates in the cart dynamics,
measured from trajectories as in panel (b), for the various values of
K, along with analytical predictions (in black) from Eq. (6).

effective drive strength, it is possible to switch between chaotic
and regular regimes of fast dynamics.

We then fasten the pivot of the fast kicked rotor on a slow
cart that can slide back and forth in a highly viscous medium,
perpendicular to the direction of the kick accelerations, i.e.,
along the symmetry axis of the rotor dynamics [see Fig. 1(a)].
The cart is pulled by the tension in the rod, which depends on
the fast dynamics, while the global cart position x can feed
back on the fast dynamics by having a kicking field that varies
along the cart’s track K (x). This way we have slow variables
conservatively coupled to driven fast dynamics, and a feedback

loop controlled through the arbitrary form of K (x)—providing
a flexible testing ground. Overall, we argue that, while vastly
simplified, this model captures essential physical features
of many multiparticle nonequilibrium systems of potential
interest.

A. Model setup

The toy model explored here is presented in Fig. 1(a): the
kicked rotor is attached to a massless cart moving on a highly
viscous track, which ensures that the cart’s velocity is much
smaller than the rotor’s. The exact equations of motion for
the system can be derived from a force balance, and in their
dimensionless form become

cx=—0UX)+~2Tc& +sinf (v> — i sinf),

=F,
6 =v,
v=—K(x)sinf §(t —n)—bv+~2Tb&,— X cosf

“

where all lengths are measured in units of rotor arm length, time
is measured in units of kicking period, and the angle 0 is 2w
periodic. Note that for practical reasons (see Appendix B), we
also assumed that the cart is momentarily pinned down during
each kick, so as to remove the term %K (x) sin20 &6(t — n)
that should otherwise be included in F, due to the direct
coupling of the kicks to the cart. For now, we can motivate
this by saying that the interesting problem is where the driving
force affects the slow dynamics only by means of the fast
ones, and not directly, while this chosen implementation can
simply be viewed as an additional component of the drive
protocol. Additionally, to provide more modeling freedom, we
can include an arbitrary potential U(x) acting directly on the
cart to produce a conservative force. Time-scale separation in
this model implies that back reaction from cart dynamics on
the rotor is small—i.e., here X < K (by differentiating the last
line, we see that indeed ¥ ~ O[v3/c] <« 1 for ¢ > 1). Thus
the leading-order feedback from the slow variables onto fast
dynamics comes from x dependence of K, which we have
full control over, making for a convenient toy model. We also
independently assume that b < 1 so that fast dynamics are
close to the ideal kicked rotor and retain its features.

B. Analytical evaluation

For large K (above the dynamical regularization threshold,
i.e., K 2 5), the steady state of the fast dynamics is fully
chaotic, and thus thermal—i.e., we assume thermalization
of the entirety of drive energy among the fast fluctuations,
as happens in [26] for example. This way, the steady-state
distribution is Boltzmann, which is here uniform over 6
and Gaussian over v, the variance of which we can call Ty
(rotor temperature). The symmetry of this state over 6 and v
gives (F\)ss. = 0, making the fluctuations dominant. The only
remaining parameter we need to find is then Ty, which is fully
constrained by energy balance as follows. In general, to keep
an ergodic system at an effective temperature that is higher
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than that of its bath requires dissipation [27]:

80 = /dt vo(bv—+/2Tyb &) = b((v?) — Tp)st,

P=22 bt )
at

(for one-dimensional systems with mass=1). Moreover, we
can find the power exerted by the kicking forcetobe P = K2 /4
in the chaotic regime, which in the steady state must balance
the dissipated power. This allows us to extract the effective
rotor temperature: Tg ~ Ty + f—; + 0[%] (see Appendix B 1
for details).

This, however, only gives us information about the fast
behavior, while the x-noise correction that we want will
also depend on the nature of the rotor-cart coupling. This
way, we need to evaluate the x-force correlations and
8T, = i fdt(Fx(t),Fx(s)),where, asabove, F, = v2 sin@ —
¥ sin?0 = (centripetal F,)— (inertia F;) is the force on the cart.
The calculation is relatively straightforward and detailed in
Appendix B 2, where we also show that y damping-coefficient
correction is zero by symmetry of the (6,v) distribution. We
find that, while the inertial term can be ignored at leading
order, the correlations of the centripetal force give us 67, =
2—10 fdt(Fc,FC) = K?/16¢c. Note here that this multiplicative
noise correction should be interpreted in the Itd sense, as the
(F.,F.) correlations decay on a time scale faster than kick
period (see Appendix A2).

For K <5, on the other hand, the rotor moves periodically
in one of the regular attractors. This means that the cart experi-
ences no additional stochasticity other than that from the ther-
mal bath, giving alow T, = Ty, but as some of these attractors
spontaneously break the left-right symmetry of the problem we
get (Fy)ss. # 0. As the motion in most of these attractors is very
simple—n € Z full revolutions of the rotor per kick—we can
estimate this force explicitly: (Fy)s = fol dt v2(1) sin6(r) ~
bv, + v2/2c, where v, = 27n, and 0(¢) and v(t) were esti-
mated by integrating the equations of motion (4) at leading
order (see Appendix B 3).

Compiling the resulting predictions for the cart motion, we
get

ci=—3,U@) +(F)+2cTy £,
{vn(b+v5/26) K <5

F)= ,
=10 K>5

(6)

T — Ty
ot =7, + K2/16¢

with v, = 2mn and n some random integer, typically smaller
than O[+/Tg] (since the rotor first explores its phase space
thermally before finding one of the regular attractors). Another
quantity we can easily estimate for the two phases is the energy
dissipation rate:

. vi(b+v2/2c) K5 7
| k24 K>5 (

Numerical simulations confirm these predictions in Figs. 1(c),
1(d) and 1(e), respectively.

C. Numerical tests

To verify the above analytical results, we can run numerical
simulations of the full system dynamics in Eq. (4). To begin, we
check the cart dynamics for different values of (x-independent)
K [and U(x) = 0]. Figure 1(b) shows typical cart trajectories
for K in the regular and chaotic regimes. More systematically,
plotting the apparent average drift (F') and fluctuations T for
multiple realizations at each K, we get plots in Figs. 1(c) and
1(d), respectively. We thus see quantitative agreement between
the prominent features of these plots and the results of Eq. (6)—
shown here as black lines. Finally Fig. 1(e) shows the heat
dissipation rate in the different possible steady states, showing
that while lowering T corresponds to decreased dissipation
within the chaotic phase this rule is violated if we enter aregular
dynamic attractor.

Note that as the original problem is stated exactly, and
our method allows for full analytical treatment of the slow
variables, there are no fitting parameters in any of the curves
we are comparing against throughout the numerical study.
Weusec = 5 x 10*, b = 0.1 forall simulations, and to empha-
size the effects from fluctuations of the fast variables we take
the actual thermal bath to be at a vanishingly low temperature
To ~ 0, unless otherwise stated.

While Fig. 1 shows agreement of one- and two-point func-
tions of cart position with our analytical prediction, we have
yet to check that the fast dynamics can really be approximated
by an effective thermal bath. One convincing way to do this
is to introduce a nontrivial potential landscape U(x) acting
on the cart’s position x, and check the resulting steady-state
distribution p(x) against Boltzmann statistics at the predicted
temperature Teg. Figure 2(a) shows the agreement between the
histogram produced by this simulation and the curve for the
expected Boltzmann distribution.

To see that the T.¢(x) landscape remains the appropriate
description even for nonuniform K(x), we can calculate the
steady-state distribution in a K(x) landscape, now letting
U(x) = 0. The expected distribution for free diffusion in a
temperature landscape can easily be found using, e.g., the
Fokker-Planck equation, and gives p(x) o 1/T(x) [note that
this arises precisely because our effective slow dynamics
have It6 multiplicative noise—for Stratonovich it would be
1/4/T(x)]. This is well confirmed by simulations in Fig. 2(b),
thus showing that, at least in the steady state, probability
density does indeed collect in low-temperature regions.

The last natural test that we mention here is to see how
the T.(x) landscape can counteract the forces of U(x)—
specifically changing the stability in a double-well potential.
This setup is shown in Fig. 2(c), where the higher-energy
potential well is stabilized by having a lower T¢¢. The numer-
ical result is correctly predicted by the steady-state solution
of the Fokker-Planck equation with the expected effective
temperatures in each well (labels L and R denote left and right
wells, respectively), as shown in Fig. 2(c):

e U/ x <0 (L)

_ - L
plx) = Z{TLRe_U(X)/TR+A x>0 (R)’

1 1
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FIG. 2. Histograms (gray) of the steady-state cart positions in
simulation with (a) constant K (x) = K and in a potential landscape
U(x) plotted in blue (the black curve gives the expected Boltzmann
distribution). (b) U(x) = const and K (x) landscape in red [the black
curve shows the 1/Tx(x) solution of the Fokker-Planck equation].
(c) U(x) as in panel (a) and the K(x) step function [the analytical
prediction plotted in black is given by Eq. (8)]. (d) U(x) = const and
K (x) as in panel (b), but shifted down to dip below the critical K. ~ 5
value—dotted red line [the black curve again shows 1/ T.¢(x) outside
of the ordered region]—this shows that probability gets localized at
the two transition points at long times.

In the limit of a discrete jump process between the two
wells (wells with equal internal entropy separated by a high
barrier), this exact solution becomes well approximated by
that obtained from current matching with the expected jump
rates: r_, = e~ VO-U/Te and y_ = ¢~V O-Un)/Tr The key
nonequilibrium feature in these solutions is the dependence
of the probabilities in either well on the barrier height U(0)
via A—for higher barriers the temperature difference becomes
more important. This example gives the first nontrivial appli-
cation of thermodynamic intuition from the 7.¢(x) landscape
to solution of our nonequilibrium system. Projecting this
concept onto a broader context, we note that this setup is
a particular realization in the class of problems of iterative
annealing (e.g., used in chaperoned protein folding [28],
etc.).

D. Least rattling

Having confirmed the steady-state and thermal properties of
the slow behaviors, we next want to look at the predictive power
of our formalism for transient behaviors and currents, again
in the presence of inhomogeneous fast dynamics. The first
example we consider is transient cart motion in linearly varying
K (x) = k x. The simulation results are shown in Fig. 3. As
mentioned above, free diffusion in a temperature gradient re-
sults in a median drift to low 7', as observed here. Explicitly, the

slow dynamicsinthiscasec x = z%x - € canbe solved exactly

to give Inx(t) = —(£)*1 + 55 N(0.1) (with N giving the
normal distribution with variance ¢), from which we can read
off the mean x(¢) = x¢p and median x = xoexp[—¢ (/c/4c)2]

K x =K(x)
ol 20 aom—
2t ’:'c
0 10
4 ——
t ¢ 6
7
8 8
10 9
10
12
x10* 1
><104

FIG. 3. Typical cart trajectories in linear K (x) landscape [U (x) =
const] all starting from one point, along with their mean (purple)
and median (brown). The black curve shows the analytical prediction
for the median, while the mean is expected to be constant at small
times. Inset: The regularization transition at K. ~ 5, where effective
temperature drops abruptly to zero, and the median departs from the
smooth decay. The x axis is labeled in units of K.

behaviors. The latter is plotted in black in Fig. 3 and well repro-
duces the simulation result in brown. Note that for any finite
ensemble of trajectories, or for abounded system, the mean will
eventually go to low temperatures as well, but not as cleanly
or predictably—so the constant mean value is not practically
realizable at long times. The inset focuses on the crossover into
regular dynamics, where we see that the symmetry-broken drift
force (F\) can take the cart either to the K = 0 absorbing state
(as detailed in the further inset) or back out into the chaotic
regime. In the latter case, the cart typically diffuses back
down to the transition again. The resulting oscillations cause
a (transient) accumulation of probability around the critical
point, giving a peculiar realization of self-organized criticality.
This critical region itself is also interesting as the correlations
of the fast variables persist for long times, and can thus break
the time-scale separation assumption—but this will have little
effect on the global system behavior. The overall takeaway
here is the emergent least rattling: slow dynamics drift towards
regions where fast ones are less stochastic.

To further illustrate the importance of the regularization
transition on the slow dynamics, we consider the probability
distribution p(x) in the presence of the K(x) landscape (and
no potential U = 0), as in Fig. 2(b), but shifted down such that
it dips slightly below the regularization transition at its lowest
point [Fig. 2(d)]. The resulting small zero-temperature region
in x, corresponding to integrable fast dynamics, becomes
absorbing, collecting most of the probability density over time
[see Fig. 2(d)]. Note again that probability accumulates at the
critical transition points, giving the two-pronged shape. We
stress here the observed sharp localization transition of the
steady-state distribution as soon as some regular regime of
the fast dynamics becomes accessible—i.e., the slow variables
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(a) -3
1 x10

S

FIG. 4. Simulated steady-state cart-position distributions for the shown U (x) (blue) and K (x) (red) landscapes (x is periodic). These result
in a pumped steady-state current (block arrows), with the typical barrier-crossing trajectories shown at the bottom. Unlike in all the above
simulations, thermal bath temperature T, = 10~* > 0 was taken in these to smooth out the critical behavior. Straddling the critical point with
K (x) in panel (b) produces a tenfold larger (and reversed) current, even for smaller absolute variation in K (x).

find the regularized region even if it requires some fine tuning.
(This tradeoff between least-rattling and entropic forces can
be made quantitative.)

E. Anomalous diffusion

The last example we present shows that besides an effective
temperature landscape the regular dynamical phase accessible
to this model can give rise to apparent anomalous diffusion.
To begin, Fig. 4(a) shows an implementation of the Buttiker-
Landauer ratchet using our model: periodic U(x) and K (x)
landscapes, with a relative phase offset of /2, create a steady-
state current being pumped, in this case to the right. Intuitively,
this happens because a higher effective temperature in the right
half of the potential well makes it easier for the cart to overcome
the right potential barrier than the left one. The interesting
behavior appears when we shift the K(x) wave downward
to straddle the transition point at K ~ 5 [Fig. 4(b)]. In this
case the pumped current reverses direction and becomes an
order of magnitude larger—even if we reduce the amplitude
of the K(x) variation. To understand this, it helps to look at
some typical realizations of barrier-crossing trajectories at the
bottom of Fig. 4. While in Fig. 4(a) transitions are achieved
by stochastic fluctuations that are exponentially suppressed
by the Boltzmann factor, in Fig. 4(b) these are achieved by a
directed symmetry-broken drift force (F) > 9, U, and thus the
crossing probability is just the probability of the fast dynamics
finding the appropriate regular attractors. These ballisticlike
trajectories of the cart in the regular regime can be usefully
thought of as anomalous superdiffusion with exponent o = 2.
Also, in so far as the barrier crossing becomes easier as we
lower K(x) through the critical value, we can say that the
diffusion becomes stronger, thus showing nonmonotonicity
with K—reminiscent of the findings in [29].

IV. DISCUSSION

The equilibrium partition function that is computed for the
Boltzmann distribution is a powerful formal tool for making
predictive calculations in thermally fluctuating systems. Its

success stems from two key simplifying assumptions: first,
that energy only enters or leaves the system of interest in the
form of heat exchanged at a single temperature, and second,
that the system and surrounding heat bath uniformly sample
joint states of constant energy. This latter ergodic assumption
essentially amounts to eliminating time from the picture, so
that energy and probability become interchangeable.

The nonequilibrium scenario is generally less tractable than
its equilibrium counterpart both because time has not been
eliminated from our description of the system and also because
energy is permitted to enter and leave the system via different
couplings to the external environment. Thus, the specific
approach to modeling some nonequilibrium systems we have
described here seeks to recover some of the desirable advan-
tages of the equilibrium description by exploiting time-scale
separation in two ways: first, by only allowing nonequilibrium
drives to couple to a fast subset of variables, and second, by
“partially removing” time from the picture by replacing the
fast variables with a timeless thermal bath approximation. This
“conveys” the entire time dependence of the problem into the
resulting effective slow dynamics.

Adopting such an approach by no means recovers the
simplicity of the equilibrium picture; however, it does give rise
to a relatively tractable effective description of the dynamics.
As we have seen, slow variables in such a scenario not
only experience a mean force landscape from the steady
state of the fast variables but also are expected to drift in
the direction of decreasing fictitious temperature set by the
fast variable force fluctuations. Crucially, the latter effect is
nonergodic, thus somehow capturing the breaking of ergod-
icity typical of driven dynamics in a simple and tractable
picture.

We have established that this effective picture is quanti-
tatively predictive of the diffusive and stationary behavior of
distributions for such slow variables in a simple rotor-on-cart
toy model. The tendency of such systems to gravitate to values
of slow variables that reduce the effective temperature of fast
ones suggests an interesting relationship between dissipation
and kinetic stability in driven systems. Although nonequilib-
rium steady states are not in general required to be extrema
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of the average dissipation rate, it is true that the minimum
required dissipation to maintain an effective temperature scales
with T Accordingly, there may be a subset of systems
where the drift to lower effective temperature is indeed ac-
companied by a drop in dissipation. However, for cases where
dissipation instead goes to maintaining dynamically regular
motions, steady-state behavior might be dominated by a highly
dissipative, stable attractor of low 7.

Moreover, if fast variables can undergo a dynamical or-
dering transition that is controlled by the slow coordinates,
the corresponding drop in effective temperature can be dra-
matic. As such, this case opens up the intriguing possibility
that dynamical ordering in fast variables might serve as a
mechanism for long-term kinetic stability for slow variables.
Moreover, if dynamical ordering only can occur for rare, finely
tuned choices of slow variables, this stability could appear as a
tendency toward self-organized fine tuning in the slow-variable
dynamics.

Accordingly, we suggest that an interesting future set of
applications for the least-rattling approach may lie in the active
matter setting, where it is frequently the case that coarse-
grained macroscopic features of active particle mixtures relax
more slowly than the strongly driven microscopic components.
The diversity of self-organized dynamically ordered collective
behaviors exhibited by such systems is well known [20], and it
may be useful to characterize these behaviors in terms of their
possibly fine-tuned relationships to driven force fluctuations on
the microscopic level. Future work must focus on generalizing
our current approach to modeling the dynamics of such coarse-
grained variables.
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APPENDIX A: DERIVATION OF EFFECTIVE
SLOW DYNAMICS

Starting with the explicitly time-scale-separated dynamics
given by the system (1), the first step is to explicitly bring our
small parameter € = u/n < 1 into the equations by rescaling
time t — w t, which gives

).Ca =€Fa(xavyiat)+ V2€T€:aa
Vi = fi(xa,yi,t) + V2T §;.

(AL)

This will allow us to do a systematic expansion in € below.
For later convenience, let us explicitly introduce the time
scales of slow 75 ~ O[1/¢€] and fast Tz ~ O[1] relaxation.
Next we want to integrate out the fast degrees of freedom y;,
which we can explicitly do by writing down the Martin-Siggia-
Rose (MSR) path-integral expression for the probability of a
particular slow trajectory x,(¢), as given in the first line of
Eq. (2). For clarity of notation, we have represented the full

path integration over the fast dynamics as the average:

1 -
<O>y\x(t) = Z},[X(l)] /Dy Dy o
« eXP|:— f dr {i5:[y — fi(x(0),y.0) + T if}]

(A2)

Note that so far this has been defined for a specific fixed slow
trajectory x(¢). With this notation set, we now observe that the
only y dependence that the average can act on in Eq. (2) is
that in F(x,y,t). Thus, all the other terms can be taken out of
the average, while the remaining small € F, exponent can be
treated with a cumulant expansion:

<6Xp|:l€/dt ia Fa(-xayﬂt)i|>
yIx@)
:exp[ie/dt Xa(t) (Fa(x,y,1)) y1x(r) —szdt/dt,

X ia(t)fb(t/xFa(xvat)vFb(xvyvt/»ylx(t) + 0[63]:|'

(A3)

As this is the only part of the path integral in Eq. (2) that carries
the coupling to fast dynamics, it will source all the interesting
emergent effects (i.e., coupling renormalizations) for the slow
modes, and we thus focus on this for most of this Appendix.

1. Averages over fast dynamics

Before getting into the physical implications of the different
terms in the expansion, let us discuss how to go about calcu-
lating the averages (O),x(). Indeed, as defined in Eq. (A2),
these averages are just shorthand for path integrals over the
full fast dynamics in the presence of arbitrarily time-varying
slow variables x,(¢) and hence at this point merely formal,
but not very informative, quantities. On the other hand, intu-
itively we know that at the lowest order in € these averages
should reduce to averages over the y steady states under
fixed x: pss(y]|x). To derive this result as well as the first
correction in €, we need to once again develop a systematic
expansion. Besides O (see below), the only dependence on
the trajectory x(¢) in Eq. (A2) comes in through the force
fi (and similarly in the partition function), which by time-
scale-separation assumption we know will vary only slightly
on the fast time scale tp: fi(x(2),y,t) = fi(x(ty),y,t) +
(t — 1) a(t0) 3, f: (x (1), v,1) + O[€2]. Plugging this expan-
sion into Eq. (A2) and Taylor expanding both numerator and
denominator (normalization Z,) in €, we get

(O)yixy = (O yix(r) + <O, /dl i3 (t — to)

+ 0[€*]

ylx(to)

X Xq(t0) aaf,»(x(to),y,l)>

=(O)yxwp) + Xalto) / dt (t — 1)

% (0,1 5 3a fil:) yix) + OL€2]. (A4)
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The averages here (O),x,) are at a fixed x, and thus are
precisely the averages over y steady states pgs[y|x(fp)]. Note
also that at this order the possible x dependence of O is
accounted for at the slow time scale and does not give any
additional contributions here. At the next order in €, however,
the variations of O and f; on the relaxation time scale 7 begin
to interact, giving new contributions. Generally, Feynman
diagrams are the only practical way to go to higher orders as
the number of correction terms potentially becomes large. We
do not employ diagrams here because they are not practical for
the general context we are working with—but they do become
very useful in specific examples.

Applying the result in Eq. (A4) to our cumulant expansion
(A3), we get

(Fa(x,y.)) yixe) = (Falt) yifix x0) — Xb(f)fdl‘/(l‘ — 1)

x (i 5 O files Fale)yifix xa) + OL€].
(AS)

Remembering the form of Eq. (2), we recognize the correction
term here as a correction (or renormalization) of the damping
coefficient of the original slow dynamics. Crucially, this
correction comes in at the same order in € as the O[€2] term in
Eq. (A3), and must thus be kept in our expansion. By the same
token, the equivalent correction of the (F, (1), Fy(t'))yiix x(r)
term only comes in at a higher order and is thus ignored at
this stage. Nonetheless, it is interesting to note that including
higher-order corrections would also introduce an inertialike
term into our slow dynamics (mass renormalization, o), as
discussed in [9], as well as a higher derivative at progressively
higher orders.

2. Noise correction

The key thing to note from the above results is that at
O[€?] the only things we need to compute the slow dynamics
are the one- and two-point functions of the various variables
in the y steady states. Thus we need neither the full form of the
steady-state distribution of the fast variables nor the deviations
from this steady state under dynamic x(¢). This result should
be thought of as (and really is a form of) the central limit
theorem.

Now that we have a sense of what the different terms
in the cumulant expansion (A3) mean mathematically, we
can turn to their physical implications. We already men-
tioned the correction of the x-damping coefficient that we
get by resolving the (F,)y|c; term in terms of y steady
states. The only other contribution at this same order is the
second term in the expansion (A3). This will contribute an
additional noise term to the resulting slow dynamics, as it
will enter the path integral along with T, correcting the %>
operator. However, this noise term would only be white if
(Fa(1),Fp(t"))y ~ 8(t —t'), which in general need not be the
case, hence making the noise correction colored. Intuitively,
we see that because of time-scale separation y fluctuations will
decorrelate much faster (§¢ ~ O[1]) than the slow time scale
we are sampling by observing x (ts ~ O[1/€]). This makes
the short-range correlations of the noise correction unimportant

for the slow evolution, allowing us to approximate it by white
noise.

More formally, this situation is precisely identical to having
a UV cutoffin a field theory given by, e.g., finite lattice spacing.
Similarly, taking the white-noise approximation here corre-
sponds to sending such a cutoff to infinity, which is justified
as long as all our observables are confined to energy scales
(or here time scales) far lower than said cutoff. Explicitly, the
approximation we are making (which formally comes from
the assumption of renormalization-group universality in the
fast dynamics) is

/dl/df/ Ea(0) Xp(t") (Fa(x,3,1), Fp(x,y,1")) y1x(r)

“/dl )Nca(t)ib(t)/dt/<Fa(x»y’t)sFb(xvy»t/)>)v\ﬁx2~
(A6)

One reason why we must be careful in taking this white-noise
limit is that the precise limiting procedure will determine
whether the correct interpretation of the resulting multiplica-
tive white noise is Itd or Stratonovich, resulting in observable
consequences on the slow time scale. This question is related
to the choice of %, i.e., where to evaluate the y steady state
in the right-hand side of Eq. (A6) as well as, independently,
where to evaluate the explicit dependence F,(x). To avoid
very messy notation, we assume away the latter point by
restricting the form of F,(x,y,t) = F,(x) 4+ F,(y,t), which
then makes the above expression (A6) depend on x only via
the steady state py(y|%) (F drops out altogether as it only
contributes to the disconnected cumulant): define §7(x) =
%fdﬂ(Fa(y,t),Fb(y,t/))y‘ﬁx,Q. Again, this restriction is not
necessary and is taken here for convenience.

Thus, we see that if we discretely change X two separate
time scales (both fast, ~O[1]) control the relaxation of § T (X):
T, on which pg(y|%) globally relaxes to its new form (i.e.,
the relaxation time of one-point functions), and 7, on
which the two-point function (F,(y,t), F5(y.t"))yjix 2 decays.
If T < TF», then we have the usual result that the white-noise
limit of multiplicative colored noise should be interpreted as
Stratonovich (see Chap. 6.5 in [12]). On the other hand, for
Tr > Ty we see that pg(y|%) remains essentially fixed while
the noise correlations decay, and so the noise amplitude must
be evaluated according to the value of x at the beginning of the
T, interval, i.e., in nonanticipating Itd convention. Note that
while both limits are possible the latter is typical, especially for
many-body systems, since the relaxation of pg(y|%) proceeds
via relaxations of two-point functions throughout the system.

Finally, note that the same It6 vs Stratonovich ambiguity
occurs in the expression for the damping correction (AS) and
is resolved in exactly the same way as here.

3. Compiling results

Finally, we are in a position to put everything together.
We use our final expressions for damping (A5) (8y.(x) =
fdt/(t — ") (i % 0 filr, Fuli)yifix x(»)), and noise correction
(A6)(ST (%) = gfdt/(Fa(y,t),Fb(y,t’))y‘ﬁxf)inthecumulant
expansion (A3), and plug that into the full expression for the
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K = 0 (diffusion) K <K,

K >K,
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FIG. 5. Different realizations of kicked-rotor trajectories starting from the same initial conditions in the regular and chaotic driven phases,
as well as the freely diffusing undriven case (for reference). While the steady state in the chaotic phase looks like large random fluctuations about
a constant mean (thus giving a high T.¢), in the regular phase, the drive serves to synchronize all trajectories, thus yielding small fluctuations

about an oscillating mean in the steady state (and so a low T.g).
probability distribution over slow paths 2 to get

Plx(1)]

where

1

Z—/D)”c exp|:—/dt {ifca)‘ca +€ T)Zaz — i €X((Fa)y — 8Vap * Xp) + X0 8T Xp + 0[63]}i|
1

7z / Dx exp|:— / dt {i Xa(Var(x,1) x Xp — € (Fa)y) + € X * Dap(x,1) x Xpp + 0[63]}}

Vap(6s1) = S0 + € / dt’ (6 = )0 51 0 files Faliyfin o

€
Dap(x,t) =T 84,5 + E/dt/<Fa|t’yFb|t>y\ﬁXX'

The resulting path integral can then be used to extract the
corresponding Langevin equation for the slow dynamics:

Vab(x) * -).Cb = 6(F'a>y|ﬁxx + V2€D(x)ab * %‘b’

b [(It6]  1tp K 7F
" |o [Strat] tFy > TF

(1td)

where &, is the usual white noise: (£,(¢),£,(t")) = 845 8(t — 1),
and the square root of the matrix D, is defined by the condition

vD.JD "~ D. Finally the notation * is used to denote the
Itd or Stratonovich dot according to the conditions described
in the last section: T and tp, are the decay time scales for the
one- and two-point functions of the fast dynamics, respectively.
This is then the main analytical result of our paper, shown in
Eq. (3) for the more common Itd case.

4. Equilibrium: Sanity check

Now that we have the effective slow dynamics for general
stochastic systems with time-scale separation, we want to
check that in the equilibrium case we recover the expected
fluctuation-dissipation relation: D,,(x) = T y,5(x). Equilib-
rium in our original system will correspond to lack of any
driving forces: thus all the forces must come from gradients
of a single potential landscape U(x,,y;): F, = —9,U and
fi = —0;U. Focusing on the expression for y,; above we note
that in this case 0y, f; = —0,0; U = 0; Fj:

Vap(6s1) = 80+ € / dt’ (t = )i 5 3 Folos Fale) e -

(

We then note that the response field for the force Fj, is given by
F, = ¥; 0; F, when x is fixed, as it is here. Finally in MSR we
know that (i F},,F,) gives the linear response function for F,
and so by the fluctuation-dissipation theorem (i Fj|,,F,|,) =
3 (Fply, Fyl,)/ T for t’ < t (zero otherwise). Using this in the
above expression and integrating by parts,

€ 7
Yap(X,1) = 8 p + ) /dt (Fb|t”Fa|t)y\ﬁxx
T
= Dab/T'

(The factor of 2 dividing the integral comes from the fact that
while the correlator is time symmetric the response function is
causal.) We thus recover the desired result.

5. Fast dynamics and T (x)

The last question we must address is this: why does the
effective temperature T.(x) found above in general correlate
with how chaotic the fast variables are? In the case where our
fast dynamics undergo a phase transition, we clearly see that
under integrable dynamics (zero Lyapunov exponents) the con-
nected correlator (F,(y,t)Fy(y,t")) — (F.(y,t)){(Fp(y,t')) =0
vanishes (or is proportional to the small thermal bath tem-
perature). By the same token, in the chaotic phase (Lyapunov
exponents comparable to inverse characteristic time), the av-
erages (F,(y,t)) are insensitive to the amplitude of the chaotic
fluctuations (by symmetry), and thus we get a high T¢¢. This is
the case in the toy model we studied—as illustrated in Fig. 5.
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The issue is more subtle, however, when we are not
explicitly considering a phase transition in the fast behavior.
For example, consider a system that can have chaotic behavior,
as well as regular self-oscillations, but with slow random phase
drift. This way, the steady-state probability in both cases is
distributed throughout the accessible configuration space, with
the only distinguishing feature being the correlation decay time
Tpo—scaling inversely with the Lyapunov exponents Apyap.
It turns out that in this case, also, Ter ¢ 1/TFp O Apyap 1S
higher for more chaotic systems—as long as Tpy > Tchar (the
characteristic return time of fast dynamics).

We can motivate this claim by first realizing that if the
fast steady state is confined to a finite configuration-space
region then it must have some cyclicity with a finite char-
acteristic return time Tg,. This means that the correlator
(Fy(y,t), Fy(y,t)), besides exponentially decaying, will also
fluctuate (not necessarily periodically), with persistence time
< Tehar (depending on the details of fast to slow coupling).
Thus, we can Fourier transform the force correlator as
(Fa(y,1), Fp(y,t)) ~ e~/ ftj; dw f(w)cos(t w), where the
infrared cutoff wy = 27 /T, 1S given by the fact that fast
dynamics have no time scales longer than 7., Integrating
this correlator to recover the effective temperature, we see that
Tetr(x) f;;) do f(w) (1)2/'[[‘2 aslong as Ty > Tcpar, as stated
above. Of course, all this assumes that the amplitude of the
force fluctuations stays roughly the same as their correlation
time changes—but the systems we are interested in are those
that exhibit a qualitative change in their Lyapunov exponents,
thus making this the dominant effect.

APPENDIX B: KICKER ROTOR ON A CART

In this Appendix we present the analytical calculations
required to make the predictions for the kicked rotor on a cart
toy model described in the main text. For convenience, we
reproduce the dimensionless equations of motion here (this
time including the direct effect of kicks on the cart in F):

6= v ,
——
=fo
v=—K(x)sinf §(t —n) —x cos —bv+~2TDh§&,
=f
cx = sinf [v2+ K(x) cosO 8(t —n) — i sin6]
=F,
— 3, Ux)+ V2T cé&,. (B1)

The units were chosen such that rotor arm length, mass, and
kicking period are all equal to 1. The part in black gives simple
kicked rotor dynamics, the red part weakly (for b < 1) couples
it to a thermal bath at temperature 7', and the blue part gives the
coupling and dynamics of the cart. We assume throughout that
the bath temperature here is very low, T ~ 0, to highlight the
effect of the chaotic fluctuations of the kicked rotor. Strong
time-scale separation, which here is achieved by assuming
¢ > 1, implies that terms o X will be small. To see when
precisely we can be justified in dropping these, we estimate
their magnitude for the two regimes: the forced regime (“‘during
the kick™) and the free rotation. For the forced regime, since

8(t) is a distribution, we can only talk about the integrals

+n

Svg = lin%) dt v = —K sinf — cos6 [)’C]J_rz
n—0J_,

K
=— K sinf — — sin’6 cosO[K sinf — 2 v],
c

+n

Sxg =lim dt x
n—0 —n

K
=K sinf cosf — — sin*6[K sin6 — 2 v].
C

For the free rotation, we can simply differentiate the unforced
part of the lastline in Eq. (B1) with respect to time, which gives
cX¥ =v3coshto leading order. Thus, to ignore the X terms, we
need K v/c <« K for the driven regime, and v?/c <« bv for
free rotation. While the former condition is easy to satisfy fora
large c, the latter one competes with our additional assumption
that b < 1 and canbe difficult to satisfy numerically, especially
as velocities v can sometimes get very large—thus we will keep
the X sin 6 term as an additional perturbative correction to the
free dynamics.

1. Chaotic kicked rotor steady state

To proceed in evaluating the different terms in the expres-
sion for the effective slow dynamics [Eq. (3) in the main text],
we need to find the steady-state distribution over (8,v) for
a fixed cart position x. As mentioned in the main text, for
strong driving K 2 5, the kicked rotor dynamics are fully
chaotic, and thus the steady state thermalizes all input energy.
This immediately implies that the probability distribution is
of the form pg(6,v |x) exp[—#ix)]—uniform over 6 and
Gaussian over v, and parametrized by a single number Tx(x)—
which gives the effective rotor temperature. The symmetries
of this distribution guarantee that (Fy)s = 0.

To find this temperature, we can use the argument from
Eq. (5) of the main text, which tells us that this steady state
will have a dissipation rate

50 = /dtvo(bv —2Tob &)
_ b<(v2) —J2Tyb <"’+5‘T+”' s,>)5t

where for underdamped, forced Langevin dynamics we have
in general v, 5 = v, + St[—bv, + F(x,v,t) +/2Tob &].
Thus, while v, is completely uncorrelated with &;: (v, &) = 0,
V;ys¢ 1s correlated only via the thermal noise term, (v,14 &) =
/2 Ty b, and is independent of any interaction or driving forces
F(x,v,t). This gives, for mass=1,

90

P=r

= b(Terr — To) (B2)

(note that if v were a vector in d dimensions we would
multiply this expression by d). With this, and neglecting the
bath temperature Tj, we can balance the work flow in and heat
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flow out per kick, to get
0=6W —-460

+n
=<1in%/ dtvo(—K sin9)> — b (1)
‘r]—)

—n ss

K
=<<vpre - sine)(—K sin 9)> —bTyg

= Tr=73

where v is the prekick velocity, which is uncorrelated with
0. Since this gives the variance of typical rotor velocities,
we can use it to simplify the time-scale-separation condition
derived above v?/c <« bv downto K /¢ <« b>—which is quite
difficult to satisfy in addition to b < 1. Thus, while this result
is correct, it turns out that O[1/c] correction coming from the
cart coupling term X cos@ is very important here. Note that
Eq. (3) in the main text tells us to include x dependence of the
steady state in correcting the effective damping coefficient y;
however, as this term depends only on X and not x itself, the
steady state does not gain any x dependence from it, but rather
an x-uniform correction which must be included directly. In
this case, as the dynamics are still chaotic and the distribution
is thermal, while the work extracted from the drive §W is
not affected (since any work done on the overdamped cart is
immediately dissipated and so can be ignored), so the coupling
to the cart simply adds another channel for heat dissipation:

1
50 :b(v2)35+</ dtcfc2>
0 SS

1 1
:bTR+—/ dt(Feli Feli)ss
¢ Jo
1 ! 2 . 2
=b T + — dt {(v* sin0)%)g
clJo
+ (2K v* sin® @ cos@l,zo)ss]

13

- be /]+3K2 | K?
= — - < —
73 2b%¢ 4b
where we assumed that v and 6 are uncorrelated during
most of the time 0 <t < 1, as justified below. This cor-
rection significantly lowers the typical velocities and is
well reproduced in the results of the simulations for large
but practical values of ¢ (e.g., for b = 1072, ¢c=10" K =
10= Tr &~ 375 < K2/4b =2500 or for b=10"", ¢ =5 x
104, K =10 = Tk ~ 230 < K?/4b = 250).

2. Cart damping and noise correction

With the above understanding of the steady state, we now
proceed to compute the two-time correlations functions needed
to get the corrections on the slow dynamics given by Eq. (3)
of the main text. We begin by noting their general structure
here: each kick introduces correlations between 6 and v, after

which, while v remains approximately constant until the next
kick (for b <« 1), 0 spins around and correlations decay. The
typical decay time scale in this system can be estimated by
looking at the decay:

(sin 6(0) sin B(t))ss = (sin H(0) sin (B(0) + v 1))

I .
- — —1 O[t't
572 + O[t°1]

where we assume 6 and v to be uncorrelated over the time
window. This gives decay t ~ 1/4/Tg, which for typical
values of parameters (e.g., for b = 107, c=5x 10", K =
10) could be around 1/20. The key here is that in most cases
the decay time is much shorter than 1 (the kicking period).
Figure 5 shows numerical results for (F,(¢), Fy(¢')) correlation
in the chaotic phase to give a sense of how these quantities
typically look for the given system. Since the 6-v correlations
are only generated by kicks, this implies that most of the time
they are uncorrelated—as we have assumed a few times above.
Moreover, this means that our noise and damping corrections
should always be interpreted as It6 for this system, as discussed
in Appendix A 2.

Using this result we can immediately see that the damp-
ing correction vanishes [see Eq. (B1) for definitions of

feafl)]:
1 ’ NI (D ~
8]/ ZZ/dt (t_t)<l (9 8xf9 +vava)|t”Fx|t>(9,v)\ﬁxx
1 ’ ’ <~ ) :
=—/dt (t—=1t){—ivK'(x) sinf
Cc

X Y8 = e Fel)@.vyix x
1 .~ .
== Dt =m(=i DK () $in 6L, Fele) o vy =0

as the correlator vanishes by the symmetries of the thermal
steady state.

With that, to find the effective temperature experienced
by the cart, we need only compute the noise correction,
as Ter = 5 [ dt'(Filv, Fxli) .0 »- From Eq. (B1), we get
F, = v?sin6 + K(x) sin® cos6 8(r — n) — ¥ sin® 0 = (cen-
tripetal F,) + (direct kick coupling Fy) — (inertia F;). Unlike in
fv, where the term b v was comparable in magnitude to X cos 6,
here F, and F; are both > O[1], and thus the inertia F; is
distinctly subleading and can be dropped. We now proceed to
individually compute the (F,, F.), (Fy, Fy), (F., Fy) = (Fy, Fy)
contributions.

For the (F,, F.) term, we see that far from the kicks, where
0 and v are uncorrelated, we get

/dt’ (v?sin(@ + 1’ v), v sinB) 4. yixx = O,

which can be evaluated analytically in MATHEMATICA. The
leading correction to this quantity then comes from the 0-v
correlations generated by the kicks. To capture these, we
write all velocities and angles in terms of their values before
the last kick—at a time when they were guaranteed to be
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uncorrelated. Thus

v(t) = {

Upre
Vpre — K sin O’

Opre + 1 Upre t<0
Opre + 1 (Vpre — K SiN6pre) ¢ > 07

1/2
/1/2

and 0(t) = {

J

( 01/2

K?/8 + Tg/2
Ty
TR/)2

=K?/8

dt [;°dt'(v — K sin6)* sin[0 + t(v — K sin6)] sin[6 + ¢'(v — K sin 6)])
+2 ffl P dt Jo o dt' v? sin(@ + 1 v) (v — K sin0)*sin[0 + (v — K sin6)])
H [0y pdt [0 dr’ v* sin@ + 1 v) sin@ +1' v))

Using these expressions, we can thus evaluate
[[dtdt' (F.|, ,F.|s) piecewise (where a second integral
must be included since the time-translation invariance
is now broken). Dropping the subscript pre, we
have

o0
dt / dt'(v(t)* sin0(t), v(t')* sin (")) o.v)x x
—0oQ

(0,v)|fix x
(0,v)|fix x

(0,v)|fix x

where all integrals can be evaluated analytically (in MATHEMATICA) if we take the time integrals first, and then average over the

(uncorrelated) € and v. Similarly for the other terms,

00 12
/dt/(Fk|t i) ov)fixx = </ dt//
—o0 —12

dr Y g sin 20(1) 8(t — n) g sin20(¢) 8(t' — m)>

n,m

(0,v)|fix x

K2
=> 7 (5in 20(0) in 20(m)) o, uyjix x = K28,

m

dt,<Fk|t aFc|t’>(0,v)\ﬁxx

N

o]

Adding up all four terms, we thus get Ty =
2% [ dt'(Fely,Feli)@wiix x = 0. Here we clearly see that
the cancellation comes up due to the anticorrelations between
the centripetal force and the kick coupling. In this particular
case, the cancellation is somewhat accidental, and is a
consequence of the simplicity of the system—the functional
form of couplings is quite restricted. In general, we expect
such cancellations to be unlikely in higher-dimensional
systems. As discussed in the main text, to make the system
interesting and get a finite T, we can simply eliminate the
direct kick-cart coupling Fj from the dynamics altogether,
with the physical interpretation of “pinning” down the cart
at the instant of the kick. This leaves only F,, thus giving
T.it = K?/16¢, as desired.

Note also that the rotor temperature Tk calculated above
ends up dropping out and does not affect any of the time-
integrated correlators, but only the particulars of their time
dependence as (Fy(t), Fx(t')),v)ix x- Thus the only really key
role it played for us was to show that these correlators decay
faster than kicking period.

3. Ordered KR steady state

On the other hand for weak driving K < 5, the kicked rotor
undergoes dynamic regularization, and in steady state is found
in one of the integrable attractors in its phase space. Thus, none

© K
/ dt’<3 sin260 (v — K sin6)? sin[0 + ¢'(v — K sin 9)]>
0

(0,v)|fix x

—K?*/8 =/ dt'(Fels , Filv)o,v)fix x-

(

of the above arguments apply here. Instead, the main regular
regions correspond to the rotor completing n full revolutions
per kick, withn = ...,—2,—1,0,1,2, .. .. As it does, there are
no stochastic fluctuations, other than those from the thermal
bath, and as the steady state lacks the symmetries of the thermal
state (Fy)ss # 0 except at n = 0. In fact, depending on the
attractor that the rotor falls into, it will exert a persistent force
on the cart, causing constant directed drift. We can easily
estimate this drift force for the nth attractor as (here we again
assume that b ~ O[1/c] < 1, and let v,, = 27n)

3
n

o[b],
2C+ [07]

1
(Fy)ss = f dt Uz(l) sinf(t) = bv, +
0

1
where v(t) =2nn —bvt — —

t
/ dt v’ cos*(v 1) + O[b?]
¢ Jo

and 9(t):f dt v(t)
0

where v(#) dynamics are found by directly integrating Eq. (B1)
to first order in small parameters. However, as it is impossible
to predict which of the attractors will be chosen, we cannot a
priori tell the direction or speed that the cart will be moving
at—though the options are restricted to the above small discrete
set of possibilities parametrized by n.
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