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Thermal decay of a metastable state: Influence of rescattering on the
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We study the effect of backscattering of the Brownian particles as they escape out of a metastable state
overcoming the potential barrier. For this aim, we model this process numerically using the Langevin equations.
This modeling is performed for the wide range of the friction constant covering both the energy and spatial
diffusion regimes. It is shown how the influence of the descent stage on the quasistationary decay rate gradually
disappears as the friction constant decreases. It is found that, in the energy diffusion regime, the rescattering
absents and the descent stage does not influence the decay rate. As the value of friction increases, the descent
alters the value of the rate by more than 50% for different values of thermal energy and different shapes of the
potential. To study the influence of the backscattering on the decay rate, four potentials have been considered
which coincide near the potential well and the barrier but differ beyond the barrier. It is shown that the potential
for which the well and the barrier are described by two smoothly joined parabolas (“the parabolic potential”) plays
a role of a dividing range for the mutual layout of the quasistationary dynamical rate and the widely used in the
literature Kramers rate. Namely, for the potentials with steeper tails, the Kramers rate RKM underestimates the true
quasistationary dynamical rate RD , whereas for the less steep tails the opposite holds (inversion of RD/RKM). It
is demonstrated that the mutual layout of the values of RD for different potentials is explained by the rescattering
of the particles from the potential tail.
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I. INTRODUCTION

Escape of a Brownian particle from a potential well due to
thermal fluctuations is relevant for many branches of natural
sciences [1–15]. In his seminal paper [1] Kramers proposed
several formulas for the rate of this decay. Here, we write down
those in dimensionless form. One of these formulas is valid for
the case of weak friction (energy diffusion regime). Including
the modification proposed in Ref. [16] it reads:

RKL = 2πγ
δ − 1

δ + 1
RTS. (1)

The last multiplier in Eq. (1) is called transition state rate
and is equal to

RTS = 1

2π
exp(−ε), (2)

where

ε = Ũb

θ
; (3)

Ũb is the barrier height (in energy units); θ is the thermal
energy. For example, in nuclear physics θ is equal to the
temperature T measured in MeV, in chemical or molecular
applications θ = kBT (kB is the Boltzmann constant).
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The dimensionless parameter γ in Eq. (1) reads

γ = Ibβε

Ub

. (4)

The dimensionless action Ib is evaluated from the left
turning point ql up to the location of the top of the barrier
qb (see Fig. 1):

Ib = 2
∫ qb

ql

√
2[Ub − U (q)]dq, (5)

where β is the dimensionless damping coefficient

β = η

mωc

. (6)

The friction coefficient η should be taken in proper units, m
denotes mass of the Brownian particle (the inertia parameter)
in corresponding units; ωc is the frequency of oscillations near
the parabolic bottom of the potential well in units of inverse
time. Following the previous description, the rates RKL and RTS

are measured in units of ωc. The dimensionless potential reads

U (q) = Ũ (q)

mω2
c

, (7)

where Ũ (q) is the potential energy of the Brownian particle
in energy units.

The last unexplained ingredient of Eq. (1), δ, reads

δ =
(

1 + 2α

πγ

)1/2

. (8)
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The coefficient α is a dimensionless adjustable parameter of
the order of unity.

Equation (1) is valid if γ � 1. Since γ = 1 separates
the energy diffusion regime from the opposite one (γ > 1),
which is called “spatial diffusion regime” [11], let us call γ

a separation parameter henceforth. For the latter regime one
finds a different formula for the approximate quasistationary
rate in Ref. [1]:

RKM =
[(

ω2
b

ω2
c

+ β2

4

)1/2

− β

2

]
ωc

ωb

RTS. (9)

Here ωb is the frequencylike quantity calculated at the top of
the barrier. We will refer to RKM defined by Eq. (9) as to the
Zero-order Kramers rate Formula (ZKF).1

The conditions of applicability of Eqs. (1) and (9) can be
summarized as follows:

(i) the potential barrier is high enough comparing to the
thermal energy θ ;

(ii) the potential is represented well by the portions of
parabolas near the quasistationary and barrier points.

Sometimes there are additional requirements for the rate (9)
in the literature:

(iii) the absorptive border is far enough from the barrier;
(iv) the quasistationary point is far enough from the barrier.
The accuracy of ZKF has got some attention recently

[17–22]. It was studied by comparison with the long time
limit of the escape rate obtained using either the stochastic
differential equations (the Langevin equations) [17,19,20,22]
or the corresponding partial differential equation (the Smolu-
chowski equation) [18,21]. This limit is referred to as the Qua-
sistationary Dynamical Rate (QDR) henceforth and denoted
as RD . Yet the accuracy of the approximate rate for the energy
diffusion regime [see Eq. (1)], by our knowledge, was not
studied carefully.

There are only the characteristics of the bottom of the well
and of the barrier in both Eqs. (1) and (9); nothing tells us
what happens to the particle which has overcome the barrier.
In fact, after reaching the barrier, the particle can return to the
quasistationary state due to fluctuations or move further to the
absorptive point qa due to the driving force. The absorptive
point in nuclear fission corresponds to the scission point at
which a nucleus separates quickly into two fragments. In
general, the absorptive point is the last point from the top of
the barrier where the Brownian particle can still be scattered
back to the potential well. This rescattering can alter the value
of the rate. Thus, the amount of agreement of the approximate
Eqs. (1) and (9) with the exact quasistationary rate obtained
in numerical modeling can depend upon the location of the
absorbing border.

This dependence was considered in Refs. [18,23,24]. In
these papers it was shown that ZKF agrees with the quasis-
tationary dynamical rate only when the absorption point is

1Note that a simplified formula for the decay rate can be obtained
from Eq. (9) provided β2/4 � 1. For the latter case, the term
“overdamped regime” (“overperiodically damped”) is used often (see,
e.g., Refs. [1,5,11,17]). Thus, the spatial diffusion regime is wider than
the overdamped regime.

far enough from the barrier point. In Refs. [18,22,23] it was
shown that for the parabolic potential ZKF and QDR agree
within typically 2% for different values of the thermal energy,
barrier height and curvature. We consider this agreement to
be a proof that all the rescatterings beyond the saddle are
accounted for in the Kramers formula (9), although implicitly.
Indeed, the Kramers flux over the barrier is the sum of positive
(forward) and negative (backward) fluxes. This was shown
analytically (see Eqs. (5) and (6) of Ref. [25]) and is seen in
our dynamical modeling. The absorption point diminishes the
backward flux thus making the net flux larger. The only case
when the influence of this point disappears corresponds to the
best agreement of the numerical rate with the Kramers one.

In the present work, we aim to study the impact of
rescattering on the results of numerical modeling in the wide
range of friction constant covering both the energy and spatial
diffusion regimes. In particular, it is interesting to see what
the influence of the potential shape beyond the barrier (i.e.,
between the barrier and the absorption point) on the agreement
between the approximate analytical rate and RD is. The paper
is organized as follows. The model is described in Sec. II.
Section III is devoted to the presentation of the results. In
Sec. IV we summarize our conclusions.

II. THE MODEL

Our work stems from the nuclear fission problem which
was mentioned in the original Kramers paper [1] as one of the
examples of thermal decay of a metastable state. This problem
involves several degrees of freedom (DOF) [8,15,20,26,27]
and in Ref. [22] we studied the effects of multidimensionality
on the accuracy of the Kramers-type approximate formula.
However, later we realized that the rescattering problem is in
fact related to the only DOF corresponding to the decay of the
metastable state. Therefore, in the present work, the motion of
the Brownian particle is characterized by a single collective
coordinate q. In the case of nuclear fission, q is responsible for
the elongation of the fissioning nucleus.

For the one-dimensional case, the Langevin equations in the
differential form read

dq = p̃m−1dt̃,

dp̃ = −
(

η

m
p̃ + dŨ

dq

)
dt̃ +

√
2ηθdW̃ .

(10)

Here the coordinate q is dimensionless; all other quantities
have physical dimensions. The increment dW̃ of the Wiener
process W̃ possesses the normal distribution with the variance
dt̃ .This is the same time interval during which the momentum
changes by dp̃ and the coordinate changes by dq.

The Langevin Eqs. (10) correspond to the following Fokker-
Planck equation for the probability density P (q,p̃,t̃):

∂P

∂t̃
= − ∂

∂q

{
p̃

m
P

}
+ ∂

∂p̃

{(
η

m
p̃ + dŨ

dq
− ηθ

∂

∂p̃

)
P

}
.

(11)

Since the diffusion coefficient is in our case momentum
independent, the Ito and Stratonovich interpretations of the
Langevin Eqs. (10) coincide [28].
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FIG. 1. The potential energy UP (q) with the metastable state (qc).
qb indicates the position of the barrier; qa reflects the possible location
of the absorption point; ql shows the left turning point [according to
Eq. (5) UP (ql) = Ub].

The values of all quantities entering Eqs. (10) and (11)
significantly depend upon the particular physical problem
which the Langevin equations are used for. Nevertheless,
the main features of thermal decay of a metastable state are
common. Therefore, it is useful to convert these equations into
dimensionless form to exclude particularities and to emphasize
commonness:

dq = pdt,

dp = −
(

βp + dU

dq

)
dt +

√
2β

Ub

ε
dW.

(12)

The quantities t̃ ,p̃,dW̃ are related with the dimensionless
ones t,p, dW as follows:

t = t̃ωc, (13)

p = p̃

mωc

, (14)

dW = dW̃ω1/2
c . (15)

Relations of the quantities η,Ũ ,θ with β,U,ε are given by
Eqs. (6), (7), and (3), respectively. The discretized version of
Eqs. (12) used for the computer modeling is presented in the
Appendix.

Let us first concentrate on the influence of the damping
coefficient on the backscattering. For this aim, we use the
potential UP (q) represented by two parabolas of the same stiff-
ness C = Ub/(qb − qc)2 smoothly jointed at qm = (qb + qc)/2
(“parabolic potential”):

UP (q) =
{

C(q − qc)2/2 at q < qm;
Ub − C(q − qb)2/2 at q > qm.

(16)

For the quasistationary and barrier coordinates, we use qc =
1.00, qb = 1.60. The potential energy UP (q), as well as qc and
qb, are shown in Fig. 1.

Initially (at t = 0) the Brownian particle is located at the
minimum of the potential well (q = qc, p = 0).

The modeling results in a sequence of Ntot trajectories, all
of them are terminated not later than at t = tD . Some of these

FIG. 2. The time dependence of the dynamical rates for four
values of the dimensionless damping coefficient β (and separation
parameter γ ). The horizontal lines indicate the quasistationary dy-
namical rates. These calculations are performed for ε = 3.74.

trajectories reach the absorptive border qa (see Fig. 1) before
tD . The dimensionless decay rate is then calculated as follows:

Ra(t) = 1

Ntot − Nat

�Nat

�t
. (17)

Here Nat is the number of trajectories which have reached qa

by the time moment t ; �Nat is the number of trajectories which
have reached the absorptive border during the time interval �t

(note, that we measure time in units of ω−1
c ). Several examples

ofRa(t)-dependence are shown in Fig. 2 (see also Fig. 8 below).
One sees that after some transient time, the dynamical rate
reaches a quasistationary value RD . In order to find RD we
take several bins backwards from the end of Ra-array (i.e.,
from the time moment tD) and calculate the mean value of Ra

over these bins (see details in Ref. [22]).

III. RESULTS

A. The influence of the damping coefficient

We start from the dynamical modeling with different lo-
cations of the absorption point and calculate the RD(qa)-
dependence for several values of γ . The parabolic potential
[Eq. (16)] is used in these calculations. Corresponding results
are presented in Fig. 3 as the ratio RDb/RDa . Here RDb is the
dynamical quasistationary rate calculated when the absorption
point is positioned exactly at the barrier (qa = qb), whereas
RDa is calculated at the varied absorption point qa . We see
that for γ > 1, RDb > RDa , whereas for the energy diffusion
regime (γ = 0.10) RDb = RDa . We expected the latter result
because in the energy diffusion regime the decay process is
described by the diffusion equation (see, e.g., Eq. (14) of
Ref. [1]) which does not include the coordinate at all.

For the spatial diffusion regime, the value of RDa gradually
increases with qa reaching a saturated value of RDas . This
results in saturation of the RDb/RDa ratio. The saturated value
of this ratio,

rs = RDb

RDas

, (18)
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FIG. 3. The ratio of the dynamical quasistationary rates found
at the fixed barrier point qb and at the varied absorption point
qa , RDb/RDa , versus qa . The horizontal lines correspond to rs =
RDb/RDas (see text).

is not equal to 2 as it was thought earlier [17,21] but depends
regularly upon the separation parameter (or equivalently upon
the friction strength).

It looks like the separation parameter γ defined by Eq. (4)
is not really good for characterizing the friction strength in
the whole range of our calculations. Indeed, it nicely separates
the energy diffusion regime from the spatial diffusion regime.
Moreover, γ enters the analytical rate RKL. However, as we
enter the spatial diffusion regime, the separation parameter
becomes irrelevant or even misleading. One can notice that γ

includes the thermal energy in the denominator [see Eq. (4)],
whereas RKM depends upon θ only exponentially. This is
why we prefer using the dimensionless damping coefficient
β instead of γ below.

The dependence of the rates and rs upon β is shown in Fig. 4.
We see that our calculations cover more than three orders of
magnitude in damping coefficient and two orders of magnitude
in the rate. Of cause, for extremely small and large values of
the damping coefficient, the calculations become increasingly
computer time consuming. It is tempting to employ the reduced
Langevin equations for the overdamping regime (β � 1) and
the energy diffusion equation for β � 1. However, this would
contradict the purpose of our study.

In Fig. 4(a) the solid circles indicate the values of RDas

whereas the triangles up stand for RDb. These two rates are
different only for β > 0.1. When we put the absorption point
at the barrier (the way RDb is calculated) we obtain the decay
rate significantly larger than with the absorption point beyond
the barrier (RDas). The reason for that is the backscattering
of the particles in the latter case. For comparison, we show in
Fig. 4(a) the approximate rates RKM and RKL (lines) each in
its domain of applicability. These analytical rates agree nicely
with RDas in the whole range of damping coefficient.

In Fig. 4(b) the value of rs gradually grows withβ from unity
for the energy diffusion regime up to approximately 2 for the
overdamping regime. This is what we wanted to clarify.

Results of Fig. 4 have been obtained for ε = 3.00. The
natural question is to what extent the gradual increase of rs

is influenced by the value of ε. Thus, we performed extra

FIG. 4. The decay rates (a) and the saturated value of the rate
ratio rs (b) versus the dimensionless damping coefficient β. In panel
(a) the solid circles, triangles up, and lines correspond to RDas , RDb,
RKM (the right part), and RKL (the left part), respectively. ε = 3.00.

calculations for ε = 3.74. The calculated values of the rates
and rs obtained for these two values of ε are compared in Fig. 5.
We see that the rates differ in these two cases by a factor of 2
[Fig. 5(a)], whereas the ratios rs are nearly indistinguishable
[Fig. 5(b)].

Finally, we would like to discuss what is the impact of
the potential shape on the rs(β)-dependence. For this aim, we
construct the third-order polynomial (cubic) potential, which
coincides with the parabolic one at qc and qb. The cubic
potential is somewhat stiffer both at qc and qb. The rates
calculated at ε = 3.00 for these two potentials are displayed in
Fig. 6. In Fig. 6(a) we see that the rates RDas for the cubic and
parabolic potentials are very close. This is expected because
the rates are mostly influenced by the controlling parameter
ε (i.e., by the temperature and barrier height). However, the
values of the ratios rs(cubic) and rs(parabolic) [Fig. 6(b)] are
somewhat different in the spatial diffusion regime although the
behavior of the curves rs(β) is similar. The values of rs(cubic)
are smaller since the cubic potential decreases steeper at the
descent stage providing less back scattered particles.

B. The influence of the tail of the potential

Figure 6 suggests that the shape of the potential tail can
significantly influence the backscattering and thus the decay
rate. Therefore, in this section we concentrate on the beyond-
barrier shape of the potential and on the location of the
absorption point. Results presented in this subsection have
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FIG. 5. The same as in Fig. 4 but for two values of ε indicated
in panel (a). The lines in that panel correspond to RKL (left side) and
RKM (right side). Symbols in panel (a) stand for RDas .

been obtained with β = 5.07. We consider four potentials
presented in Fig. 7. The basic one is just the parabolic potential
described by Eq. (16).

The other three potentials coincide with the parabolic one
at q < qj and differ beyond qj . In Fig. 7 qj = 1.7. We have
seen in the previous subsection that for the parabolic potential
the maximum value of RD is obtained when the absorptive
border qa simply coincides with the barrier (see Fig. 3). This
is equivalent to the potential whose tail drops abruptly at qa .
As a sample of the potential that is close to this but still not
abrupt we use the “steep potential” US that reads

US(q) = UP (qj ) − C3(q − qj )3/3 at q > qj . (19)

This potential should result in less backscattering than in the
case of the parabolic one. The “linear potential” UL is defined
as

UL(q) = UP (qj ) +
(

dUP

dq

)
qj

(q − qj ) at q > qj . (20)

It is expected to provide more backscattering than the
parabolic one does.

As a limiting case we consider a potential shelf (“flat
potential” UF ):

UF (q) = UP (qj ) at q > qj , (21)

which hopefully provides even more backscattering.
Typical behavior of Ra(t) for the four potentials under

consideration is shown in Fig. 8. After a transient stage,

FIG. 6. The same as in Fig. 5 but for two types of the potential
energy: parabolic (circles) and cubic (diamonds). The analytical rates
RKL (left side) and RKM (right side) are shown by the solid lines in
upper panel only for the parabolic potential. ε = 3.00.

the decay rate reaches a quasistationary regime although
significant fluctuations are present. Duration of the transient
stage depends strongly upon the shape of the potential: the
steeper the tail, the shorter the transient stage. Thus, care should
be taken when choosing the interval for calculating QDR.

There is a discontinuity in the force at qj for the flat
potential. It is possible to make a smooth connection between

FIG. 7. Four dimenmsionless potentials used in the present work:
“flat,” “linear,” “parabolic,” and “steep” [see Eqs. (16), (19)–(21)].
qc = 1.0, qb = 1.6, qj = 1.7.
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FIG. 8. Typical behavior of the decay rate Ra(t) for the potentials
presented in Fig. 7. The horizontal lines indicate the quasistationary
dynamical rates. ε = 3.75, qj = 1.7, qa = 2.6, β = 5.07.

its parabolic and flat parts. We made several calculations with
such “smooth-flat” potential and found that the values of QDR
for the flat and smooth-flat potentials differ not more than
by 1–2%. This is a typical statistical error of our present
calculations.

Let us first study what is the role of rescattering at different
values of ε and how ZKF measures up against QDR versus
ε when the absorptive point is far enough from the barrier
(qa = 2.6) and the junction point where our potentials start
to differ is rather close to the barrier (qj = 1.7). Results
obtained under these conditions are shown in Fig. 9. Since
ZKF suggests the exponential dependence of RKM upon ε [see
Eqs. (2) and (9)], we present in Fig. 9(a) the dependence RD(ε)
in the logarithmic scale (scattered symbols). One sees that
this dependence is exponential indeed for all the potentials
whereas the absolute values are somewhat different indicating
the influence of the potential tail. The values of RD for the flat
potential are significantly (by a factor of 3) below the others.
To see clearer the difference between RD and RKM we display
in Fig. 9(b) the fractional difference

ξMD = RKM/RD − 1 (22)

with the statistical errors (both in percent) for the parabolic,
linear, and steep potentials. The curve corresponding to the flat
potential lies significantly higher (ξMD ∼ 200%). Recalling the
conditions of applicability of ZKF, one realizes that the best
agreement between RD and RKM for the parabolic potential
is to be expected. For the case of the steep potential ZKF
underestimates the dynamical rate by some 10% (ξMD < 0),
whereas for the linear potential ZKF overestimates the rate by
approximately 20% (ξMD > 0).

Let us now come back to Fig. 9(a) and discuss the lines
represented there. These lines correspond to the so-called
Integral Kramers Formula (IKF). It was discussed in detail
in Refs. [17,18,29]. In fact, this formula for the decay rate was
implied (but not written explicitly) in the original Kramers
paper [1]. As all Kramers rates, this one is based on the “flux

FIG. 9. (a) The quasistationary dynamical rates (symbols) and
integral Kramers rates (lines) versus ε for the potentials presented
in Fig. 7. Zero-order Kramers rate is shown as well but it is indis-
tinguishable from RKI for the parabolic potential. (b) The fractional
difference ξMD defined by Eq. (22), (c) the fractional difference ξID

defined by Eq. (25). qj = 1.7, qa = 2.6, β = 5.07.

over population” method. The dimensionless IKF reads

RKI = Ub

βε

{∫ qb

−∞
exp

[
− Ũ (x)

θ

]
dx

∫ qa

qc

exp

[
Ũ (y)

θ

]
dy

}−1

.

(23)

In this equation the integral from −∞ up to qb represents the
population near the quasistationary point, whereas the integral
from qc down to qa is proportional to 1/(the flux over the
potential barrier).
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Formally, Eq. (23) is valid in the case of large friction when
the motion is overdamped:

β2

4
� 1. (24)

In our case β2/4 = 6.43, thus inequality Eq. (24) approxi-
mately holds. It was shown in Refs. [17,18] that IKF provides
a better approximation to QDR in the cases when the potential
deviates from the parabolic shape near the barrier and the
quasistationary point. In Fig. 9(a) one sees that it is true in
our case too. In Fig. 9(c) we quantify the relation between IKF
and QDR showing the fractional difference

ξID = RKI/RD − 1 (25)

in the same scale as in Fig. 9(b). In Fig. 9(c) we see that
the values of ξID for different potentials are very close to
each other. Comparing Figs. 9(b) and 9(c) one notices that
the parabolic potential (circles) is the only one for which
the values of ξID and ξMD are close to each other. For the
linear potential (triangles up) ξID lies within 10% whereas ξMD

exceeds 25%. Even for the flat potential (squares), the ξID does
not exceed 10%, whereas ξMD estimated from Fig. 9(a) is larger
than 200%.

To prove that this is the backscattering which results in the
observed mutual relation between the rates [namely, RD(flat)
< RD(linear) < RD(parabolic) < RD(steep)] we register the
rescattered particles during our dynamical modeling. There are
two features of a particle to be registered as the backscattered
one: (i) its coordinate at least once takes a value larger than qb;
(ii) at the end of calculation the coordinate of this particle is
smaller than qb. This simplified algorithm allows us obtaining
an estimate for the number of the rescattered particles.

In Fig. 10, we examine the time dependence of this num-
ber evaluated numerically, Nrs num, for four potentials under
consideration. This quantity divided by the total number of
Brownian particles involved in the modeling, Ntot, is shown
by squares, triangles up, circles, and triangles down for the
flat, linear, parabolic, and steep potentials, respectively. The
statistical errors for all dynamical quantities presented in the
figure are within the symbols. We see that, at smaller values of
tD , increasing of the modeling time results in the monotonic
growth of Nrs num/Ntot (as well as of Nrs num itself since Ntot

is constant). At larger values of tD , the ratio Nrs num/Ntot

saturates. The horizontal line in each panel represents the result
of averaging over four last points. Note that the steeper the
potential tail, the earlier the saturation.

In addition, we show the ratio Nrs num/Na (diamonds) in the
same figure where Na is the number of absorbed particles. One
sees that Nrs num is very significant in comparison with Na . In
contrast to the saturating Nrs num, the number of absorbed par-
ticles grows monotonically as the time of modeling increases.
Therefore, the ratio Nrs num/Na decreases with tD revealing no
saturation.

Results of the rescattered particles registration are presented
in Table I for two values of ε. In addition to the ratioNrs num/Na ,
we show here the QDR and the number of rescattered particles
evaluated analytically, Nrs an, over Na . The value of Nrs an is
calculated on the basis of the following consideration.

FIG. 10. The number of rescattered particles evaluated numeri-
cally over the absorbed particles number (the diamonds) and over the
total number of particles involved in the modeling (other symbols) as
functions of the modeling time for the potentials presented in Fig. 7.
The horizontal lines represent the saturated values of Nrs num/Ntot (see
text for details). ε = 3.74.
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TABLE I. The quasistationary dynamical rate and the number of rescattered particles evaluated numerically, Nrs num, and analytically, Nrs an,
over the number of absorbed particles, Na , for four potentials. ε = 4.43 and 3.74; qa = 2.6; qj = 1.7; Ntot = 5 × 105; tD = 300 and 600. The
adjusting parameter u is explained in the text.

ε = 4.43; RKM = 0.3594 10−3; u = 1.560 ε = 3.74; RKM = 0.7137 10−3; u = 1.506

tD = 300 tD = 300

RD, 10−3 Nrs num/Na Nrs an/Na RD, 10−3 Nrs num/Na Nrs an/Na

Flat 0.1306 3.849 4.276 0.2697 3.688 3.830
Linear 0.2985 0.998 1.043 0.5842 1.048 1.039
Parabolic 0.3587 0.620 — 0.7184 0.611 —
Steep 0.3850 0.504 0.495 0.7786 0.487 0.441

tD = 600 tD = 600
Flat 0.1284 3.281 3.925 0.2644 2.637 3.663
Linear 0.3001 0.865 1.011 0.5773 0.774 1.076
Parabolic 0.3553 0.571 0.654 0.7076 0.482 0.648
Steep 0.3833 0.466 0.524 0.7677 0.387 0.504

Neglecting the transient stage, one can estimate the number
of non-absorbed particles from the radioactive decay law

Ntot − Na = Ntot exp (−RDtD). (26)

In all our calculations RDtD � 1, therefore approximately

Na

Ntot
= RDtD. (27)

It seems reasonable to accept that the number of absorbed
particles is just the difference between the number of the
particles which have overcome the barrier Nb and the number
of rescattered particles Nrs:

Na = Nb − Nrs. (28)

The number of the particles that have not overcome the
barrier should follow the same radioactive decay law but with
the rate which is between RKM and 2RKM:

Ntot − Nb = Ntot exp (−uRKMtD). (29)

Here u is still an unknown factor. Since uRKMtD � 1, Eq. (29)
results in

Nb/Ntot = uRKMtD. (30)

Combining now Eqs. (27), (28), (30) and excluding Na and Nb

we arrive at

Nrs = NtottD(uRKM − RD). (31)

Now we can estimate Nrs analytically (Nrs an) if we know u. To
find it we first apply Eq. (31) for the parabolic potential using
the known numerical value of Nrs (Nrs num).

In Table I we see that this algorithm provides rather
reasonable results. First, u lies between 1 and 2 as we expected.
Second, for two rather different values of ε, the values of
u are very close. Third, the number of rescattered particles
obtained analytically is close to that resulting from numerical
modeling. No exact equality between Nrs an and Nrs num is to
be expected because in our derivation we neglect the transient
stage and multiple rescattering. Indeed, in Fig. 8 we see that
the longest transient stage corresponds to the flat potential for
which the agreement between Nrs an and Nrs num is the worst.
In our opinion, results of Table I and Fig. 10 prove that the

inversion of RD/RKM as the potential goes over from the steep
to the flat one is solely due to rescattering.

All the results above are obtained when the absorptive point
is far enough from the barrier (qa = 2.6) and the junction
point is rather close to the barrier (qj = 1.7). Let us now
see how ZKF and IKF measure up against QDR when the
absorptive border moves closer and further to the saddle point.
The fixed parameters for these calculations are ε = 3.17 and
qj = 1.70. The results are shown in Fig. 11. There we see that
for the potentials which are “softer” than the parabolic (i.e.
decreasing slower after the junction point) ZKF significantly
overestimates the true dynamical decay rate. Thus, the mutual
layout of RKM and RD definitely inverses as one switches over
from a potential which is steeper than parabolic to the one
which is flatter. Moreover, contrary to the cases of the linear,
parabolic, and steep potentials, for the flat one RD does not

FIG. 11. The quasistationary dynamical rates (symbols) and the
rates calculated according to the integral Kramers formula (lines)
versus the absorption point coordinate for four potentials presented
in Fig. 7. The notations are the same as in Fig. 9(a). The thick solid
line in the upper part corresponds to the doubled zero-order Kramers
rate. ε = 3.17, qj = 1.7.
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FIG. 12. The same as in Fig. 11 but versus the difference qj − qb.
Results for the parabolic potential are not shown because qj is not
applicable in this case. ε = 3.17, qa = 2.6.

reach any plateau with the increase of qa . As before, IKF
reproduces the numerical QDR nicely at all values of qa .

Finally, in Fig. 12 we show the evolution of the rates with
the increase of the junction point coordinate qj . As it might be
expected, all the rates converge to ZKF as qj increases.

IV. CONCLUSIONS

We have studied the backscattering of the Brownian parti-
cles in their wandering out of the metastable state beyond the
barrier. Such backscattering affects the value of the quasista-
tionary decay rate. Usually to model numerically the thermal
decay one uses different approaches for different ranges of
friction constant. We performed the numerical modeling of
this process within the framework of the very same approach,
namely by means of the Langevin equations, for the wide
range of friction constant covering both the energy and spatial
diffusion regimes.

We show how the influence of the descent stage on the
quasistationary decay rate gradually disappears as the friction
constant decreases. Our present calculations demonstrate that
in the energy diffusion regime the rescattering is absent and
therefore the descent stage does not influence the decay rate.
As the value of friction increases, the descent alters the
value of the rate by more than 50%. This effect is stable as
we vary the thermal energy and the shape of the potential
energy.

For the spatial diffusion regime, the backscattering in-
fluences the decay rate significantly. In order to study this
influence, four potentials have been considered which coincide
near the potential well and the barrier but differ beyond the
barrier. The conclusions can be summarized as follows:

(i) the steep potential results in the quasistationary dy-
namical rate RD that is larger than the Kramers rate RKM of
Eq. (9), whereas for the linear and flat potentials opposite holds
(inversion of RD/RKM);

(ii) RKM disagrees with RD significantly for all but
parabolic potential;

(iii) we derived a formula [Eq. (31)], which allows estimat-
ing analytically the number of rescattered particles;

(iv) the mutual layout of the values of RD for different
potentials is explained by the rescattering of the particles from
beyond the barrier.
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APPENDIX: THE LANGEVIN EQUATIONS
IN DISCRETE FORM

For the one-dimensional case, the Langevin equations in the
discrete form corresponding to the Euler-Maruyama method
[30] read

pn+1 = pn + �p, (A1)

qn+1 = qn + �q, (A2)

�p = −
(

βp + dU

dq

)
τ + b

√
βUbτ

ε
, (A3)

�q = pn+1 + pn

2
τ. (A4)

The subscripts refer to two consequent moments of time
separated by the time interval τ̃ = τ/ωc, τ is the dimensionless
time step of numerical modeling. In the right-hand side of
Eq. (A3) all quantities correspond to the time moment nτ .
The random numbers b that enter the random forces possess
a Gaussian distribution with zero averages and variance equal
to 2. In the present calculations the value of τ was typically
varied from 0.15 up to 0.60. Each time we checked whether the
results of modeling did not depend upon the time step within
the statistical errors.
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