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Effect of multiplicative noise on stationary stochastic process
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An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The
stationary state of the system results from a balance of deterministic damping and random pumping simulated
as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the
system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with
an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological,
and technical problems of natural and humanitarian sciences are discussed.
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I. INTRODUCTION

There has been considerable recent interest in the statistical
analysis of systems in the presence of specific random forces.
The stochastic nature of such systems and related noise-
induced effects are important for stochastic thermodynamics
[1–4], nanotechnology [5–7], electronics [8–11], ornithology
[12–17], population dynamics [18–21], epidemiology [22–26],
and the study of cultural heritage [27]. Experimental and
computational results show similarities in the behavior of these
systems.

Most works consider Gaussian white noise. However, more
general and realistic models of noise source are necessary.
Thus, different types of pulse noise have been used to model
random processes. There has been considerable recent interest
in the role of multiplicative quasiperiodic noise in systems at
steady state [9,28,29].

In conventional scenarios of statistical physics, the loss
of energy results from thermal fluctuations, while energy
input is deterministic in an equilibrium state. We will show
that alternative models with random input of energy and
deterministic dissipation can also be used to describe real
processes. If a random external accelerating force is significant,
thermal fluctuations can be neglected.

In this work, we analyze the effect of random quasiperiodic
pulse pumping on a stationary-state system with nonlinear
dissipation. The dynamics of the main variable that charac-
terizes the system is described using a stochastic differential
equation that allows generalization of the earlier results. The
tasks are as follows: (i) Derivation of analytical expressions
for the probability distribution and moments and analysis of
the expressions with allowance for variations in parameters.
(ii) Numerical simulation aimed at an application of the
expressions in the analysis of processes with pulse noise
with controlled periodicity. (iii) A search for parameters for
which analytical expressions for statistical moments can be
derived in the presence of an arbitrary noise. (iv) Analysis of
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possible applications in several physical, chemical, biological,
and technical problems of natural and humanitarian sciences.

II. ANALYTICAL STUDY

We consider the Langevin equation with multiplicative
noise for a random non-negative quantity x:

dx

dt
= −bxβ + xγ η(t), (1)

where b > 0 is the damping factor, η(t) is the stationary
random process with positive mean value 〈η(t)〉 = a, and the
exponents satisfy the following inequalities: 0 � γ < 1 and
β > γ . We consider noise sources for which the main statistical
characteristics are determined to be finite (for other cases, see,
for example, Ref. [30]).

A. Fokker-Planck equation

First, the system with the Gaussian white noise is studied.
Extracting the mean value of the noise component, we repre-
sent Eq. (1) as

dx

dt
= axγ − bxβ + xγ ξ (t), (2)

where x ∈ R+, and ξ (t) is the Gaussian white noise with
〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). Here, we use the
Stratonovich interpretation of SDE’s [8].

Introducing a new variable z = x1−γ

1−γ
, we reduce Eq. (2) to

dz

dt
= a − b[(1 − γ )z]

β−γ

1−γ + ξ (t). (2′)

The corresponding Fokker-Planck equation for the probability
density function w(z,t) is

∂w

∂t
= D

∂2w

∂z2
− ∂

∂z
[(a − b[(1 − γ )z]

β−γ

1−γ )w]. (3)
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The stationary solution to Eq. (3) can be represented as

wst (z) = N e
az
D

− b
Dλ

(1−γ )λ−1zλ

, (4)

where λ = β−γ

1−γ
+ 1 and N is the normalization constant.

Using integralI0 from Appendix A, we derive the following
expression in terms of the variable x:

wst(x) = λ(1 − γ )

(
b

Dλ(1−γ )

) 1
λ

x−γ e
a

D(1−γ ) x
1−γ − b

Dλ(1−γ ) x
λ(1−γ )

1	0

(
( 1

λ
, 1

λ )
——

∣∣∣κD

) ,

(5)

where p	q(· · · |z) is the generalized hypergeometric Wright
function [31]. Here we use the following notation for brevity:

κD = a

D(1 − γ )

(
b

Dλ(1 − γ )

)− 1
λ

.

Then, the stationary moments of x are

μn =
(

b

Dλ(1 − γ )

)− n
λ(1−γ ) 1	0

((
1
λ
+ n

λ(1−γ ) ,
1
λ

)
——————

∣∣∣κD

)
1	0

((
1
λ
, 1

λ

)
——

∣∣∣κD

) . (6)

The results of [32] show that the Wright function can
be reduced to a finite sum of generalized hypergeometric
functions [33] when λ ∈ Q.

Using integral I(ω) from Appendix B, we obtain the characteristic function of x,

�(ω) =
H

0,1:1,0;1,0
1,0:0,1;0,1

((
1 − 1

λ
; 1

λ
, 1
λ(1−γ )

)
: ——; —— −κD

——————— : (0,1); (0,1) −iω
(

b
Dλ(1−γ )

)− 1
λ(1−γ )

)

1	0

((
1
λ
, 1

λ

)
——

∣∣∣κD

) , (7)

where H 0,n:...
p,q:...

(
· · · |z1

z2

)
is the generalized hypergeometric H -function of two variables [34].

When β = 1, the Wright function is reduced to the parabolic
cylinder function [33,35], and we obtain the probability density
function

wst(x) =
√

2b(1 − γ )

πD
x−γ e

− b
2D(1−γ ) (x1−γ − a

b )2

erfc
( − a√

2bD(1−γ )

) (8)

and the moments

μn =
√

2

π
e
− a2

4bD(1−γ )

(
b

D(1 − γ )

)− n
2−2γ

× �

(
n

1 − γ
+ 1

)D− n
1−γ

−1
( − a√

bD(1−γ )

)
erfc

( − a√
2bD(1−γ )

) , (9)

which coincide with stationary results from [19,29].
It is of interest to determine parameter μn in the limiting

cases κD → 0 and κD → ∞. As κD decreases with increasing
parameter D, the limits correspond to high and low stochas-
ticity, respectively. For small values of argument κD , we get

μn =
(

b

Dλ(1 − γ )

)− n
λ(1−γ ) �

(
1
λ

+ n
λ(1−γ )

)
�

(
1
λ

)
×

{
1+

[
�

(
2
λ

+ n
λ(1−γ )

)
�

(
1
λ

+ n
λ(1−γ )

) − �
(

2
λ

)
�

(
1
λ

)
]
κD+O

(
κ2

D

)}
. (10)

Using the asymptotic expansion of the Wright function for
large values of the argument [36], we obtain for κD → ∞

μn =
(

a

b

) n
β−γ

⎧⎨
⎩1 + nD

2

γ + n − β

β − γ

[
b

1
λ

a

] 1
1− 1

λ

+ O

⎛
⎝D2

[
b

1
λ

a

] 2
1− 1

λ

⎞
⎠

⎫⎬
⎭. (11)

Let us focus on the dependence of the mean value 〈x〉 on
parameter D. When κD → 0, 〈x〉 tends to

〈x〉 =
(

b

Dλ(1 − γ )

)− 1
λ(1−γ ) �

(
1
λ

+ 1
λ(1−γ )

)
�

(
1
λ

)
×

{
1 +

[
�

(
2
λ

+ 1
λ(1−γ )

)
�

(
1
λ

+ 1
λ(1−γ )

) − �
(

2
λ

)
�

(
1
λ

)
]
κD

}
. (12)

And for κD → ∞, we have

〈x〉 =
(a

b

) 1
β−γ

⎧⎨
⎩1 + D

2

γ + 1 − β

β − γ

[
b

1
λ

a

] 1
1− 1

λ

⎫⎬
⎭. (13)

It is seen that, in this case, the mean value 〈x〉 depends
linearly on parameter D. For β = γ + 1, the mean value is
almost independent of noise intensity.

In general, simple algebraic manipulations yield the follow-
ing independence condition:[

1	0

((
2
λ

+ 1
λ(1−γ ) ,

1
λ

)
——————

∣∣∣∣κD

)
1	0

((
1
λ
, 1
λ

)
——

∣∣∣∣κD

)

− 1	0

((
1
λ

+ 1
λ(1−γ ) ,

1
λ

)
——————

∣∣∣∣κD

)
1	0

((
2
λ
, 1
λ

)
——

∣∣∣∣κD

)]
(1 − λ)

× (1 − γ )κD + 1	0

((
1
λ

+ 1
λ(1−γ ) ,

1
λ

)
——————

∣∣∣∣κD

)

× 1	0

((
1
λ
, 1
λ

)
——

∣∣∣∣κD

)
= 0. (14)

Based on Eqs. (12) and (13) and the continuity of function
〈x〉(D), we conclude that this function has at least one mini-
mum for β > γ + 1.
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Finally, the asymptotic expression for the variance is written
as

σ 2
x =

(a

b

) 2
β−γ

⎧⎨
⎩ D

β − γ

[
b

1
λ

a

] 1
1− 1

λ + O

⎛
⎝D2

[
b

1
λ

a

] 2
1− 1

λ

⎞
⎠

⎫⎬
⎭.

(15)

B. Statistical moments for arbitrary noise

Several moments of x can be derived for a more general
noise model in comparison with the model of the white
Gaussian noise. We consider the random process η(t) that is
characterized by spectral density Sη(ω). The main parameters
of noise are the mean value a = 〈η(t)〉 and the stochasticity
(also called the intensity coefficient [8]), or the integral of
correlation function,

D = Sη−〈η〉(0)/4. (16)

1. Ergodic process with relatively low stochasticity

If η(t) is ergodic, process x can be considered ergodic at a
stationary state. We divide Eq. (1) by xγ and integrate starting
from time ts , when the system is already at a stationary state,

�x1−γ

1 − γ
= −b

∫ t

ts

xβ−γ dt ′ +
∫ t

ts

η(t ′)dt ′. (17)

For an ergodic process, the integrals on the right-hand side can
be changed by mean values,

−b

∫ t

ts

xβ−γ dt ′ +
∫ t

ts

η(t ′)dt ′ = −b�t〈xβ−γ 〉 + a�t. (18)

We can neglect the fluctuating value �x1−γ on the left-hand
side of Eq. (17) in comparison with the increasing right-hand
side at a long time interval �t .

Then, we get

〈xβ−γ 〉 = a

b
. (19)

This moment is independent of noise stochasticity D.
The same result comes from Eq. (11) up to terms of
O(D2[b1/λ/a]2λ/(λ−1)).

2. Noise with finite correlation time

We consider the system with a relatively large damping
factor b and noise with finite correlation time τc. Such a process
corresponds to the limit κD → 0. Below in this subsection, we
integrate over such an interval �t 	 τc that∣∣∣∣

∫ t

ts

〈ξ (t)ξ (t ′)〉dt ′ − D

∣∣∣∣ 
 D. (20)

Parameter b−1 characterizes the relaxation time of the system.
Assume that such a relaxation time is shorter than time τc.
Therefore, the correlation time of the process x(t) is shorter
than τc. Thus, quantity xα at arbitrary α can also be averaged
as ∣∣∣∣

∫ t

ts

(
xα − 〈xα〉)dt ′

∣∣∣∣ 
 〈xα〉�t. (21)

Multiplying Eq. (2′) by z = x1−γ

1−γ
, we obtain

1

2

dz2

dt
= az − b(1 − γ )

β−γ

1−γ zλ + zξ (t). (22)

Averaging of Eq. (22) at a stationary state yields

0 = a〈z〉 − b(1 − γ )
β−γ

1−γ 〈zλ〉 + 〈zξ (t)〉. (23)

To estimate the third term in Eq. (23), we employ Eq. (2′):

�z = a�t − b

∫ t

ts

[(1 − γ )z]
β−γ

1−γ dt ′ +
∫ t

ts

ξ (t ′)dt ′. (24)

In accordance with Eq. (21), we present integration as aver-
aging in Eq. (17). In this case, noise fluctuations cannot be
neglected,

�z = a�t − b〈[(1 − γ )z]
β−γ

1−γ 〉�t +
∫ t

ts

ξ (t ′)dt ′. (25)

When Eq. (25) is substituted in correlator 〈zξ (t)〉, the first and
second terms vanish due to multiplication by 〈ξ (t)〉 = 0. Thus,
we have

〈zξ (t)〉 =
〈∫ t

ts

ξ (t)ξ (t ′)dt ′
〉

= D. (26)

For Gaussian white noise, the result is obtained in [37].
For a stationary process, we obtain the following relation:

〈xβ+1−2γ 〉 = (1 − γ )
D

b
+ a

b
〈x1−γ 〉. (27)

The same result comes from Eq. (10) at n = β + 1 − 2γ and
κD → 0.

III. NUMERICAL ANALYSIS

A. Pulse noise

In Sec. II A, we consider white Gaussian noise. However,
for numerous applications, pulse noise is more convenient. We
assume that the stochastic process η(t) consists of δ pulses with
constant positive amplitude f0, which is convenient for both
analytical and numerical study,

η(t) = f0

∑
i

δ(t − ti). (28)

The parameters of such a noise source are determined by the
statistics of time intervals between pulses. The interval between
neighboring pulses is τi = ti − ti−1. This random quantity has
a mean value that coincides with the quasiperiod of the process,
i.e., 〈τ 〉 = T .

We consider two different types of noise sources in Eq. (1).
The first is the dead-time-distorted Poisson pulse (DTDP)
process [38], and the second is the pulse process with fixed
time intervals (FTIs) [9].

1. Dead-time-distorted Poisson pulse noise

The DTDP process is a renewal pulse process with statisti-
cally independent and identically distributed intervals τ . There
is a dead-time interval τ0 after each pulse. The arrival of the
next pulse is forbidden over a dead-time interval. After the
end of the interval, the probability per unit time of the next
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pulse (p) is constant. This process can be used to describe
noise sources with varying degree of randomness, ranging
from Poisson white noise (τ0 = 0) to the quasiperiodic process
(τ0 � T ) [20,28].

The probability distribution of random time intervals τ

between neighboring pulses is [28]

w(τ ) = H (τ − τ0)p e−p(τ−τ0), (29)

where H (x) is the Heaviside step function.
In the limit τ0 → T , we have p → ∞ and the process be-

comes deterministic and periodic. In this case the PDF of time
intervals between neighboring pulses is w(τ ) = δ(τ − τ0).
When τ0 = 0, the stochastic process η(t) coincides with the
white Poisson noise. The degree of periodicity, which depends
on the dead time and mean period of the pulse noise, is given
by � = τ0/T and ranges from 0 to 1.

In accordance with [28], the spectral density for the pulse
process under study at ω = 0 is

Sη−〈η〉(0) = 2f 2
0 σ 2

τ

T 3
. (30)

2. Pulse process with fixed time intervals

We consider periodically spaced points on a time axis
with period T . The ith pulse of the FTI process is observed
at ti = iT + νi . The time shift νi of each pulse relative to
fixed (periodic) time moments is a random quantity with zero
mean value. Thus, the pulse process is characterized by the
probability distribution of ν.

We consider the uniform PDF of the pulse position inside
an interval with length τF � T ,

w(ν) = 1

τF

, |ν| � τF

2
. (31)

The probability distribution of intervals τ between two
neighboring pulses is described with the following expression:

w(τ ) = τF − |τ − T |
τ 2
F

, |τ − T | � τF . (32)

This process can be used to present noise sources with
varying degrees of randomness. The degree of periodicity can
be defined as � = 1 − τF /T . The results of [9,29] show that
Sη−〈η〉(0) = 0 for any parameter �.

In practice, we usually have a set of times {ti} corresponding
to pulses. The two qualitatively different kinds of noise (DTDP
and FTI) can be distinguished by calculating variance σ 2

τ

between neighboring pulses and variance σ 2
Nτ of the intervals

between the ith and the (i + N )th pulses, respectively. Ap-
proximate equalities σ 2

τ ≈ σ 2
Nτ and Nσ 2

τ ≈ σ 2
Nτ correspond to

the FTI and DTDP pulse noises, respectively.

B. Numerical simulation

First, we consider the dependence of mean value 〈x〉 on
D for different values of β. Figure 1 shows the results of the
numerical solution of Eq. (14) with respect to β with fixed
γ = 3/4 and b = 1. When 〈x〉 is independent of D, parameter
β tends toγ + 1 at relatively largea and smallD, in accordance
with Eq. (13).

FIG. 1. Contour plot of the solution to Eq. (14) with respect to β

vs a and D (γ = 3/4, b = 1).

Figure 2 shows regions in which the mean value 〈x〉
increases (dashed area) and decreases (blank area) with in-
creasing D. The solid lines correspond to the solution to
Eq. (14) for γ = 1/6, 1/2, and 3/4.

We also present the results obtained by numerical integra-
tion of Eq. (1) with the DTDP noise source. The Mersenne
twister [39] is used as a pseudorandom number generator. The
averaging is performed over 105 numerical realizations.

Figures 3–5 show the evolution of mean value 〈x〉 simulated
with the aid of Eq. (1) at several β and degrees of periodicity
� = 0 and 0.9. In simulations, we use γ = 3/4, b = 1, f0 =
0.1, T = 0.01, and the δ-function initial distribution with
x(0) = 5. The insets to Figs. 3–5 additionally show the results
of analytical calculations obtained using expressions (13) and
(16) (horizontal lines) for the same degrees of periodicity. We
see that the numerical data are in good agreement with the
analytical results. In particular, the numerical and analytical
results almost coincide for quasiperiodic noise.

If β < γ + 1, the mean value 〈x〉 increases with increasing
D (see Fig. 3), while 〈x〉 decreases with increasing D in
the opposite case, β > γ + 1 (Fig. 5). Figure 4 shows the
independence of the mean value on D if β = γ + 1. Evidently,

FIG. 2. Plot of the solution to Eq. (14) with respect to β vs a for
several values of γ (b = 1, D = 0.05).
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FIG. 3. Plot of mean value 〈x〉 vs time for quasiperiodic DTDP
noise (� = 0.9) (circles) and totally random pulse noise (� = 0)
(triangles) calculated at γ = 3/4, β = 1, b = 1, f0 = 0.1, T = 0.01,
x(0) = 5. The inset additionally shows analytical solutions (13) for
� = 0 (dashed line) and 0.9 (solid line).

these statements are valid only for κD 	 1, which is true for
the parameters of Figs. 3–5.

For clarity, we summarize the above results in Fig. 6, which
shows the dependence of the reduced mean value 〈x〉∗ =
(b/a)

1
β−γ 〈x〉 on parameter D derived from Eqs. (13) and (6).

The values of the parameters are γ = 3/4, a = 10, and b = 1.
When D is about 10, κD < 10 for the given parameters and
formula (13) is not valid.

Note that if β > γ + 1, the mean value has at least one
minimum with respect to D since its first derivative is a
continuous function, which is negative for D → 0 and positive
for D → ∞.

Next, we present results obtained by numerical integration
of Eq. (1), where the noise source is the FTI process of Eq. (28).
Parameter D tends to zero regardless of the variance of the
intervals between neighboring pulses for this noise. Thus, the

FIG. 4. Plot of mean value 〈x〉 vs time for quasiperiodic DTDP
noise (� = 0.9) (circles) and totally random pulse noise (� = 0)
(triangles) calculated at γ = 3/4, β = 7/4, b = 1, f0 = 0.1, T =
0.01, x(0) = 5. The inset additionally shows analytical solution (13)
(solid line).

FIG. 5. Plot of mean value 〈x〉 vs time for quasiperiodic DTDP
noise (� = 0.9) (circles) and totally random pulse noise (� = 0)
(triangles) calculated at γ = 3/4, β = 2, b = 1, f0 = 0.1, T = 0.01,
x(0) = 5. The inset additionally shows analytical solutions (13) for
� = 0 (dashed line) and 0.9 (solid line).

mean value 〈x〉 also does not depend on parameter ρ. Figures 7
and 8 prove this statement.

IV. APPLICATIONS

Below, we present several examples in which the parameters
of the proposed model are considered as parameters of real
systems.

A. Evolution of billiardlike systems

The motion of a small particle in a quasigas of relatively
large particles can be simulated using mathematical billiards.
The billiard is a system in which noninteracting point particles
are involved in elastic collisions with scatterers [40–42]. When
scatterer boundaries are moving, the mean velocity of the
particle in the scattering billiard increases. Such a phenomenon
is known as the Fermi acceleration. In terms of the model
[Eq. (1)], quantity x is the velocity of particle, the first term
corresponds to the friction force, and random pulses in the

FIG. 6. Plot of the reduced mean value 〈x〉∗ vs D for three values
of β at γ = 3/4, a = 10, and b = 1: analytical solutions (13) (solid
lines) and results calculated using expression (6) (dots).
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FIG. 7. Plot of the mean value 〈x〉 vs time for two values of �:
quasiperiodic FTI noise (� = 0.98) [green (light gray) line] and FTI
noise with maximal dispersion (� = 0) (black line). The parameters
and initial condition are γ = 3/4, β = 1, b = 1, f0 = 0.1, T = 0.01,
and x(0) = 5.

second term simulate collisions with massive scatterers. The
normal (constant) Fermi acceleration corresponds to γ = 1/2.

The billiardlike systems can be used to analyze fundamental
problems of nonequilibrium thermodynamics [1–4]. The exter-
nal influence on a thermodynamic system is divided into work
and heat, in accordance with the first law of thermodynamics.
However, such division is a complicated task and the model
makes it possible to determine work and heat contributions.
Correlation properties of the external force [in particular S(0)]
can be used in the analysis.

The accelerating force can be simulated as interaction with
a hot thermostat characterized by the effective temperature
depending on the periodicity of the force. Such effective
heating of the system compensates for natural dissipation. In
the model, we have generalized the concept of correlated noise.
The effective temperature is determined by the stochasticity
parameter D rather than the intensity of the force. For example,
relatively strong highly correlated external force corresponds
to low effective temperature.

FIG. 8. Plot of the mean value 〈x〉 vs time for two values of �:
quasiperiodic FTI noise (� = 0.98) [green (light gray) line] and FTI
noise with maximal dispersion (� = 0) (black line). The parameters
and initial condition are γ = 3/4, b = 1, f0 = 0.1, T = 0.01, and
x(0) = 5.

B. Diffusion of clusters on a graphite flake

The results of Refs. [43,44] show that superlubricity leads
to thermal motion of graphite flakes with sizes raging from
10 to 100 μm. The flake motion is a sequence of jumps at
random moments. A metal cluster deposited on a surface of
a flake moves randomly under the influence of such jumps
[5–7,45]. The cluster is accelerated by the flake and decelerated
by friction. In terms of Eq. (1), quantity x is the velocity of
the cluster, the first term corresponds to the friction force, and
random or quasiperiodic pulses in the second term simulate the
flake jumps [43,44]. The model makes it possible to determine
the effect of periodicity of the flake motion using the analysis
of cluster velocities.

The parameters of friction force (b and β) are determined
by the number of defects of the flake surface and the size and
mass of clusters and independent of flake motion. The simplest
model of friction corresponds to β = 0. Flake dynamics
determines the parameters of noise D and a. The intervals
between pulses τ are independent of the cluster properties and
the friction force.

Variations in the temperature and size of clusters lead to
variations in the mean velocity of clusters and the growth
rates of cluster structures. Moreover, an inverse problem can
be solved and the motion of clusters can be used to visualize
flake motion.

C. Nonlinear filtering of a quasiperiodic electric signal

Equation (1) can be used to describe a nonlinear filter with a
random input electric signal η(t) [8–11]. Quantity x in Eq. (1)
is the output signal. Nonlinear dissipation −bxβ is considered.

For example, a combination of Johnson noise and Schottky
noise, which originates from discrete nature of electric charge,
can be considered as the input signal [46–51]. Such a com-
bination can be a DTDP process due to anticorrelation of the
motion of single electrons, acting on each other due to the
Coulomb force. For an initially periodic input signal that loses
periodicity, the model of FTI noise can be used.

The fact that the output signal is independent of parameter
D under condition β = γ + 1 (Fig. 4), the strong dependence
of the output signal on the degree of periodicity (Figs. 3 and 5),
and the nontrivial dependence of the mean value of the output
signal on parameter D (Fig. 6) can be used to develop filters
and measuring equipment.

D. Dynamics of active Brownian particles

Active Brownian particles are assumed to have an internal
propulsion mechanism (motor), which may use energy from an
external source and transform it under nonequilibrium condi-
tions into directed accelerated motion [52]. Such particles can
be used to model living species or technical objects. Based on
the description of individual motion of pointlike active particles
by stochastic differential equations, this branch of physics
considers different velocity-dependent friction functions, the
impact of various types of fluctuations, and it calculates char-
acteristic observables such as stationary velocity distributions.
The apparent randomness of the dynamics of active Brownian
particles may have different origins, e.g., environmental factors
or internal fluctuations due to the intrinsic stochasticity of
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the processes driving individual motion. For animals, the
randomness may also originate from decision processes that
govern the speed of individual motion and may seem random
to an observer. A simple way to take into consideration
such fluctuations without being able to resolve the underlying
mechanisms is to introduce stochastic forces into the equations
of motion of individual units.

For example, Eq. (1) can be used to describe the velocity
of the flap-glide flight of birds [12–17]. Birds use intermittent
flight to reduce the power cost. Over a relatively long interval
of extended-wing gliding, friction force can be represented as
−bxβ . Acceleration is reached at short intervals (pulses) of
flapping. The efficiency of the flapping pulses depends on the
speed, and the DTDP periodicity of the pulses provides optimal
speed. The relationship of the mean velocity, the mean period,
and the periodicity of flapping makes it possible to characterize
the health of the bird or atmospheric convection.

E. Population dynamics of predators

The application of stochastic methods in the analysis of
population dynamics is based predominately on the equations
with multiplicative noise [53–55]. Animal populations depend
on randomly changing environmental conditions. For example,
the number density of predators x in Eq. (1) is a result of a
balance of a deterministic decrease (first term) and a random
quasiperiodic increase (second term).

Strong intraspecies competition corresponds to β = 2, and
the absence of the competition corresponds to β = 1. For fish
and insects, parameter γ tends to zero, since the birth rate is
almost independent of the number of adults. For mammals, an
increase in population is determined by the number of adult
animals, and the parameter γ tends to unity.

For a broader class of environmental actions in population
dynamics such as pollution, disasters, rainfall, etc., it is
preferable to use pulse noise that arises from the discrete origin
of the events [56]. Some of these factors can be quasiperi-
odic. For example, noise periodicity in predator population
analysis results from the periodicity of the prey population,
e.g., lemmings [18–21]. Two concepts are used to describe
variations in the lemming population. The first concept is
based on an analysis of sun activity. In the framework of the
second approach, an increase in the lemming population leads
to insufficiency of food and an increase in the population of
predators. The FTI and DTDP processes correspond to the first
and second concepts, respectively. The problem is that we have
results from the observation of lemmings only for an interval
of 70 years (10–12 pulses in the framework of the model). An
analysis of the population of predators based on the proposed
model will make it possible to verify the concepts.

F. Spread of infectious diseases

Equation (1) can be used to describe several infection
diseases [22–26], e.g., influenza. In this case, variable x is
the number of infected people.

With respect to the proposed model, the well-known epi-
demiological model of [26] corresponds to γ = β = 1 and
white Gaussian noise. Such a model does not take into

account environmental factors, life style, and traditions. The
generalized Eq. (1) describes additional factors.

Positive pulses η(t) correspond to fast infection spreading
due to weather conditions or mass gathering events [57,58].
The FTI periodicity corresponds to seasonal celebrations and
weather, and the DTDP periodicity results from immunological
memory. Contacts with infected people are supplemented
with additional factors (e.g., contacts with animal disease
carriers), and hence the parameter is γ < 1. Vaccination can
be simulated as the parameter β > 1.

G. Aging of paints on paintings

There has been considerable recent interest in the develop-
ment of methods for the study of paintings. Note that single
works of art or small groups are analyzed in most works. Re-
searchers concentrate predominantly on the features of paints
that are specific to particular paintings. Universal methods for
dating paintings are missing in peer-reviewed journals in spite
of the availability of the results of comprehensive analysis
of the aging of oil paints. FTIR microspectroscopy has been
employed in [59] to study time-dependent variations in the
oil media of zinc-white paint in the paint layer of 19th–20th
century Russian paintings. Spectroscopic data have been ob-
tained for 493 samples of white paints from 230 paintings from
several Russian museums and private collections [60]. The
calculation of analytical curves that approximate experimental
results (intensity ratio of spectral bands versus time) is phys-
ically meaningless and incorrect due to the significant spread
of experimental data and the absence of adequate models
of the aging of paintings under unknown conditions. The
simplest linear dependences contradict results on averaging
that indicate significantly nonlinear (threshold) character of
the dependences under study. A statistical model proposed in
Ref. [27] is based on the assumption that significant variations
in the measured spectroscopic parameters (i.e., intensity ratios)
with time can be due to (i) the spread of original compositions
of paints, and (ii) changes of storage conditions. Evidently, the
approach of this work can be used for alternative analysis of
the experimental data. The rate of a decrease or increase in the
measured intensity ratio of characteristic spectral bands can be
considered as variable x in Eq. (1). The mean value of noise a

is responsible for the systematic degradation of the paint layer
(e.g., due to the presence of components that are involved in
chemical reactions with each other), parameter b describes the
initial conservation that prevents the degradation of a paint
layer related to environmental factors, and zero-mean noise
simulates random variations in the storage conditions.

V. CONCLUSION

In summary, we have studied the effect of random quasiperi-
odic pulse pumping on a stationary-state system with non-
linear dissipation. Pulse processes with controlled periodicity
have been used in the analysis of quasistable and relaxation
processes. Such processes are also convenient for simulation
of stationary processes in various systems. Most processes
that describe random external action in applied problems can
be divided into two groups. The processes of the first group
are renewal processes that are characterized only by intervals

032112-7



KARGOVSKY, CHIKISHEV, AND CHICHIGINA PHYSICAL REVIEW E 97, 032112 (2018)

between neighboring pulses. The variance of such a process
increases with time, and the correlation time increases and the
stochasticity parameter decreases with increasing periodicity.
DTDP is a convenient model for such processes. The processes
of the second group exhibit deterministic periodicity. The
variance of such processes remains constant, the correlation
time is infinite, and the stochasticity parameter is zero at any
periodicity. Thus, the periodicity of the FTI process does not
affect statistical moments.

We have revealed the nontrivial dependence of the mean
value of the main variable on stochasticity and parameters
that characterize nonlinearity of pumping and dissipation.
A monotonic increase in the mean value with increasing
stochasticity parameter D was evident in the previous study
of the stability, relaxation, and quasistable dynamics. In fact,
relatively high stochasticity of noise leads to an increase in
the variance of variable x and, hence, relatively large instant
values of x and amplification of pumping due to multiplicative
noise. A distinctive feature of the stationary state lies in
the fact that the balance of both pumping and dissipation
depends nonlinearly on the instant value of x. Note that the
stationary state is reached only when the dissipation exponent
β is greater than the noise multiplicativity exponent γ . A
nontrivial decrease in the mean value with an increase in

stochasticity parameter D is observed when the dissipation
exponent is greater than the noise multiplicativity exponent,
at least by unity. The existence of a minimum is due to the
dominant contribution of dissipation at relatively small D

(viz., D 
 1
1−γ

[λaλ/b]1/(λ−1)). Parameter D corresponding
to the minimum mean value can be determined analytically
for a certain domain of remaining parameters. The numerical
simulation shows that the results can be generalized on systems
with pulse noise with controlled periodicity.

The results can be generalized on a system with a variable
that decreases deterministically and increases randomly. By
way of an example, we have considered the velocity of a billiard
particle, the velocity of a metal cluster on a graphite flake, the
output voltage of a nonlinear filter, the velocity of a flap-glide
flight of birds, the number of animals in a population, the num-
ber of infected people, and the aging rate of paint on paintings.
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APPENDIX A: CALCULATION OF INTEGRAL
∫ ∞

0 zν e
az
D − b

Dλ
(1−γ )λ−1 zλ

dz

We consider the integral

Iν =
∫ ∞

0
zνe

az
D

− b
Dλ

(1−γ )λ−1zλ

dz, Reν > −1. (A1)

An expansion of the function e
az
D in the Taylor series around zero and integration using [61] yields

Iν = 1

λ

(
b

Dλ
(1 − γ )λ−1

)− 1+ν
λ

∞∑
n=0

1

n!

( a

D

)n
(

b

Dλ
(1 − γ )λ−1

)− n
λ

�

(
1 + ν + n

λ

)

= 1

λ

(
b

Dλ
(1 − γ )λ−1

)− 1+ν
λ

1	0

[(
1+ν
λ

, 1
λ

)
———

∣∣∣∣ a

D(1 − γ )

(
b

Dλ(1 − γ )

)− 1
λ
]
, (A2)

where p	q(· · · |z) is the generalized hypergeometric Wright function [31].

APPENDIX B: CALCULATION OF INTEGRAL
∫ ∞

0 eiω[(1−γ )z]
1

1−γ e
az
D − b

Dλ
(1−γ )λ−1 zλ

dz

We consider the integral

I(ω) =
∫ ∞

0
eiω[(1−γ )z]

1
1−γ

e
az
D

− b
Dλ

(1−γ )λ−1zλ

dz. (B1)

Expanding two exponential functions in the Taylor series around zero and changing order of summation and integration, we
get

I(ω) =
∞∑

n=0

1

n!

( a

D

)n
∞∑

m=0

1

m!
(iω(1 − γ )

1
1−γ )m

∫ ∞

0
z
n+ m

1−γ e− b
Dλ

(1−γ )λ−1zλ

dz

= 1

λ

(
b

Dλ
(1 − γ )λ−1

)− 1
λ

∞∑
n=0

∞∑
m=0

1

n!

1

m!

[
a

D(1 − γ )

(
b

Dλ(1 − γ )

)− 1
λ

]n[
iω

(
b

Dλ(1 − γ )

)− 1
λ(1−γ )

]m

�

(
1 + n + m

1−γ

λ

)

= 1

λ

(
b

Dλ
(1 − γ )λ−1

)− 1
λ

H
0,1:1,0;1,0
1,0:0,1;0,1

⎛
⎝(

1 − 1
λ

; 1
λ
, 1
λ(1−γ )

)
: ——; —— − a

D(1−γ )

(
b

Dλ(1−γ )

)− 1
λ

——————— : (0,1); (0,1) −iω
(

b
Dλ(1−γ )

)− 1
λ(1−γ )

⎞
⎠, (B2)

where H 0,n:...
p,q:...(· · · | z1

z2
) is the generalized hypergeometric H -function of two variables [34].
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