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A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational
modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against
numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and
for arbitrary values of the lattice coordination number Z, are shown and discussed. As a function of these
two parameters (and their ratio Z/d), the most studied models in random matrix theory (Erdos-Renyi graphs,
effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably,
the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is
reproduced exactly in the limit of infinite size of the blocks, or d → ∞, which clarifies the physical meaning of
space dimension in these models. We feel that the approximate results for d = 3 provided by our method may
have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to
wave localization, disordered conductors, random resistor networks, and random walks.
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I. INTRODUCTION

The eigenvalue spectrum of sparse random matrices is a fas-
cinating subject with widespread applications in physics, from
the energy levels of nuclei, to random resistor networks, ran-
dom walks, the electronic density of states of disordered con-
ductors, and many other topics [1]. It was investigated for sev-
eral decades, from pioneering works [2] to modern times [3].

In particular, random matrix theory has been applied exten-
sively in recent years to the problem of the vibrational spectrum
of glasses, where structural disorder leads to a number of
puzzling effects in the vibrational density of states (DOS),
such as the excess of soft low-energy modes (boson peak) with
respect to Debye’s ω2 law [4–8]. This anomaly in the spectrum
is related to well-known anomalies in the thermal properties
at low temperatures [9]. This remains a famously unsolved
problem because its mathematical description is plagued by
the impossibility of analytically solving for the eigenvalue
spectrum of the Hessian matrix of a disordered solid.

Recently, replica-symmetry breaking and allied techniques
have been applied to the problem of vibrational eigenmodes of
glasses, and produced results which recover the well-known
Marchenko-Pastur (MP) distribution of eigenvalues of
random Laplacian matrices [5]. The big question is about
the applicability of these results: both MP and replica are
generally thought to be valid for “high-dimensional” systems,
but what this means, in practice or in quantitative terms,
has remained unanswered. This is clearly a central point of
paramount relevance in the current debate on the theoretical
description of glasses.
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In this work the correlations between blocks, existing in
real disordered solids (due to excluded-volume, finite range
of the bonds, and short-range order), are neglected and we
study sparse block matrices where the blocks are independent
identically distributed d-dimensional random matrices. This
allows us to clarify that MP and replica results are exactly
valid in the case of a random block Laplacian matrix where
the dimension of the blocks is infinite. Furthermore, we show
that while the lowest eigenvalue of the support is weakly
dependent on the space dimension [which ensures that the
∼(Z − 2d) scaling of the boson peak frequency in jammed
solids and some models of glasses is rather well captured
by high-dimensional models [5,10]], conversely the shape of
the eigenvalue distribution changes significantly with d and
therefore high-dimensional methods such as MP and replica
may not provide an accurate modeling of the vibrational DOS
of disordered solids.

II. MODEL

In all models or random spring networks, the elastic
energy is a quadratic function of the displacements of the
particles from their instantaneous “frozen” positions. The
stiffness matrix or Hessian matrix W is a Laplacian random
symmetric matrix where each row is comprised of a small
and random number of nonzero coefficients. The off-diagonal
entries Wi,j , with i < j , are identical independent random
variables, whereas the diagonal entries Wi,i = −∑

j �=i Wi,j .
The latter requirement is dictated by enforcing mechanical
equilibrium on every atom i in the lattice.

The most typical model is the study of the spectrum of the
adjacency matrix or the Laplacian matrix of a Erdos-Renyi
graph with N vertices in the limit of large order of the matrices
(the large N limit).
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The only parameter in the model is the probability p/N of a
link in the random graph to be present, whereas the dimension
d of the space Rd of the amorphous material or the random
spring model is absent.

In this work, we consider a block random matrix model
which seems the simplest generalization of the above models,
which retains a couple of physically relevant parameters.

We consider a real symmetric matrix M of dimension Nd ×
Nd, where each row or column has N random block entries,
each being a d × d matrix.

Every d × d off-diagonal block has probability 1 − Z/N

of being a null matrix and a probability Z/N of
being a rank one matrix, Xi,j = Xj,i = (Xi,j )t = n̂ij n̂

t
ij ,

where n̂ij is a d-dimensional random vector of unit length,
chosen with uniform probability on the d-dimensional sphere.
Furthermore, n̂ij n̂

t
ij is the usual matrix (or dyadic) product of

a column vector times a row vector, which gives a rank-one
matrix.

In the formulation of the stiffness matrix W , the unit vector
n̂ij provides the direction between vertex i and vertex j (in a
disordered solid or elastic network, between two atoms i and
j ). For more details on the Hessian matrix of disordered solids,
see Refs. [11,12].

We study two prototypes of such block random matrices
called the adjacency block matrix A and the Laplacian block
matrix L,

A =

⎛
⎜⎝

0 X1,2 X1,3 . . . X1,N

X2,1 0 X2,3 . . . X2,N

. . . . . . . . . . . . . . .

XN,1 XN,2 XN,3 . . . 0

⎞
⎟⎠, (1)

L =

⎛
⎜⎜⎝

∑
j �=1 X1,j −X1,2 −X1,3 . . . −X1,N

−X2,1
∑

j �=2 X2,j −X2,3 . . . −X2,N

. . . . . . . . . . . . . . .

−XN,1 −XN,2 −XN,3 . . .
∑

j �=N XN,j

⎞
⎟⎟⎠. (2)

In both the above matrices, the set of Xi,j , i < j is a set
of N (N − 1)/2 independent identically distributed random
matrices and each Xi,j is a rank-one matrix and a projector.

The study of the spectral density of the matrices A, L, in the
limit N → ∞, with Z fixed and d fixed, is more difficult than
the corresponding study with d = 1, the Erdos-Renyi graph,
where all moments of both spectral functions are known [13],
yet the spectral distributions are not known.

III. EVALUATION OF MOMENTS

Any symmetric matrix M of order N corresponds to a
complete graph with N vertices where the nonoriented link
(i,j ) has the weight Mij and (Mk)ii is evaluated as the sum
of the contributions associated to all paths of k steps on the
graph from vertex i to itself. We used this familiar technique
to evaluate the limiting moments. However, in the present case,
the contribution of each path is the product of matrices and the
evaluation of moments of high order is laborious. We evaluated
the first five limiting moments,

μk = lim
N→∞

1

N d
〈Tr Ak〉, μ0 = 1, μ2k+1 = 0,

νk = lim
N→∞

1

N d
〈Tr Lk〉, ν0 = 1,

which produce the following results:

μ2 = Z

d
, μ4 = Z

d
+ 2

(
Z

d

)2

,

μ6 = Z

d
+ 6

(
Z

d

)2

+ 5

(
Z

d

)3

,

μ8 = Z

d
+

(
Z

d

)2(
12+2

3

d + 2

)
+28

(
Z

d

)3

+ 14

(
Z

d

)4

,

μ10 = Z

d
+

(
Z

d

)2(
20 + 10

3

d + 2

)

+
(

Z

d

)3(
90 + 20

3

d + 2

)
+ 120

(
Z

d

)4

+ 42

(
Z

d

)5

,

(3)

ν1 = Z

d
, ν2 = 2

Z

d
+

(
Z

d

)2

,

ν3 = 4
Z

d
+ 6

(
Z

d

)2

+
(

Z

d

)3

,

ν4 = 8
Z

d
+

(
Z

d

)2(
24 + 3

d + 2

)
+ 12

(
Z

d

)3

+
(

Z

d

)4

,

ν5 = 16
Z

d
+

(
Z

d

)2(
80 + 10

3

d + 2

)

+
(

Z

d

)3(
80 + 5

3

d + 2

)
+ 20

(
Z

d

)4

+
(

Z

d

)5

. (4)

The paper by Bauer and Golinelli [13] studied the position and
the height of the δ peaks in the spectral distributions of the
Erdos-Renyi model. The position of the peaks is independent
on the average connectivity Z, whereas the height of the peaks
decreases with increasing Z. These authors and the other
authors in Ref. [13] determined all the moments of the spectral
distributions. The moments are polynomial in Z and give no
hint for the δ peaks nor for the percolation transition. Our model
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FIG. 1. Left side shows the relation of the adjacency block matrix with three simpler models in different limiting cases. The right side shows
the parallel relations of the Laplacian block matrix.

is a generalization to arbitrary dimension of the Erdos-Renyi
model. The moments we evaluated give no hint of the δ peaks
nor of the percolation transition, just as in the d = 1 case.

IV. RESULTS AND DISCUSSION

The above evaluations are the main analytic task we performed.
It involves identifying several nonequivalent classes of domi-
nant paths, made of noncommuting sequences of blocks Xij ,
which are dominant in the N → ∞ limit, to evaluate their
cardinality, to average over the random unit vectors in the Rd

space, and to average over the probability of a block to be
nonzero.

Equations (3) and (4) are displayed in a way to point out
that the lowest moments are polynomials in the variable Z/d,
whereas moments of higher order, starting with μ8 and ν4, have
additional terms involving just the space dimension d.

We proceed to compare these moments, with the moments
of three limiting cases, as it is schematically indicated in Fig. 1.
Some relations are obvious but others are new and valuable.

First, in the d → 1 limit our model reduces to the Erdos-
Renyi graph. The moments of the spectral distributions of the
adjacency matrix and Laplacian matrix were determined by
recurrence relations at every order [13]. Those moments are
reproduced by setting d = 1 in Eqs. (3) and (4) and this is
merely a consistency check of our evaluations.

A second limiting case is shown in Fig. 1: the average
connectivity Z is allowed to increase as the order N of the
matrices increases: Z/d → ∞ with d fixed. In this limit, the
number of nonzero blocks in each row of the matrices increases
in the N → ∞ limit, still keeping Z/N → 0. It is sometimes
referred to as the dilute matrix limit. Many investigations found
that in this limit the spectral distribution of the matrix is the
same as a symmetric matrix with independent entries.

Let us consider the Wigner semicircle distribution and its
well known moments (Catalan coefficients):

ρ(x) =
√

4(Z/d) − x2

2π (Z/d)
, −2

√
Z/d � x � 2

√
Z/d,

μ2k = (2k)!

k!(k + 1)!

(
Z

d

)k

. (5)

These moments reproduce the highest powers of the polyno-
mials of Eq. (3). Now let us consider the shifted semicircle
distribution and the first five moments

ρ(x) = 1

4π (Z/d)

√
8(Z/d) − (x − Z/d)2,

Z/d − 2
√

2(Z/d) � x � Z/d + 2
√

2(Z/d),

ν1 = Z

d
, ν2 = 2

Z

d
+

(
Z

d

)2

,

ν3 = 6

(
Z

d

)2

+
(

Z

d

)3

,

ν4 = 8

(
Z

d

)2

+ 12

(
Z

d

)3

+
(

Z

d

)4

,

ν5 = 40

(
Z

d

)3

+ 20

(
Z

d

)4

+
(

Z

d

)5

. (6)

These moments reproduce the leading and the first nonleading
powers of the polynomials of Eq. (4).

New and more relevant relations are related to the third
limiting case: the limit d → ∞, for Z/d fixed. Semerjian
and Cugliandolo [14] evaluated the effective medium (EM)
approximation for the spectral distribution of the ensemble of
N × N real symmetric matrices where the diagonal elements
vanish and the off-diagonal entry Ji,j , with i < j , is zero with
probability 1 − p/N and it is one with probability p/N :

ρ(x) =
√

3

2π

[
−

(
p − 1

3x

)2

−p + 2

6x
+

√
(λ2−x2)(x2+α2)

27x4

]1/3

−
√

3

2π

[
−

(
p − 1

3x

)2

− p + 2

6x
−

√
(λ2 − x2)(x2 + α2)

27x4

]1/3

where −λ � x � λ, and λ, α are functions of p.
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FIG. 2. (a)–(c) Plots of the eigenvalue spectra of the adjacency matrix obtained from our model systems for d = 1,2,3,4,5,10,20 and
corresponding N = 15000,7500,5000,4000,3000,2000,1000. They approach the spectrum from effective medium theory, which appears as
the infinite dimensional limit. (d)–(f) The spectra of the Laplace matrix for the same systems. As one can see they approach the Marchenko-Pastur
distribution for infinite dimension.

We evaluated the moments of this spectral function from
the Taylor expansion of the corresponding resolvent. One then
obtains the moments in the table in Eq. (3) where the terms

3
d+2 are absent and p = Z/d. That is, the limit d → ∞ with
Z/d fixed.

Finally, the same limit, d → ∞, with Z/d fixed, performed
on the table in Eq. (4) leads to
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d
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Z
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ν5 = 16
Z

d
+ 80

(
Z

d

)2
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Z
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(
Z

d
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+
(

Z

d
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(7)

The moments
∫ b

a
dx xkρMP (x) of the Marchenko-Pastur

distribution

ρMP (x) =
√

(b − x)(x − a)

4π x
, 0 � a � x � b,

with the following definition of parameters:

a = (
√

p −
√

2)2, b = (
√

p +
√

2)2,

where p = Z/d reproduces the above Eq. (7). The relations
we observe from the evaluated moments in the limit d → ∞
with the ratio Z/d fixed are new and possibly the most
intriguing analytic result of this article. They agree with the
usual understanding that the symmetric replica approach is
correct in a space with large dimensionality. Certainly it would

be valuable to prove that in this limit the random block matrix
reproduces the results of the symmetric replica approach.

It is important to support the analytic evaluations of few
moments with the full numerical evaluation of the spectral
distributions. Large Nd × Nd block-adjacency matrices and
block-Laplacian matrices, with N = 1000–15000 and d =
1,2,3,4,5,10,20, were generated according to the probability
distribution of our model and the eigenvalues were numerically
evaluated. The obtained spectral distributions are in Fig. 2.
They support the conjectured limits indicated in Fig. 1 and the
emerging unifying picture.

The plots in the upper row of Fig. 2 describe the spectral
distribution of the adjacency matrix. The Dirac δ peaks well
studied in the d = 1 case are less prominent with increasing
values of the space dimension and are absent in the effective
medium approximation, which is reproduced by the d → ∞
limit of the present block model.

The plots in the lower row of Fig. 2 describe the spectral dis-
tribution of the Laplacian matrix, which has a greater physical
interest. As the d parameter varies from 1 to ∞, the latter
reproducing the Marchenko-Pastur distribution, the general
shape of the distribution does not change in a qualitative way.
Still the quantitative difference, in the region of eigenvalues
close to the peak of the distribution, is a sizable effect. For
d = 3 this difference may be confronted with experimental
findings.

V. CONCLUSIONS

In conclusion, the analytic evaluations of a few limiting
moments and the numerical simulations support the conjecture
of the relations schematically indicated in Fig. 1 among
different random matrix models. Since in the traditional
models of disordered systems through random matrices and
replica approach, the space dimension does not enter in the
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formulation of the model, the argument that the effective
medium approximation (for the adjacency matrix) and the
Marchenko-Pastur distribution (for the Laplacian matrix) are
valid for infinite space dimension is rather indirect and not well
defined. The proposed relations and the systematic numerical
results presented in this work substantiate these arguments by
clarifying the role of space dimension for the various random
matrix models and suggest new ways to investigate disordered
systems in finite space dimension.

With respect to the theory of random matrices, the
present model explores ensembles of block random ma-
trices with two different probabilities: the probability of
independent identically distributed blocks to occur and
the probability of the entries in the blocks. This struc-
ture is very promising and of great relevance for physics
applications.

The conjectured relations schematically indicated in Fig. 1
indicate that this structure interpolates among all best studied
spectral distributions.

We are also confident that the limiting moments evaluated
here will be useful in the search for suitable approximate
analytic representations of the eigenvalue distributions of
physical models in finite space dimensions.

It seems proper to make some connection to the current
research on sparse random matrices where the matrix entries
are random blocks [15]. Perhaps the most relevant model is the
stochastic block model, well known in the study of social and
biological networks. The model describes a complex network
with n nodes, partitioned into communities or blocks, often
of equal size. If two nodes belong to different communities,
there is an edge with probability which may depend on the
chosen pair of communities. If two nodes belong to the same
community there is an edge with different probability. The
model is flexible enough to properly describe many nontrivial
types of structures.

The stochastic block model is substantially different from
the random block matrix of the present paper, which is a
straightforward picture of the Hessian of a system of points
(e.g., atoms or particles) connected by springs. However, the
cavity method familiar in statistical physics was used in several
block models, suggesting the possibility of using it also in our
model [15].

APPENDIX A: DEFINITION OF THE MODEL

It is useful to recall the well known correspondence between
any real symmetric matrix M of order N and the corresponding
nondirected graphs G with N vertices. Between a generic pair
of vertices (i,j ) of the graph there is a link, or edge, with the

weight Mi,j . The edge is absent if the corresponding matrix
entry is zero. Edges where the extrema of the edge is the same
vertex correspond to the diagonal entries of the matrix. The
matrix element of a power of the matrix, say (Mk)i,j , may be
evaluated as the sum of the contributions of weighted paths of
k steps from vertex i and vertex j on the graph:

(Mk)i,j =
∑

s1=1,...,N,...,sk−1=1,...,N

Mi,s1Ms1,s2 · · ·Msk−1,j .

The sparse random block matrix we study in this work is an
ensemble of real symmetric matrices M of dimension Nd ×
Nd.

The generic matrix of the ensemble is a block matrix, with
N blocks in each row and column. Each block Xi,j is a real
symmetric matrix of order d × d:

M =

⎛
⎜⎝

X1,1 X1,2 X1,3 . . . X1,N

X2,1 X2,2 X2,3 . . . X2,N

. . . . . . . . . . . . . . .

XN,1 XN,2 XN,3 . . . XN,N

⎞
⎟⎠. (A1)

The blocks Xi,j are independent identically distributed random
matrices.

The graph corresponding to the matrix M has N vertices;
the weight of the (nondirected) edge connecting the pair of
vertices (i,j ) is a d × d matrix Xi,j = Xj,i = Xt

i,j . It is still
useful to evaluate elements of powers of the matrix in terms of
the weighted paths connecting the vertices. Since the weight
of a path is a product of noncommuting blocks, the order of
them is relevant.

The adjacency matrix has a zero d × d block on the diagonal
entries:

A =

⎛
⎜⎝

0 X1,2 X1,3 . . . X1,N

X2,1 0 X2,3 . . . X2,N

. . . . . . . . . . . . . . .

XN,1 XN,2 XN,3 . . . 0

⎞
⎟⎠. (A2)

One easily evaluates traces of powers in terms of classes of
nonequivalent paths [16]. Since the blocks are independent
identically distributed random matrices, it is sufficient to record
when a block has previously appeared in a path. Then X1 stands
for any of the N (N − 1)/2 blocks Xi,j , X2 stands for any block,
different from X1, etc. For instance,

1

N (N − 1)
Tr A4 = TrdX

4
1 + 2 (N − 2) TrdX

2
1X

2
2

+(N − 2)(N − 3) TrdX1X2X3X4. (A3)

The analogous evaluation for the Laplacian block matrix L

is more involved:

L =

⎛
⎜⎜⎝

∑
j �=1 X1,j −X1,2 −X1,3 . . . −X1,N

−X2,1
∑

j �=2 X2,j −X2,3 . . . −X2,N

. . . . . . . . . . . . . . .

−XN,1 −XN,2 −XN,3 . . .
∑

j �=N XN,j

⎞
⎟⎟⎠, (A4)

1

N (N − 1)
Tr L4 = 8 TrdX

4
1 + 16 (N − 2) TrdX

3
1X2 + 8 (N − 2)TrdX

2
1X

2
2 + (N − 2) TrdX1X2X1X2 + 8(N − 2)(N − 4)

× TrdX
2
1X2X3 + 2 (N − 2)(2N − 5) TrdX1X2X1X3 + (N − 2)(N − 3)(N − 7) TrdX1X2X3X4. (A5)
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Each block X is the null matrix d × d, with probability
1 − (Z/N ) or it is a rank-one random matrix X = n̂n̂t , with
probability Z/N , where n̂ is a random vector of length one,
chosen with uniform probability in Rd .

Then, for instance, TrdX1X2X3X4 = 0 with probability 1 −
(Z/N )4 or (n̂1n̂2)(n̂2n̂3)(n̂3n̂4)(n̂4n̂1) with probability (Z/N)4.
And TrdX1X2X1X3 = 0 with probability 1 − (Z/N )3 or
(n̂1n̂2)2(n̂3n̂1)2 with probability (Z/N )3. The expected number
of nonzerod × d blocks in each row or column of the adjacency
matrix is N−1

N
Z; then Z is the average connectivity of the large

graph (or the average degree of the vertices).
Finally the average over the uniform probability of the

direction of all the random vectors n̂j involves integrals for
each of them over the unit sphere in Rd . Let us consider two
vectors 	p, 	y ∈ Rd and the integral

Id ( 	p) =
∫

Sd

e( 	p·	y)
d∏

j=1

dyj

where Sd is the surface
∑d

j=1 y2
j = R2. We define the spherical

average over the vector 	y with the normalization

〈e( 	p·	y)〉y = Id ( 	p)

Id (0)
=

∞∑
m=0

	
(

d
2

)
m!	

(
m + d

2

)[
( 	p · 	p)(	y · 	y)

4

]m

.

(A6)

After expanding the left side and by considering unit
vectors, one has

1

(2m)!
〈( 	p · 	y)2m〉y = 	

(
d
2

)
m!	

(
m + d

2

)
4m

,

then

〈(n̂1n̂2)2〉d = 1

d
, 〈(n̂1n̂2)4〉d = 3

d(d + 2)
,

〈(n̂1n̂2)6〉d = 15

d(d + 2)(d + 4)
.

To deal with one more external vectors, one rewrites Eq. (A6)
with the replacement 	p = 	a + 	b:

〈e(	a·	y)e(	b·	y)〉y = Id (	a,	b)

Id (0)
=

∞∑
m=0

	
(

d
2

)
m!	

(
m + d

2

) (	y · 	y)m

4m

× [(	a · 	a) + (	b · 	b) + 2(	a · 	b)]m.

Then, for unit vectors, 〈(	a · 	y)(	b · 	y)〉y = 1
d

[1 + (	a · 	b)].
Many averages are chains

〈(n̂1n̂2)(n̂2n̂3)(n̂3n̂1)〉
= 〈(n̂1n̂2)〈(n̂2n̂3)(n̂3n̂1)〉n̂3〉n̂2

=
〈
(n̂1n̂2)

1

d
[1 + (n̂1n̂2)]

〉
n̂2

= 1

d2
,

〈(n̂1n̂2)(n̂2n̂3)(n̂3n̂4)(n̂4n̂1)〉d = 1

d3
.

By this method we find from Eqs. (A3) and (A5)

lim
N→∞

〈TrA4〉
Nd

= Z

d
+ 2

(
Z

d

)2

,

lim
N→∞

〈TrL4〉
Nd

= 8
Z

d
+

(
Z

d

)2(
24 + 3

d + 2

)

+ 12

(
Z

d

)3

+
(

Z

d

)4

.

APPENDIX B: MOMENTS OF THE LIMITING MODELS

1. Simple random graph

For a simple (that is, no multiple edges, no edge with just
one vertex) random graph, where the probability of any edge is
Z/N , the moments of the spectral distribution of the adjacency
matrix and the Laplacian matrix were evaluated in the N → ∞
limit and fixed average connectivity Z at every order [13]. We
report here the first few moments, from Tables 1 and 2 of Bauer
and Golinelli [13]. For the adjacency matrix we have

μk = lim
N→∞

1

N
〈Tr Ak〉, μ0 = 1, μ2k+1 = 0,

which produces

μ2 = Z, μ4 = Z + 2Z2,

μ6 = Z + 6Z2 + 5Z3,

μ8 = Z + 14Z2 + 28Z3 + 14Z4,

μ10 = Z + 30 Z2 + 110 Z3 + 120 Z4 + 42 Z5,

μ12 = Z + 62 Z2 + 375 Z3 + 682 Z4 + 495 Z5 + 132 Z6,

while for the Laplacian matrix we have

νk = lim
N→∞

1

N
〈Tr Lk〉, ν0 = 1, (B1)

which produces

ν1 = Z, ν2 = 2 Z + Z2,

ν3 = 4 Z + 6 Z2 + Z3,

ν4 = 8 Z + 25 Z2 + 12 Z3 + Z4,

ν5 = 16 Z + 90 Z2 + 85 Z3 + 20 Z4 + Z5,

ν6 = 32 Z + 301 Z2 + 476 Z3 + 215 Z4 + 30 Z5 + Z6.

2. Effective medium approximation

In the same model, the spectral distribution of the adjacency matrix in the effective medium (EM) approximation is

ρEM(x) = − 1

π
Im g(x + iε), g(z) =

∫
ρEM(x)

z − x
dx,
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ρEM(x) =
√

3

2π

[(
p − 1

3x

)2

+ p + 2

6x
+

√
(λ2 − x2)(x2 − α2)

27x4

]1/3

−
√

3

2π

[(
p − 1

3x

)2

+ p + 2

6x
−

√
(λ2 − x2)(x2 − α2)

27x4

]1/3

,

where −λ � x � λ,

λ =
√

−p2 + 20p + 8 +
√

p(p + 8)3

8
, α2 = p2 − 20p − 8 +

√
p(p + 8)3

8
.

It is difficult to evaluate the moments μ2k = ∫ λ

−λ
x2k ρEM(x) dx by analytic integration, but the first few moments are easily

obtained from the series solution of the cubic

[g(z)]3 + p − 1

z
[g(z)]2 − g(z) + 1

z
= 0,

g(z) =
∞∑

k=0

μ2k

z2k+1
= 1

z
+ p

z3
+ p + 2p2

z5
+ p + 6p2 + 5p3

z7
+ p + 12p2 + 28p3 + 14p4

z9

+ p + 20p2 + 90p3 + 120p4 + 42p5

z11
+ p + 30p2 + 220p3 + 550p4 + 495p5 + 132p6

z13

+ p + 42p2 + 455p3 + 1820p4 + 3003p5 + 2002p6 + 429p7

z15
+ O(z−17).

3. Marchenko-Pastur distribution

The Marchenko-Pastur distribution reads as

ρMP (x) =
√

(b − x)(x − a)

4π x
, 0 � a � x � b, a = (

√
p −

√
2)2, b = (

√
p +

√
2)2.

The moments νk = ∫ b

a
dx xk ρMP (x) are well known and are given by

νk =
∫ b

a

dx xk

√
(b − x)(x − a)

4π x
= (2p)(k+1)/22k−1

π

∫ 1

−1

(
t + p + 2√

8p

)k−1√
1 − t2 dt

= p(p + 2)k−1
2F1

(
1 − k

2
,1 − k

2
; 2;

8p

(p + 2)2

)
.
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