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In many situations we are interested in the propagation of energy in some portions of a three-dimensional system
with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world
network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the
two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another
in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-
section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-
range links (α) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two
regimes of α are considered in this work. For sufficiently small αs the dominant behavior of the system is just like
that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that
are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW
model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding
ghost model) m2 ∼ α for the three-dimensional system as well as its two-dimensional cross-sections.
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I. INTRODUCTION

Self-organized criticality (SOC) as a commonly occurring
phenomenon in nature and society is a very important notion
that refers to the intrinsic tendency of a wide class of slowly
driven (open) systems to evolve spontaneously to a nonequilib-
rium steady state characterized by long-range correlations and
power-law scaling behavior. SOC can occur in regular (discrete
or continuous) systems, as well as random systems. Some
examples of regular (or nearly regular) systems are forest fire
(as a discrete system) [1], water droplets [2], earthquake [3],
and superconducting avalanches [4] (as continuous systems).
There are also interests on the notion of the SOC on the com-
plex networks from both theoretical and experimental sides.
Examples are biological evolution [5] and signal propagation
in neural networks [6]. The complex networks [7,8] describe
a wide domain of physical and other systems ranging from
biological [9] and neural networks [10] to internet [11–13],
social [14], coauthors [15], citation [16], and wealth [17]
networks. Theoretical examples of the SOC on the complex
networks are the SOC on the finite-range random networks
[18], SOC model for the brain plasticity [19], small-world
sandpile models [20], dissipative sandpiles on the small-world
networks [21], sandpile dynamics on random graphs [22], and
on scale-free networks [23], some of which are compatible
with the mean-field results [24].

Among the complex network models, the small-world
network model introduced by Watts et al. [25] has the ability to
interpolate between the regular lattices and random networks.
These systems carry simultaneously the effect of both regular
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and random network statistics. It is simply defined by adding
extra random long-range links to the regular lattice without
modifying the configuration of the regular links that connect
the neighboring nodes. These systems are therefore tuned
by the α parameter, which is the percent of the number of
extra-long-range links per node in the system (to be defined
later). The sandpile models (as the simplest prototype of SOC
phenomena) on small-world networks was considered by many
people [20,21,26,27]. The main feature of these investigations
is the observation of three regimes: small α regime at which
the properties are compatible with the regular sandpile model,
the intermediate regime, and the large α regime in which the
random network properties are dominant [21]. It was revealed
also that each amount of α implies a spatial length scale at
which a crossover between different behaviors occur [20].

It seems necessary to pay critical attention to three dimen-
sions in which the real experiments are done (e.g., Ref. [6]) and
which has been poorly investigated in the literature. In addition
to the direct importance of the three-dimensional spread of
energy, the question of how the avalanches spread in the smaller
portions of the system (or lower-dimensional subsystems) is
of central attention. This is a worthy question motivated by
the limitations of the real experiments, affecting the reported
exponents. Consider, for example, the experiment by Beggs
et al. [6], in which a two-dimensional array of multielectrodes
was embedded into the rat cortex, which is a three-dimensional
system. The reported exponents are calculated for a subsystem
of the whole, since the spark detectors had been prepared in
some limited part of the system involving a small fraction
of all nodes. One may approximate this subsystem by a
two-dimensional cross-section of the whole system. The same
argument also holds for other natural SOC systems for which
the real data analysis are along with (or conditioned to have)
some instrumental limitations. It seems reasonable that the
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investigations on this system should involve the tracing of
three-dimensional and also lower-dimensional avalanches to
observe how the energy spreads in the whole system as well as
in a portion of the system (subsystem). This approach measures
how the information of the avalanche expansion is projected
to some portion of the system. One also may be interested in
the problem from the theoretical side, in which it is interesting
to measure how the information of a d-dimensional system is
projected to its d ′-dimensional subsystem (d ′ < d), depending
on the fact that the removed dimension is spatial [28] or
temporal [29] (d ′ = d − 1 in the present paper).

In this paper, we consider the energy propagation of
Bak-Tang-Weisenfeld (BTW) sandpile model on the three-
dimensional small-world network. We also investigate the
avalanche statistics of some two-dimensional cross-sections
as lower-dimensional systems. More precisely, the statistics
of avalanches that are restricted to the sites that are involved
in the 2D sections are determined. The α parameter measures
how close the shortest path between two typical sites is. Taking
one of these sites as a bulk site and another as the boundary
site, one finds that as α increases, the bulk sites and boundary
sites become effectively closer, which leads to the fact that the
statistics becomes more similar to the dissipative avalanches.
The question of whether this is seen or not and also what
the form of this approach is have not been addressed in the
literature yet. By introducing a measure, we demonstrate that
α controls the closeness of the statistics of the bulk and the
boundary sites. To this end, the propagation of energy in
two kinds of cross-sections are determined—one in the bulk
of the system and another on the boundary. In addition to
observing the above-mentioned phenomena, we show that this
approaching is in power-law form with the exponents reported
in the paper. Importantly, it is observed that the spatial extent
up to which the statistics is similar to the regular BTW model
scales with α just like the dissipative BTW model with the
dissipation factor (mass in the corresponding ghost model)
m2 ∼ α for both three-dimensional (original) system and two-
dimensional cross-sections. Some hyperscaling relations are
also tested in terms of α.

The paper has been organized as follows: in Sec. II we
introduce the sandpile model on the small-world network and
its mapping to two dimensions. The numerical results for three
dimensions are presented in Sec. III A. The results for two
dimensions are reported in two subsections: in Sec. III B 1 the
distribution functions are analyzed, and the fractal dimensions
are devoted to Sec. III B 2. We close the paper by a summary
of our results in Sec. IV.

II. THE DESCRIPTION OF THE PROBLEM

Let us first introduce the BTW model on the
three-dimensional cubic lattice with linear size L. The
sand grains are distributed randomly throughout of the lattice,
so that we have a local height field h over the lattice, for
which the constraint is that no site has the height larger than
2d, i.e., h(i) takes the numbers from the set {1,2, . . . ,6}
for each site i. The system is open, i.e., adding or losing
energy is allowed. The dynamic of the system is as follows: A
random site (i) is chosen and a grain is added to this site, i.e.,
h(i) → h(i) + 1. If the resulting height is lower than a critical

value [h(i) < hc = 6], another site is chosen for adding a grain.
But if this height exceeds the critical value [h(i) > hc], then
this site becomes unstable and topples. During this toppling,
the height of the original site i is lowered by a number equal
to its neighbors [h(i) → h(i) − 6], and the height of each of
its neighbors increases by one in such a way that the total
number of grains is conserved. The single toppling process
can be expressed via the relation h(i) → h(i) − �i,j , in which

�i,j =
⎧⎨
⎩

−1 i and j are neighbors,
6 i = j,

0 other.
(1)

As a result of this toppling, the neighboring sites may become
unstable and topple. This process continues until reaching
the state in which all sites of the system become stable. The
chain of topplings is called an avalanche. Now another site
is chosen for injection and the process continues. Generally,
we have two kinds of configurations: transient and recurrent.
The transient configurations may happen once in the early
evolution steps and shall not happen again, and the recurrent
configurations take place in the steady state of the system.
In this state, the energy input and output of the system is
statistically equal and the statistical observables of the system
are statistically constant. All of the configurations in this
state occur with the same probability. For a good review see
Ref. [30]. The important aspect of this model is that in the
steady state the system organizes itself in the critical state.

The geometrical aspects of the pure two-dimensional regu-
lar BTW [which corresponds to c = −2 conformal field theory
(CFT)] has been the subject of intense studies [31–33]. One
example is the exterior perimeter of an avalanche which is
numerically shown to be loop-erased random walk (LERW) in
two dimensions [31,33]. The problem of exact enumeration of
the critical exponents in 3D is more tough than 2D, which has
its roots in the rapid growing of the computational labor with
the system size. In 3D the exterior perimeter of an avalanche
is a fractal closed surface and is expected to scale with the
toppled volume and its gyration radius.

Now let us describe the model on the cubic small-
world network. In Fig. 1(a) we have shown schematically a
two-dimensional small-world network (this figure has been
sketched in two dimensions for simplicity). As is evident in
this figure, in addition to the regular links between neighbors,
there are some long-range links between random-chosen sites.
For this system we have two dependent further random fields
in addition to the height field h(i). The connection matrix
L(i,j ) is unity if sites i and j (not neighbors) are connected
by a long-range link and zero otherwise. The distribution of
lengths and the degree of nodes are chosen to be uniform in the
interval of allowed values (naturally the lengths are restricted
to the linear size of the system). The other one is the degree of
nodes zc(i) = 2d + ∑

j L(i,j ), which accounts for the number
of total links in node i (d ≡ the dimension of the system). In
this language, if the height of a node exceeds zc(i) it topples
according to the rule h(i) → h(i) − �i,j , in which

�i,j =
⎧⎨
⎩

−1 i and j are neighbors or L(i,j ) �= 0,

zc(i) i = j,

0 other.
(2)
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FIG. 1. (a) Schematic set up of a small-world network with some
random long-range links. Note that the regular bonds are not altered.
(b) Two schematic microavalanches that are connected by a single link
between two points, i and j . The gray sites are the toppled sites, and the
red lines are the exterior frontiers of these microavalanches. Note that
the point, e.g., i for the right-hand microavalanche, plays the role of a
sink point. This is not, however, a perfect picture, since this point can
play the role of the grain source as well. (c) The three-dimensional
system with an avalanche and its projection in its cross-section in
zcross-section = L/2.

By means of the defined fields, we re-define α (the percent of
long range links) as follows [20]:

α ≡ 100
1/2

∑
i,j L(i,j )

No. of total regular links
, (3)

in which the factor 1
2 is to prevent double counting [for Fig. 1(a)

α = 25
6 ]. In this paper, we are dealing with low values of α,

i.e., α = 0.1,0.25,0.5,1,2,5, and 10. This model shows some
common features with the ordinary regular BTW model. An
example is that the states are classified into two categories:
transient and recurrent states. Despite many attempts, the local
and global properties of this model are poorly understood,
especially in three dimensions. In this paper, we consider
and analyze the connected components of each avalanche
and call them microavalanche. Let us describe it more: In
a small-world network, due to the existence of long-range
links, an avalanche may be composed of many connected
components, each of which is connected to the others by one
or more long-range links. Therefore, the statistics of a single
component is apparently different from the total avalanche
as a whole. These microavalanches have their own mass,
size, gyration radius (see Fig. 9 of Ref. [21]). Two such

microavalanches are schematically shown in Fig. 1(b) from
which one can think of the connecting sites as the sink points.
In this figure, the sites i and j are connected by a long-range
link and two connected components of an avalanche have been
shown. An evident effect of long-rage links in these systems is
the more direct effect of dissipative boundary sites to dynamics
of grains. This is due to the fact that the effective distance of
the bulk sites from the boundary sites (and any other bulk site)
decreases as the concentration of long-range links increases.
It can be understood more directly by the fact that the average
shortest distance 〈l〉 is related to the system size L and α

via the relation 〈l〉 = LF (α1/dL), in which d is the system
dimension andF (x) ∝ constant forx 
 1 andF (x) ∝ log x

x
for

x � 1[21]. Noting that for large enough αs F is a decreasing
function, we see that the average shortest distance decreases
with increasingα. An important observation was recently made
in two dimensions by Moghimi et al. [20] in which it has been
shown that for the small scales the system behaves like an
ordinary (regular) BTW model, whereas for the large scales
the critical properties of the system changes crucially.

In the following sections, we analyze global and local
properties of this model in 3D and effective 2D systems. Our
analysis for 3D avalanches involves the scaling relation be-
tween the global quantities and their distribution functions, as
well as local ones. The three- and two-dimensional quantities
(the latter for the cross-sections) studied in this paper are as
follows (two-dimensional refers to the 2D cross-sections):

(1) The avalanche mass M3 (M2), which is the total number
of sites involved in a three-dimensional (two-dimensional)
microavalanche.

(2) The three-dimensional gyration radius R3, which is de-
fined asR2

3 ≡ 1
M3

∑M3
i=1 |�ri − �rcom|2, in which the sum runs over

the points involved in a three-dimensional microavalanche.
In this formula, �ri ≡ (xi,yi,zi) is the position vector of the
ith point of the microavalanche, and �rcom ≡ 1

M3

∑M3
i=1 �ri is

the center of mass of the microavalanche. The corresponding
gyration radius of loops r and 2D areas R2 are also investigated
in 2D cross-sections.

(3) The number of topplings in a three-dimensional as
well as two-dimensional microavalanche (ntoppling). Note that
this quantity is defined for the total avalanches, not the
microavalanches.

(4) The loop lengths l, which is the length of the loop
that is the external perimeter of a 2D cross-section of a
microavalanche. A loop sample corresponding to a 2D mi-
croavalanche is schematically shown in Fig. 1(b), in which
the external frontier of the toppled region (microavalanche)
has been extracted and shown by red lines. The loop length is
simply the number (the total length) of these lines.

(5) The area inside loops a, which is the total area that is
contained in the loop.

A. Two-dimensional cross-sections

The problem of two-dimensional propagation of energy
in three-dimensional systems seems to be very important
from both theoretical and experimental sides. The example
mentioned in the previous section is the experiment by Beggs,
in which the signal activity in the external cortex of a rat
was measured in an effective 60 × 60 two-dimensional lattice,
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which can be imagined as a system embedded in a three-
dimensional one. Therefore, one may ask the same question for
the small-world networks and trace the avalanche dynamics of
the cross-sections of three-dimensional system.

From the theoretical side, the important question is how the
information in d + 1 dimensions would be reflected to the d

dimensions. For this purpose, one should map the original d +
1-dimensional model to a d-dimensional one and measure how
some information are lost and how the degrees of freedom in
the subtracted dimension affect the d-dimensional model, i.e.,
find the model that lives in the lowered-dimensional system.
If the subtracted dimension is temporal, then one is looking
at a frozen model with no dynamics. The investigation of the
contour lines of statistical systems [32] and ground state of the
quantum systems [29] are some examples. A more interesting
situation is the case in which the subtracted dimension is a
spatial one, like the holographic principle. The other example
is the cross-sections of the three-dimensional BTW model,
which is proposed to share some critical behaviors with the
2D Ising model [28]. This investigation on the small-world
networks seems to be more interesting from the experimental
side, for the reasons stated above. The procedure of extracting
the cross-section data from the three-dimensional system has
been schematically shown in the Fig. 1(c).

The three-dimensional and the effective two-dimensional
energy propagation in small-world systems is the aim of
the present paper. The induced criticality of the resulting
two-dimensional system is shown to be completely different
from the three-dimensional case. Let us clarify the method
of analysis of two-dimensional cross-sections. Consider a 3D
avalanche starting at a randomly chosen site. We consider the
section of avalanche at the plane z = z0 (which passes through
the center of mass of the spanning percolation cluster). The
avalanche cluster on this plane has one or more disconnected
clusters. Let n(s) be the average number of clusters having
exactly s sites on this plane. Then, n(s) has the scaling form
n(s) ∼ s−τs . Also, for each connected element of 2D avalanche
there is an exterior frontier, which is a loop with length l

containing the avalanche.
Two kinds of cross-section have been considered in this work,
both of which are perpendicular to an axis (say, z axis): one
is z = Lz

2 plate and the other z = 0 plate, in which Lz is the
linear size of the system in the z direction. The latter is the most
dissipative plate, with the exponents completely different from
the bulk cross-section, as we will see.

III. RESULTS

In this section, we present the numerical results. In the
next two subsections, we analyze separately three- and two-
dimensional (cross-sections) systems. We have considered
L × L × L cubic lattice with random long-range connections
and with various sizes L = 50,100,200, and 300. The ran-
domness can easily be established by randomly choosing a
pair of sites i0 and j0 in such a way that L(i0,j0) = 1, a
number of times corresponding to an α value. Therefore, the
long-range links in the resulting lattice have uniform length
distribution and the degree distribution of nodes is apparently
uniform. For all lattice sizes after some steps, the system

reaches the steady state from which the samples have been
extracted and the statistical analysis has been performed. In
sandpile models, to have nearly independent samples one can
consider the time period of rare events as the time between
two successive samplings. This rare event can be the event
of very large avalanches. Let us define a large avalanche as
an avalanche that contains n � (LxLy)/10 sites inside. Our
experience has been that the average time period for these rare
events is 〈τ 〉 ≈ 10 (time step ≡ the number of grain adding to
the system). This can be interpreted as an event in which the
height configuration is thoroughly updated and the memory is
nearly lost. To be sure that this making independent procedure
had been more complete, we have let 100 sand injections
between two successive samplings, i.e., after extracting each
sample, 102 sand grains were randomly added to the system,
each of which causing a relaxation process, and then another
sample was extracted. The time of beginning of the recurrent
sates has been obtained automatically. It was defined as the
time above which the average height does not change with
the external injection and is nearly constant. For each 3D
sample, we have extracted also the height configuration and the
toppling statistics of the 2D cross-section for further analysis
in Sec. III B. Over 5 × 106 samples for each α and lattice
size have been generated for analyzing the statistics of the
3D problem, and their 2D cross-sections have been extracted.
Various fractal dimensions and distribution functions have
been calculated. We have two types of injection: the first type
are the injections to the bulk sites, as is customary in the
sandpile models, whereas the second type are the injections to
the boundary sites, say, in the z = 0 plane. The corresponding
cross-sections in both cases are perpendicular to the z axis and
are of two types: bulk cross-section, which is the cross-section
containing sites in the z = L/2 plane, and the cross-section
containing boundary sites in the z = 0 plane. We name the
resulting avalanches the bulk avalanches for the first case and
the boundary avalanches for the second case. As will be seen,
this method helps us to define a measure for closeness of bulk
sites to the boundary sites. In fact, as stated in the previous
section, the larger the parameter α is, the closer the bulk sites
to the boundary sites are. Therefore, one expects that for larger
values of α the statistics of the avalanches in the bulk sites is
closer to the statistics of the avalanches whose injection points
(first unstable point) are in the boundary sites.

The distribution functions of the statistical quantities in the
critical state are expected to behave like P (x) ∼ x−τx (in which
τx’s are their exponents) up to a specific scale, above which
the functions fall off rapidly. There are also some well-defined
points that the system crosses over to a new regime. We name
these scales at which the finite-size effects dominate, and the
scales at which a crossover to large-scale behaviors occurs as
cut values. In this paper we have determined the cut values
by linear fitting of the log-log plots. Consider, for example,
the distribution function of an observable [e.g., P (R3) in the
following subsection] with two regimes, each of which has its
own slope (exponent) in the log-log plot. Then we obtain the
cut value (R∗ for R3) by a linear fitting of each interval. Then
the cut value is simply the point at which two fits meet each
other. This is also applicable for the cut values for finite-size
effects, which is not important for the present paper.
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(a)

(c)

(b)

(d)

(e)

FIG. 2. (a) The plot of M3 in terms of R3 and the corresponding exponents γM3R3 . Upper inset: γ UV
M3R3

and γ IR
M3R3

. Lower inset: the crossover
radius R∗

3 in terms of α with the exponent 0.5 ± 0.03. (b) The same as (a) for various lattice sizes L (These curves have been shifted by
a constant for more clearness). The finite-size-dependent (UV and IR) slopes γM3R3 have been shown in the inset. (c) The log-log plot of
the distribution function P (R3) in terms of R3). Inset: the crossover point R∗

3 . (d) Schematic representation of the confined area between the
distribution functions of M3 for bulk and boundary injections. (e) The IR exponent of the distribution function of R3 for bulk (τ2) and boundary
[τ2(z = 0)] injections in terms of α. The corresponding confined area has been shown in the inset.

A. Three dimensions

The geometrical quantities of interest in this part of the paper
are x = M3,R3, and ntoppling, defined in Sec. II. Based on the
above argument, it is obvious that for the larger values of α the
extent of the power-law behavior is smaller, i.e., the finite-size
effects dominate earlier than that of the smaller values of α,
since for larger values of α the typical shortest path from bulk
sites to the boundary sites are smaller. We have also found that

these quantities are related via the scaling relation x ∼ yγxy , in
which γxy are the scaling exponents.

Let us first consider the bulk avalanches. Figure 2(a) shows
the plot of 〈log(M3)〉 in terms of 〈log(R3)〉 whose slope is
γM3R3 ≡ D

M3
F , which is the 3D mass fractal dimension for L =

300 and various α’s. We note that D
M3
F (α = 0) � 2.96 ± 0.02

[28]. Interestingly, it is seen that the graphs smoothly cross
over to the large-scale regions in which the slope (fractal
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dimension) (mIR ≡ γ IR
M3R3

) is different from the slope in the
small-scale region with the slope mUV ≡ γ UV

M3R3
. We name

the small scales as UV limit, and the large scales as IR limit. The
point of this change of behavior is α-dependent. This point can
be calculated using the linear fit of the graphs in each individual
region. The transition point (R∗

3 ), which is a cut value for the
three-dimensional gyration radius, is simply obtained by the
method mentioned in the Sec. III. The fact that mUV(α) is nearly
α-independent and mIR(α) runs crucially by varying α can be
seen in the upper inset of Fig. 2(a). We interpret R∗

3 as the point
at which the crossover takes place to the large-scale properties
since for r � R∗

3 the results are very close to the regular BTW
model, whereas for r � R∗

3 the behavior is different and not
universal (presumably mixed with the finite-size effects). More
interestingly, we have observed that R∗

3 is a decreasing function
of α, i.e., R∗

3 ∼ α−ζ in which ζ = 0.5 ± 0.05. Since α can be
interpreted as the measure of how directly a random chosen site
is connected to a boundary site at which dissipation occurs, we
can say that effectively (on average) a fraction of grains are
dissipated in a bulk toppling depending on the amount of α.
The other effect is the sink role of the sites that connect the
microavalanches. In fact, when α increases, the probability
that a microavalanche involves a site that has a long-range
link to the other microavalanches increases. Since, roughly
speaking, such sites play the role of sink points, one may expect
that the effective model for microavalanches is a dissipative
one. It is known that the dissipative BTW model is equivalent
to the massive ghost action S = ∫

d2z(∂θ∂̄θ̄ + m2

4 θ θ̄), where
θ and θ̄ are complex Grassmann variables and m2 is the
number of sand grains dissipated in each toppling (m can
be fractional). Using this, and the fact that R∗

3 ∼ m−1 [31],
one concludes that effectively our model is equivalent to the
dissipative BTW model with m2 ∼ α. This correspondence
is acceptable only for r � R∗

3 and shows that the large-scale
regime is directly affected by the dissipations in the boundary
sites and finite-size effects. This result is reasonable since
the amount of grain dissipation in a single component of an
avalanche (the number of sand grains which are transferred
out of that area) is proportional to the number of nodes with
long-range links in that area. The problem description is not,
however, as simple as stated above, since there are surely some
other links that return energy to the original microavalanche,
which partly compensates the dissipation effects. It is worth
noting a comment concerning the numerical value of ξ , which
is claimed to be 1/d ≈ 0.33 in three dimensions [21], which
is true for the total avalanches. For microavalanches, however,
the statistics is different and it is acceptable that R∗

3 should
be proportional to m−1 ∝ α−1/2, which is representative of the
grain dissipation toward the other microavalanches and is a
well-known property of the dissipative sand-pile models. We
have also considered the finite-size effect of the results, which
have been shown in Fig. 2(b). The constant trend of mUV is seen
in the inset of this figure, in which it is seen that its numerical
value (for α = 1) is nearly robust against varying lattice size L,
whereas mIR changes considerably by lattice size. This reflects
the universal behavior of mUV.

The same phenomena is seen in the distribution functions
of R3 and M3. For R3 [see Fig. 2(c)] as well as M3, two distinct
slopes are observed. The first slope is universal, which means

that the slope of the first part of the graph is the same (for
L = 300, τ (1)

r = 2.1 ± 0.1), whereas for the second part the
slope (τ (2)

r ) is nonuniversal and changes with α in the power-
law form, i.e., τ (2)

r ∼ αγτ2 , in which γτ2 = 0.18 ± 0.05 for L =
300 and 0.1 � α � 10. The transition point R∗

3 (here for the
distribution function) from UV to IR limits has also been shown
in the inset of this figure. It is interestingly seen that R∗

3 ∼ α−ζ0 ,
in which ζ0 = 0.4 ± 0.1, which is consistent with the result for
R∗

3 in Fig. 2(a).
It is worth mentioning, as a well-known fact, that in the IR

limit the BTW model on the random network phase (in which
α � 10) should have the same exponents as the mean field
(MF) results [20,21,34,35]. Two points should be noted in this
regard: First, we have not entered this phase. In our analysis,
α has been considered up to 10. Second, as stated above, our
statistical observables of microavalanches are different from
the ones considered in the above-mentioned references (total
avalanches) and the statistics of microavalanches (which are
claimed to act like the dissipative avalanches) is apparently
different from the total avalanche as a whole. As stated above,
the site that connects the original microavalanche to the other
ones plays (partly) the role of a sink point in this avalanche,
leading it to behave like a dissipative avalanche with the
mass m2 ∼ α in its effective ghost action (dissipative BTW
model). For example, the exponent of the distribution function
of dissipative avalanches should be higher than that of a
conservative avalanche. It is notable that the above-mentioned
effects appear in the IR-limit, i.e., for small scales the properties
of the regular BTW model should be seen. As the system
enters the IR-regime, or equivalently the concentration of the
long-range links increases, the effect of the internal structure of
the model and the grain dissipation in the boundaries inevitably
appear. In this case, the system experiences simultaneously
the effects of the IR limit (dissipative BTW model) and the
dissipation from the boundaries. Due to this fact, we see that
the exponents in the large-scale limit are α-dependent.

The above analysis is restricted to the bulk avalanches. Let
us now carry out the same analysis for the boundary avalanches
which are the most dissipative ones. This analysis helps to ac-
quire more insight to the physics of α. One of our observations
is that as α increases, the form of the distribution functions
and fractal dimensions of the bulk avalanches become closer
to the ones for the boundary avalanches. To quantify this trend,
we define a measure which states how far the curves are; see
Fig. 2(d). In this figure, two distribution functions for the
same amount of α have schematically been shown: one for
the bulk avalanche and the other for the boundary avalanche.
Let us name the area between these two curves as A and define
Cx(α) ≡ exp[A], which is numerically calculated as follows:
Consider the mentioned two distribution functions of the x

variable, one for the bulk injection N (x) and another for the
boundary injection N0(x), and define Y ≡ ln N and X ≡ ln x.
Using the discrete integration relation for A, we find that Cx(α)
is as follows:

Cx(α) = exp

[
N∑

i=1

δY
(
Xi

bulk − Xi
bdry

)]

=
N∏

i=1

(
xi

bulk

xi
bdry

)δY

, (4)
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TABLE I. The asymptotic values of the exponents. For each
quantity there is a “cut” value in which a crossover between small-
scale behavior (which are consistent with regular 3D BTW model) and
large nonuniversal behavior occur. It has been found these cut values
scale with α in a power-law fashion. For example, M∗

3 ≡ Mcut
3 =

mcut(α = 1)α−γcut , which have been shown by “cut” in the table. In
contrast to τ1, τ2 runs with α for all quantities; τ2 = τ2(α = 1)α+γτ2 ,
which have been shown separately in the table. The same is true for
“confined area,” abbreviated by C.

M3 M3(0) R3 R3(0) ntoppling ntoppling(0)

τ (α = 0) 1.34(4) – 2.53(5) – – –
τ1 1.37(4) 1.6(2) 2.07(5) 2.8(5) 1.33(1) 1.66(2)
τ2(α = 1) 3.46(5) 3.62(9) 5.98(7) 6.1(7) – –
γτ2 0.17(3) 0.19(9) 0.18(1) 0.18(3) – –
cut(α = 1) 2843 4601 11.2(5) 13.9(4) 3073 6629
γcut 1.28(9) 1.23(5) 0.42(8) 0.49(7) 1.57(3) 1.06(3)
C(α = 1) 9.6(6) – 1.71(8) – – –
γC 0.58(0) – 0.156(5) – – –

in which we have divided the Y axis (in the total range
[Ymin,Ymax]) to N ≡ Ymax−Ymin

δY
subintervals with the lengths δY

(=constant) and Xbulk ≡ ln(xbulk) and Xbdry ≡ ln(xbdry) have
been defined in the Fig. 2(d). Ymax is defined as the point at
which the curves meet each other for the first time (small Xs)
and Ymin is the minimum point in our analysis. For the case
in which the graphs coincide, we have Cx(α) = 1 resulting to
A = 0 as expected. The smaller the numerical amounts of C’s
are, the closer the bulk statistics are to the boundary statistics.
This definition may seem extravagant, since Ymin can clearly be
decreased unboundedly which increases A. In fact, this is not
annoying, since decreasing Ymin does not alter the exponents
of Cx’s (which are reported bellow) for small enough Ymin’s,
since both graphs become nearly vertical and the fractions
in the Eq. (4) generate some multiplicative number which
increases by decreasing Ymin, i.e., the exponent is not altered.
Therefore, the definition Eq. (4) is well-defined. The other
point is that A becomes smaller for larger α’s, which shows
that the boundary (dissipative) sites become more accessible
for bulk sites for larger α in such a way that the system becomes
more dissipative. The interesting feature is that for all x’s,
Cx(α) has a nice power-law behavior in terms of α in the
interval of interest, i.e., Cx(α) = Cx(α = 1)α−γCx . The benefit
of the chosen form of Cx in Eq. (4) is that it reveals that (on
average) the xbulk

xbdry
ratios show power-law behaviors with α. The

numerical amounts for Cx(α = 1) and γCx
have been presented

in the Table I, from which we see that γCM3
= 0.58 ± 0.01 and

γCR3
= 0.16 ± 0.01 for L = 300 and the α interval of interest.

Therefore, we see that by increasing α, the statistics of all
considered bulk observables tend to that of the boundary ones.
Having defined Cx , let us analyze further the exponents in the
IR limit, since they presumably carry the effect of the boundary
sites and the internal structure of the model. The nonuniversal
character of these quantities can be distinguished in Fig. 2(c).
Our observation is that it has power-law behavior in terms of α,
i.e., τ2 = τ2(α = 1)αγτ2 for which the exponents γτ2 have been
reported separately in Table I for L = 300. In Fig. 2(e), τ2 along
with the confined area for the bulk and boundary avalanches
have been shown for 3D gyration radius. A crossover has also

been observed for P (ntoppling) at some n value, i.e., n∗ below
which the exponent τN is identical for all values of α. n∗ has
also power-law behavior in terms of α which has been reported
in Table I.

We see that there are two scales with different physics: for
the UV limit the system behaves just like ordinary regular
BTW model, whereas for the IR limit the system shows
nonuniversal critical behavior, which is most consistent with
the dissipative BTW model. For largerα’s the large-scale phase
becomes more dominant showing that α favors the large-scale
(dissipative) behaviors, which is expected.

A point concerning the concreteness of the numerical
evaluation of the crossover points should be mentioned here.
In obtaining the crossover points, it should be noted that in a
graph with two distinct linear fittings, one should pay special
attention to the numerical error bar of the cross point (in which
the linear fits meet each other). Let us suppose that two linear
fits are y1 = α1x + β1 and y2 = α2x + β2. The relative error
for the transition point is simply calculated to be (δx∗/x∗)2 =
(δα2

1 + δα2
2)/(α1 − α2)2 + (δβ2

1 + δβ2
2 )/(β1 − β2)2, in which

δβi and δαi are the errors of αi and βi . In the cases in which α1

and α2 or β1 and β2 are close to each other, δx∗/x∗ becomes
large, leading to unreliable results. Fortunately in our work
none of α’s nor β’s are close to each other. For instance,
in Fig. 2(a) for L = 300 and α = 0.5, δx∗/x∗ ≈ 0.24, for
Fig. 2(c) it is δx∗/x∗ ≈ 0.1, for Fig. 3(a) it is δx∗/x∗ ≈ 0.06
and for Fig. 3(b) it is δx∗/x∗ ≈ 0.04. We see that except for the
first case the relative errors are reasonably small. The relative
closeness of the slopes in the first case is the reason of this fact.

B. Two-dimensional cross-sections

As stated above we consider two cross-sections: one at
z = 0 for boundary avalanches and the other at z = L/2 for
bulk avalanches. We investigate the statistical quantities x =
a,M2,l,r,R2, and ntoppling, which are statistical observables
for two-dimensional cross-sections of microavalanches (2DC-
SMA), defined in Sec. II. All of these quantities have also been
calculated for the boundary avalanches. As before we have two
types of the exponents: the fractal dimensions which are the
exponents γxy in the relations 〈log(y)〉 = γxy〈log(x)〉 + cst.,
and the exponents of the distribution functions τx defined by the
relation P (x) ∼ x−τx . Just like the previous section, we have
observed that the system behaves like the regular BTW model
for the UV limit (small scales), whereas for the IR limit (large
scales) the behaviors are changed. The other observation is that
the graphs of the bulk 2DCSMAs tend to behave more like the
boundary 2DCSMAs for larger α’s. To measure this, we have
calculated the confined area for the distribution functions of all
quantities like the previous section and observed a power-law
behavior in terms of α. Before going into the calculations,
a point is worthy to note. Microavalanches are defined as
those components of global avalanches that are connected by a
single long-range link. But the 2D cross-section of a global 3D
avalanche could produce also completely disconnected compo-
nents. These are treated as other microavalanches in this paper.

1. Distribution functions

The power-law behavior expected for critical systems is
observed for the distribution functions, as is seen in Fig. 3.
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(a) (b)

FIG. 3. The log-log plot of the distribution function of (a) M2 and (b) r for various rates of α. Insets: the power-law behavior of the confined
area of (a) CM2 and M∗

2 and (b) Cr and r∗ in terms of α.

We have found that the graphs approach to the boundary
graphs in the power-law fashion in terms of α which has
been quantified by Cx(α). In Fig. 3(a) the log-log plot of
the mass distribution function of two-dimensional clusters has
been shown for various rates of α. The UV slope of the graph
is nearly 1.6 for L = 300, whereas for IR limit the slope is
nonuniversal which can be interpreted as the fingerprint of
finite size effects. The power-law behavior of CM2 (α) has
been shown in the inset of this figure in which it is shown
that CM2 ∼ α−γCM2 and M∗

2 ∼ α
−γ

Mcut
2 in which γCM2 � 2.4 and

γMcut
2

� 0.77 for L = 300. Let us explain this result in terms

of the fractal dimension M2 ∼ R
γM2R2
2 , in which, as we will

see in the next subsection, γM2R2 � 1.88 for low α values.
From this equation, we easily see that M∗

2 ∼ (R∗
2 )γM2R2 . From

Table I we know that R∗
2 ∼ R∗

3 ∼ α0.42, from which we obtain
M∗

2 ∼ α−0.78, which is consistent with the above result. The
same log-log plot has been drawn for the loop gyration radius
r in Fig. 3(b). The approach to the boundary curves with the
exponent 1.4 (for L = 300) is evident. The cut value of radius
r∗ � α0.43 coincides with the exponent for R∗

3 which shows
that the approximate duality to the massive ghost model is
also preserved for the cross-sections. The full information of
the exponents of the distribution functions of the statistical
observables have been gathered in Table II. In this table the UV
exponents have been shown by τ1 which is nearly independent

of α. The IR exponents τ2 depend on α in a power-law fashion
in the considered interval, i.e., τ2(α) = τ2(α = 1)αγτ2 . The
cut-values also show power-law behaviors in terms of α. It is
worth mentioning that there are some hyper-scaling relations
between these exponents as stated above. Interestingly, we have
γCM2

� γCR2
× γM2,R2 which cannot be explained in terms of

simple scaling relations. The same is also true for other γ ’s.
We have calculated the UV exponents (τ1) for various rates

of lattice sizes and have seen that all of the exponents are nearly
saturated for maximum lattice size in this work, i.e., 1/L =
0.0033, showing that the results for L = 300 are reliable.

2. Fractal dimensions

The fractal dimensions are very powerful tools for iden-
tifying the universality class of any critical model. In this
section various fractal dimensions (γxy’s defined in the pre-
vious section) for cross-sections are processed. A very smooth
change of behavior from small scales to large scales is seen for
these quantities. For example, in Fig. 4 two fractal dimensions
(γM2R2 and γl,r ) have been shown and analyzed. In Fig. 4(a)
the mentioned change of behavior for γM2R2 (L = 300) is
obvious. The deviation from the UV (small scale) slopes are
α-dependent. This crossover is so smooth that a distinct point
for which the slopes of the graph above and below it are sharply
different cannot be singled out. Instead, we have calculated

TABLE II. The asymptotic values of the exponents. The symbols are the same as Table I.

a l r R2 M2 ntoppling ntoppling(0)

τ (α = 0) 1.63(4) 1.88(4) 2.21(5) – 1.58(4) – –
τ1 1.6(1) 1.9(2) 2.2(5) 2.05(5) 1.58(1) 1.0(2) 0.98(1)
τ2(α = 1) 5.5(3) 7.7(8) 10.1(1) 9.3(1) 7.1 – –
γτ2 0.11(9) 0.2(2) 0.18(5) 0.17(5) 0.2(1) – –
cut(α = 1) 149 110 6.7(5) 5.3(1) 127 131 190
γcut 0.77(3) 0.45(3) 0.43(2) 0.45(4) 0.77(5) 0.9(2) 0.68(1)
C(α = 1) 4.32(5) 2.4(1) 2.1(4) 1.64 3.8(1) – –
γC 2.5(4) 1.48(4) 1.41(1) 1.38(1) 2.41(5) – –
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(a) (b)

(c) (d)

FIG. 4. (a) The fractal dimension γM2R2 . Upper inset: the exponents for z = L/2 and z = 0 cross-sections. Lower inset: spatial extents of
regular BTW behavior for z = L/2 and z = 0 cross-sections. (b) The fractal dimension γlr (The curves have been shifted by a constant for
more clearness). Inset: The exponents for z = L/2 and z = 0 cross-sections in terms of α. (c) The finite size dependence of the exponents.
(d) The hyperscaling exponents γx,y ≡ τy−1

τx−1 and the calculated exponents in terms of α.

the mean slope of the graph over the full interval, which is
shown in the upper inset of this figure in terms of α. Noting
that γ α=0

M2R2
� 1.99 [28], we see that the extrapolation of the

graph for α → 0 for zcross-section = L/2 is compatible with
the other works. For z = 0-2DCSMAs γ α=0.1

M2R2
� 1.45 ± 0.02

and is nearly constant over the interested α interval. This,
along with the other results for the boundary 2DCSMAs
[see Fig. 3(b)], show that the properties of the model on the
boundary plate are nearly α-independent. It is expected since,
as stated in the previous sections, α is directly connected to
the fact how bulk sites are connected to the boundary sites and
for larger α’s the effects of the boundary dissipations are more
evident. However, for boundary plate avalanches, the effect of
the dissipation is maximal. The very small dependence to α for

these avalanches is the effect of the boundary sites on the other
sides of the system which is negligible. The maximum spatial
gyration radius in these graphs has been sketched in terms
of α in the lower inset from which again the exponent � 1

2
is evident for bulk 2DCSMAs, just like the three-dimensional
avalanches in which ζ � 1

2 (see Sec. III A). This shows that the
effective model in bulk 2D cross-sections is also massive with
m2 ∼ α. Note that this function for the boundary 2DCSMAs is
nearly constant for all αs. The same graphs have been sketched
for γl,r in Fig. 4(b) whose inset shows this exponent in terms
of α for zcross-section = 0,L/2. For α = 0.1 and L = 300 one
retrieves nearly the α = 0 result, i.e., γl,r (α = 0) ≡ DF (α =
0) � 11

8 = D
Ising
F . This result is nearly independent of α for

bulk 2DSCMAs, but for boundary 2DCSMAs it is α-dependent

TABLE III. The calculated fractal dimensions γx,y with the relation γx,y ∼ γx,y(α = 1) × α−τγ for both z = L/2 (without argument) and
z = 0 [with argument (0)].

γla γla(0) γlr γlr (0) γM2R2 γM2R2 (0)

γ (α = 1) 0.7(1) 0.7(5) 1.395(5) 1.392(5) 1.73(5) 1.45(3)
τγ 0.005(1) 0.02(1) 0.0 0.016(1) 0.044(5) 0.017(5)
γxy |α=1 = τy−1

τx−1 0.67(3) – 1.2(3) – 1.6(4) –
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and approaches �1.43 as α → 0.1 for L = 300. The finite-size
effects of these exponents have been shown in Fig. 4(c) which
show saturation in L = 300.

A very important check is a hyperscaling relation between
τ ’s and γ ’s, namely, γxy = τy−1

τx−1 [36–38]. This relation is
valid only when the conditional probability P (x|y) is a very
narrow function of both x and y. We have observed that
this hyperscaling relation holds only for the low α’s; i.e., for
large and medium values this relation is violated meaning that
P (x|y) is not a narrow function in this limit. These are shown
in Fig. 4(d), in which it is seen that the graphs become more and
more separated for large α’s. The total data about the exponents
and their variation in terms of α have been shown in Table III.

IV. CONCLUSION

This paper has been devoted to the problem of the en-
ergy propagation in 3D small-world networks and their 2D
cross-sections with the long-range link fraction α. For the
three-dimensional case, as well as a two-dimensional one, a
smooth crossover from regular BTW (UV) limit to purely
dissipative one (corresponding to a massive ghost action)
has been observed. By analyzing the spatial extent up to
which the regular BTW model was observed, it was revealed
that for the large scale (IR) limit the system behaves like a
dissipative BTW model with the dissipation factor (the mass
in the corresponding ghost action) m2 ∼ α. This result may
be expected since α is a parameter representing how short the
mean least path between a typical bulk site and boundary site (at
which energy dissipation occurs) is. Our reason for analyzing

2D cross section was twofold: First, for many experiments
the array of energy activity detectors covers only partly the
nodes of the system, which may be considered, for example,
a 2D lattice. Second, from the theoretical side, our motivation
was the question of how the information in the d + 1 system
spread in the d-dimensional slices. The induced model on
zcross-section = L/2 is critical with exponents distinct from the
3D ones compatible with previous results which have been
reported in the paper. The spatial extents, up to which the
BTW-type critical behaviors are seen, are α-dependent, and
for extreme dissipative (large α) limit the power-law behaviors
disappear. For boundary cross-section, however, the critical
extent is very low showing its extreme dissipative character.

Along with the cross-section in z = L/2, we have also
analyzed the energy spread in zcross-section = 0 planes to observe
how the induced model on z = L/2 cross-sections approaches
the induced model on zcross-section = 0 planes as a function
of α by defining a measure, i.e., Cx(α). Interestingly, it
was revealed that all statistical observables on zcross-section =
L/2 cross-sections approach to the boundary counterparts
(zcross-section = 0 cross-sections) in a power-law fashion. The
exponent of these behaviors is observable-dependent, which
has been reported in the paper. For both 3D and 2D models the
behavior of all of the quantities can be divided to two scales:
for small (UV) scales the exponents are α-independent and
are compatible with regular BTW model, whereas for large
(IR) scales they are power-law α-dependent. The exponents
of these relationships are L(=lattice size)-dependent. The
relation γxy = τy−1

τx−1 between the exponents of distribution
functions and fractal dimensions is also shown to be violated
for large αs, although it is correct for small α values.
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