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We study the q-state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior
of lattice animals, it is argued that when q � 4 the system exhibits a second-order phase transition and when
q > 4 the transition is first order. The q = 4 model is borderline. We find 1/ln q to be an upper bound on Tc,
the exact critical temperature. Using a low-temperature expansion, we show that 1/(θ ln q), where θ > 1 is a
q-dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc = 1/(θ ln q).
This expression is used to estimate the finite correlation length in first-order transition systems. These results can
be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the
four-site interaction model using the Wang-Landau entropic sampling method for q = 3,4,5. In particular, the
q = 4 model shows an ambiguous finite-size pseudocritical behavior.
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I. INTRODUCTION

The Potts model [1,2] has been widely explored in the
literature for the past few decades. While many analytical and
numerical results exist for the traditional two-site interaction
model in various geometries and dimensions [2], little is yet
known about models with multisite interactions [3–7]. Baxter
et al. [3] and Wu et al. [5–7] obtained the exact transition
point for the three-site interaction model on a triangular
lattice. The four-spin interaction model has been studied by
several authors [8–10]. Specifically, it has been shown [8,9]
that the site percolation problem on a square lattice can be
formulated as a four-site interaction Potts model in the limit
q → 1. Burkhardt [10] argued that the four-site Hamiltonian
H, with interaction strength K defined for every other square
of the lattice (checkerboard), can be mapped onto another
four-site Hamiltonian H̃ with strength K̃ , defined for every
elementary square in the dual lattice. This mapping yielded
the transformation

(eK − 1)(eK̃ − 1) = q3, (1)

in agreement with a more general expression [2,11]

(eKγ − 1)(eK̃γ − 1) = qγ−1, (2)

which assumes arbitrary γ -site interaction. Results like (1)
and (2) may be conveniently obtained if one equivalently
represents the Potts spin configurations as graphs on regular
lattices [2,12,13]. However, the set of monochromatic graphs
associated with nonzero interaction terms in the checkerboard
Hamiltonian is small compared to the set of monochromatic
graphs involved in the partition sum of a problem where every
elementary square is considered. Therefore, (1) suggests that
the transition point (if it exists) should be rather different
from that of a four-site interaction model defined for every
elementary square.

In this paper we consider a four-site interaction model
described by a Hamiltonian with a partition sum that exhausts
all the elementary squares of the lattice. We propose a simple
equilibrium argument that results in a critical condition for

the transition point. This condition is in fact a zeroth-order
approximation to the exact point. It relies on the observation
that tracing out spin states in the partition sum is equivalent to
the enumeration of large-scale lattice animals in the vicinity
of the transition point. Using a self-consistent low-temperature
approximation, we obtain a more general condition which may
allow one to approach the exact point up to an arbitrarily small
distance by means of the first-order finite correlation length,
at least when q > 4. It is argued that these considerations can
be applied to other lattices. To demonstrate the generalization,
we briefly also discuss the triangular lattice. We next test our
analytical predictions by an extensive numerical study of the
four-site interaction Potts model on a square lattice (FPS) with
q = 3,4,5 states per spin. For that purpose we use the Wang-
Landau (WL) [14,15] entropic sampling method. The simula-
tions results, together with finite-size-scaling (FSS) analysis,
enable us to approximate the infinite lattice transition point
for each of the three models. An estimate of the correlation
length for the q = 5 model, which according to the simulations
exhibits a strong first-order transition, is additionally made. It
should be noted that another microcanonical-ensemble-based
approach that may be useful in simulating the first-order
transition FPS has been introduced in [16].

The rest of the paper is organized as follows. In Sec. II
we present the model and describe the role of lattice animals
in determining the order of the phase transition. We find the
(seemingly) exact transition point and show that it is related to
the finite correlation length in the first-order transition case. In
Sec. III we present the WL simulation results and FSS analysis.
Our conclusions are drawn in Sec. IV.

II. ANALYTICAL RESULTS

We consider the FPS, defined by the Hamiltonian

−βH = K
∑
�

δσ� , (3)
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FIG. 1. Portion of the square lattice showing a graph G

with c(G) = 4 monochromatic clusters, f (G) = 18 faces (colored
squares), and ν(G) = 43 nodes residing in the corners of these
squares. The three different colors (also denoted by c,g,o) represent
a model with q � 3.

where β = 1/kBT and K = βJ is the dimensionless coupling
strength (for convenience we will assume from now on that
kB = J = 1). Each spin can take an integer value 1,2, . . . ,q.
The δσ� symbol assigns 1 if all the four spins in a unit cell �
are equal and 0 otherwise. The summation is taken over all the
unit cells. It is convenient to write the partition function for the
Hamiltonian (3) [17]

ZN =
∑
σ�

∏
�

(1 + vδσ� ) ∼ qN
∑
G

qc(G)−ν(G)vf (G), (4)

where v = eK − 1 and G is a graph made of f (G) unit cell
faces placed on the edges of the lattice. The faces are grouped
into c(G) clusters with a total number of ν(G) nodes. The ∼
sign is due to contributions to the partition sum from perimeter
terms o(N ), which are omitted. Clusters with perimeters of size
O(N ) (snakelike, snail-like, etc.) are energetically unfavorable
and also assumed to be poor in entropy; therefore, their
corresponding graph contributions are absent. An illustration
of a graph G is given in Fig. 1. Provided all the interacting
spins are shown in the figure, G is associated with a qN−39v18

term in (4).
We now consider a low-temperature expansion (v ≈ u =

eK ) in which we assume that only k clusters exist. That is, for
each k large enough we assume a single cluster [c(G) = 1] with
f (G) = k faces and ν(G) = mk sites. It is conjectured that in
a typical k cluster mk ≈ k. In terms of the new variables, the
low-temperature partition function may take the form

Zlow
N ∝ qN

∑
k

∑
mk

G(k,mk)q−mkuk, (5)

where G(k,mk) is the number of configurations with k

faces and mk sites, associated with a k cluster. It is
known [18–20] that the combinatorial term gk = ∑

mk
G(k,mk)

for large k is the asymptotic number of lattice an-

imals1 gk ≈ cλk/k, where λ ≈ 4.0626 and c ≈ 0.3169.
This observation distinguishes between q > 4 and q � 4.
Making a k cluster (animal) monochromatic, the total change
in entropy, if an asymptotic number of site configurations is
exhausted, can be written, to leading order, as

	Stot = k ln(λ/q). (6)

Thus, when q > λ > 4, it is energetically disadvantageous
for the system to occupy animals at the asymptotic rate.
Instead, to optimize the energy gain to entropy loss ratio, it
possesses a giant component (GC), typically at the system
size, that may be distorted from a perfect square in shape. This
mechanism is usually associated with systems which exhibit
a first-order phase transition. In the case where q � 4, since
λ > q, the entropy of the system increases. To avoid this,
the system will again form a GC but this time with a fractal
dimension rather than a simple component as in the q > 4 case.
This scenario is typical to second-order transitions, where the
correlation length at criticality diverges. A single monochro-
matic GC approximately reduces the entropy in the amount of
	S = − ln qkGC+T ≈ − ln qkGC (whereT denotes higher-order
terms). The resulting gain in energy is 	E = −kGC. Thus,
	F = 	E − T 	S < 0 if and only if T < 1/ ln q, yielding
the zeroth-order bound on the critical point

T̃c = 1

ln q
. (7)

Consider for a first-order q the class (denoted by Â) of
large k animals with perimeters proportional (to leading order)
to

√
N . Higher-order contributions to (6) from the simple GC

may then be depicted by writing

θ = sup
k

(
sup
mk

mk

k

)
, (8)

where mk are now site variables of animals in Â. Replacing
q−mk in (5) with q−θk , it can be shown (see Appendix A) that


 = lim
N→∞

(
Zlow

N

)1/N = uq1−θ . (9)

The (minus) dimensionless free energy −βf low = ln 
 is
then maximal if and only if uq−θ > 1, leading to the critical
condition

uc = qθ , (10)

or equivalently to the critical temperature

T̂c = 1

θ ln q
. (11)

Note that if one does not adopt the low-temperature approx-
imation, one has to add the term ln(1 − 1/u) to −βf low and
hence does not violate the critical condition (10). Note also
that long-range order is uniquely controlled by large animals.
These two observations imply that the critical temperature (11)
is exact. Observe also that the approximation mk = k (in the
exponent) in (5) results in the critical condition uc = q and

1It can be shown that k clusters and clusters of size o(N ) do not
share mutual “corner” sites, asymptotically almost surely.
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likewise (7). Equation (11) can be used to relate the critical
point to the finite correlation length through

θ = 1 + c1/ξ + · · · , (12)

where ξ is a typical length for clusters that are not k clusters.
For instance, for the square lattice, it can be easily shown that
the simple GC consists of k faces and mk sites satisfying

mk

k
� 1 + ĉ√

k
+ · · · , (13)

with ĉ � 2 constant. It follows from (12) and (13) (see
Appendix B) that c1 = ĉ. With the further aid of (11), one
readily obtains

T̂c(q,ξ ) = 1

ln q

(
1 − ĉ

ξ

)
+ O(1/ξ 2). (14)

Finally, we address the issue of the lattice structure. In
agreement with Ref. [21], the formation mechanism of a GC,
either simple or fractal, which controls the critical properties
of the model, applies also to other systems. Specifically, the
zeroth-order approximation (7) is expected to be valid (up to
a constant multiplicative factor) for other lattices. In the first-
order transition case, the lattice structure is captured by means
of the constant term in (14). For example, in the triangular
lattice, a simple GC consisting of mk = k/2 + O(

√
k) sites

satisfies (14) with ĉ � 1. The lower bound corresponds to
the marginal case where the GC, when embedded in the
square lattice, forms a perfect monochromatic square with no
vacancies.

III. SIMULATIONS

To test our analytical predictions, we study the FPS for three
different models, namely, with q = 3, 4, and 5 states per spin.
The WL [14,15] entropic sampling method is chosen for this
purpose since it enables one to accurately compute canonical
averages at any desired temperature. We use lattices with linear
size L = 4,8,12, . . . ,68 and periodic boundary conditions are
imposed. For each lattice size, we compute �(E), the number
of states with energy E. These quantities allow us to calculate
energy-dependent moments 〈En〉 ∝ ∑

E En�(E)e−βE . In par-
ticular, we are interested in the specific heat per spin given by
[22,23]

cL = L−dβ2(〈E2〉 − 〈E〉2). (15)

A plot of the specific heat for the three models is given in
Fig. 2. For each model, the location of the peak serves as
the L-dependent pseudocritical temperature and is defined as
TL ≡ TCmax

L
. Indeed, in agreement with (11), the pseudocritical

temperatures increase with q. To determine the order of the
transition for each model we are simultaneously also interested
in the energy probability density. The latter may be written

PL(ε) ∝ gL(ε)e−βLdε ≈ Ld�(E)e−βE, (16)

where ε = L−dE and gL(ε) is the energy density of states.
In Fig. 3(a) we display the probability density at TL(q). The
q = 3,4 models apparently suffer from significant finite-size
effects. Specifically, the q = 4 model has a double-peaked
shape, usually seen in first-order transitions [24]. Evidently,
there is a large dip between the peaks but (unlike in the q = 5
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FIG. 2. Variation of the specific heat of each model against
temperature for L = 44. While the q = 4 model and especially the
q = 5 model display sharp and narrow peaks at the q-dependent
position of the specific-heat maximum TL(q), the q = 3 peak is an
order of magnitude smaller and rather broad.

case) also a domain where the two humps overlap. A fit of the
minimal density between the peaks to a power law generates
a slope −1.09 ± 0.19. This may indicate finite-size interface
contributions to the probability density function (PDF). Either
way, the dip does not exponentially vanish as expected from
systems which undergo a discontinuous transition. When q =
5, the energy is narrowly distributed in the vicinity of the
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FIG. 3. (a) Pseudocritical canonical energy distribution computed
at TL(q) for q = 3,4,5 and L = 44. Note the peak width 1/L

behavior when q = 5, typical of normal distributions. Conversely,
the distributions for the q = 4 (and of course the q = 3) models are
essentially not normal. (b) Scaling of the specific-heat maximum cmax

L

with L on a log-log scale for q = 3 (�), q = 4 (•), and q = 5 (�).
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FIG. 4. Scaling of the position [temperatureTL(q)] of the specific-
heat maximum with L, for the three models: (a) q = 3 and TL − Tc ∝
L−1/ν(ln L)α/ν , (b) q = 4 and TL − Tc ∝ L−1/ν+T , and (c) q = 5 and
TL − Tc ∝ L−d . Solid lines are presented to guide the eye.

ordered and disordered states’ energies (denoted by ε− and
ε+, respectively) and has a typical width 1/L.

Armed with these observations, we next perform a FSS
analysis of each of the models. For each q we locate cmax

L (q)
and TL(q). We fit these observables to linear models according
to conventional scaling laws. We then simultaneously vary
Lmin, the smallest lattice size used in the fit, and consider
the intercept term in the TL(q) fit and the deviations of TL(q)
(L = Lmin, . . .) from the intercept, in a χ2 test [25,26]. The
best fit is determined for Lmin > 4 from which the p value
becomes monotonically increasing. The corresponding Lmin

is denoted by Lbest
min . Since it is assumed [and evidently from

Figs. 3(b) and 4 correct] that the exponents involved in the
scaling laws of cmax

L (q) and TL(q) are not independent, it is
reasonable that Lbest

min simultaneously serves in the best fit of
cmax
L (q). As observed in Fig. 3(b), for q = 3 it is plausible to

try the ansatz cmax
L ≈ (ln L)α/ν for the specific-heat maximum.

For the distance between TL and the infinite-volume critical
point, we use TL − Tc ∝ L−1/ν(ln L)α/ν [27] and assume that
α and ν satisfy the hyperscaling relation

dν = 2 − α. (17)

The goodness-of-fit test yields χ2/D = 1.14/7 (where D
denotes degree of freedom), a p value of 0.021, and Lbest

min = 20
[from now on we will give for each TL(q) fit its corresponding
χ2/D, followed by the p value and Lbest

min , in parentheses]. The
intercept term in the TL(3) fit [Fig. 4(a)] is 0.827(9) and α/ν ≈
2.197(5). The q = 4 model displays a pronounced power-law
scaling. Assuming a second order scaling law cmax

L ∝ Lα/ν(1 +
AL−ω + o(L−ω)), we focus on a correction to the leading order
term. The distance between TL(4) and Tc scales (to leading
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FIG. 5. Specific-heat universal scaling function F(x) for several
lattice sizes L. The estimated values Tc(4) ≈ 0.689(9) and α/ν ≈
1.832(7) are used in all the plots.

order) as L−1/ν . Again, next-to-leading-order unknown correc-
tion terms are apparently involved. A fit to a power-law decay
of L yields an intercept term 0.689(9) (1.72/7,0.044,32).
The specific-heat maximum scales as L1.832(7). The picture
is different when q = 5. The rather asymptotic behavior of
the energy PDF as shown in Fig. 3(a) suggests the q = 5
data are compatible with the first-order transition volume-
dependent scaling laws. The conventional TL − Tc ∝ L−d fit
gives Tc(5) ≈ 0.606(1) (2.08/8,0.033,16). A log-log fit to
cmax
L against L, for L � 16, gives a slope 1.992(6), so a

volume-dependent scaling for the specific-heat maximum is
indeed conceivable. To further support a second-order behavior
when q = 4 we consider the universal scaling form

cL = Lα/νF(tL1/ν), (18)

whereF(x) is a universal scaling function of the dimensionless
variable x = tL1/ν and t = (T − Tc)/Tc is the reduced temper-
ature. As clearly shown in Fig. 5, the specific heat, normalized
by Lα/ν , collapses on a single curve as follows from (18). Thus,
it is reasonable to assume that the hyperscaling relation indeed
holds, in consistency with the scaling relations we use.

Another manifestation of the q = 5 discontinuous transition
is the latent heat, estimated in two different ways: first, by
measuring the distance between the locations of the peaks
in a Gaussian fit to the energy PDF (Fig. 6) and then trying
the ansatz 	εPDF

L ≈ 	εPDF
∞ + const × L−d , and second, using

[28]

cmax
L ≈ (ε+ − ε−)2

4T 2
c

Ld + c+ + c−
2

, (19)

where c+ and c− are temperature-independent terms. The PDF
fit, for L � 24, produces 	εPDF

∞ = εPDF
+ − εPDF

− ≈ 0.813(9)
(χ2/D = 1.35/6,p = 0.058), while (19), choosing Tc(5) ≈
0.606(1), yields 	ε = ε+ − ε− ≈ 0.809(5). The two results
reasonably agree.

To conclude, we turn to test our analytical predictions
against some of the simulations results. First we compare
the zeroth-order bounds with the simulations predictions. The
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FIG. 6. Reweighted PDF [24] (blue symbols) together with a
double Gaussian fit for L = 44. Note that the peaks are centered at
points satisfying PL(ε−) ≈ qPL(ε+). The inset shows the difference
between these points, as a function of L−d (closed squares). Absent
error bars are smaller than the symbols. The estimated infinite volume
	εPDF

∞ ≈ 0.813(9) is denoted by the closed circle. Lattices with
L < 24 have too noisy distributions around the peaks and are therefore
omitted.

results are summarized in Table I. As expected, (7) becomes a
better approximation as q grows. Next, having in mind that for
q = 5 the transition is first order, we give a lower bound on the
correlation length ξ (5) with the help of (13) and (14). Taking
T̂c ≈ 0.606(1), we obtain ξ (5) > 81. This result justifies our
FSS analysis in the sense that the lattice sizes we use are
compatible with ξ (5).

IV. CONCLUSION

The transition nature of the FPS is controlled by large-
scale lattice animals. Based on the lattice animal asymptotic
growth, the transition is found to be continuous for q � 4 and
discontinuous for q > 4. The q = 4 is borderline. In the case
in which the assumption that typical large clusters have (to
leading order) the same number of sites and faces breaks down
(e.g., when the number of clusters satisfying limk→∞ mk

k
> 1 is

sufficiently large), the q = 4 model might undergo a first-order
transition. It is expected that large animal growth controls
the transition order in other lattices as well. Specifically, it is

TABLE I. Estimates of the transition temperatures for the three
models, using the zeroth-order bound (7) and the simulations results.
The relative error is given in the last column. The supplementary
q = 10 result is based on additional simulations for lattices with 4 �
L � 36 and a TL − Tc ∝ L−d fit (2.75/7,0.084,8).

q Bound Simulations Error (%)

3 0.910(2) 0.827(9) 9.9
4 0.721(3) 0.689(9) 4.6
5 0.621(3) 0.606(1) 2.5
10 0.434(2) 0.432(4) 0.4

known [29] that the asymptotic number of triangular animals
(polyamonds) of size k, ak , satisfies limk→∞ k

√
ak = λt with

2.8424 < λt < 3.6050. The number of faces in a typical large
cluster is (to leading order) twice the number of sites. Thus,
the transition is continuous at least for q � 4. Moreover, it
can be easily shown that the transition point is no larger
than 2/ ln q. The WL simulations and FSS analysis confirm
our analytical predictions. That is, the q = 3 model displays
a scaling behavior typical of a second-order transition and
the q = 5 numerical footprints are significantly first order.
While the q = 3 FSS shows a very slow approach to the
asymptotic regime, the q = 5 sample sizes are compatible with
ξ (5). The χ2 goodness-of-fit tests support the scaling laws we
use. In particular, for q = 3 it follows that the free-energy is
homogeneous in the small-L regime, since the critical indices
apparently obey (up to small corrections) (17). The q = 4
model is rather unique. The double-peaked shape of the energy
distribution is also observed in models exhibiting a relatively
weak first-order transition such as the q = 8 usual Potts model
[see Fig. 1(c) in [24]]. On the other hand, Fig. 5 remarkably
confirms (18), suggesting a divergence of the correlation length
ξ (4) ∝ |t |−ν as t → 0. The indefiniteness of the four-state
model manifested both analytically and numerically is in
agreement with renormalization-group (RG) predictions. The
dynamics of models lying in the universality class of the
two-site interaction q = 4 Potts model (TSP) flows towards the
multicritical point qc = 4 [30–32]. However, a certain choice
of parameters [33] may drive the dynamics in some of these
models away from qc, to the first-order domain. In other words,
in the marginal q = 4 case, the transition nature (first versus
second order) is sensitive to the model’s details [33]. The
lattice animals mechanism suggests that FPS may belong to
the TSP universality class. Nevertheless, it leaves room for a
first-order-like RG description. It should be emphasized that
unlike the RG method, which makes assumptions about the
model under scaling, our approach is direct and fundamental,
building on first principles, and thus, we think, is preferable
to RG for the studied question. As a concluding remark, we
believe that being general, our theoretical framework can be
extended to other lattices, more complicated Hamiltonians, and
higher dimensions.
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APPENDIX A: THE CRITICAL POINT

1. Derivation of equation (9)

We give a detailed derivation of (9), yielding the critical
temperature (11). Since (11) is also useful in estimating the
finite correlation length in the first-order case [see (12) and
Appendix B], the derivation is concerned with this class of
models. However, it is stressed that (11) holds for arbitrary q.
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Let εn be a sequence of positive small numbers. Then there
exist a sequence k(εn) and sets

κn =
{
k > k(εn) :

∣∣∣∣
∑

mk
G(k,mk)

cλk/k
− 1

∣∣∣∣ < εn

}
(A1)

associated with animals G(k,mk) with k faces and mk sites in
the asymptotic regime. Consider further, for every n, the set
An of all the animals with an asymptotic k,

An = {G(k,mk) : k ∈ κn}. (A2)

We now define the (small) class of large-k simple animals

Â =
{
G(k,mk) ∈

⋃
n

An :
mk − k√

k
� B

}
, (A3)

where B is a positive constant. Equations (A1)–(A3) allow us
to define

θ = sup
k

(
sup

mk :G(k,mk)∈Â

mk

k

)
. (A4)

Next let rj , j = 1,2, . . . ,jmax � N ,N ∈ ⋃
n κn be a sequence

satisfying 1
N < rj < 2

N . Construct another sequence with jmax

integers kj � N from
⋃

n κn. Define now for every 1 � j �
jmax,

Âj =
{
G(kj ,mkj

) ∈ Â :
mkj

kj

> θ − rj

}
. (A5)

Take Zlow
N � Ẑlow

N where

Ẑlow
N ∝ qN

∑
j

∑
mkj

G(kj ,mkj
)q−mkj ukj

� qN
∑

j

∑
mkj

G(kj ,mkj
)

(
u

qθ−rj

)kj

� qN
∑

j

ĝkj

(
u

qθ−2/N

)kj

� qN

[
KN

( N
a
√
N

)(
u

qθ−2/N

)N
+ o(λN )

]
. (A6)

The mkj
summations in (A6), taken over site variables of

animals in Âj , satisfy∑
mkj

G(kj ,mkj
) � ĝkj

. (A7)

Since ĝkj
count simple animals, their contributions to the

leading order term are no larger than K( N
a
√
N ), where K,a are

constants. It follows immediately from (A6) that

lim
N→∞

(
Ẑlow
N

)1/N = lim
N→∞

(
Zlow

N

)1/N = uq1−θ . (A8)

2. Equation (8) and first-order transitions

When the system undergoes a first-order phase transition,
q-ordered states coexist with a single disordered state at the

critical point. In (8) we utilize this as follows. Consider a simple
large animal with k = αN (α < 1) faces and mk sites. Then the
change in the free energy when making a macroscopic number
of finite clusters monochromatic may be written

	F (k,mk,T ) = N [−(1 − α) + σ (1 − α)

+
(

1 − α
mk

k

)
T ln q] + T , (A9)

where 0 < σ < 1 controls the energy loss due to boundary
interactions of the finite clusters. Applying now (A4) to (A9)
gives 	Fu(T ) � 	F (k,mk,T ) with

	Fu(T ) = N [−(1 − α)(1 − σ )

+ (1 − αθ )T ln q] + T . (A10)

Equation (A10) holds provided the leading order term vanishes
at the critical point. In addition, (A10) should be unstable in
some left neighborhood of Tc. These can be established first
by taking 	Fu(Tc) = T for Tc = T̂c = 1/(θ ln q), leading to

θ = 1

1 − σ (1 − α)
. (A11)

Second, consider 	Fs(T ), the free-energy change due to the
formation of a single giant component, given by

	Fs(T ) = N (−α + αθT ln q) + T . (A12)

Plugging (A11) into (A10) and (A12), it follows that
	Fs(T −

c ) < 	Fu(T −
c ) if and only if

α >
1

2θ
. (A13)

Equations (A10)–(A13) assert that when a (first-order)
phase transition occurs, the fraction of faces constructing a
monochromatic GC is no smaller than 1/2θ . It should be
noted that the critical threshold αc = 1/2θ increases with q

(see Appendix B), in accordance with the system’s attempt to
reduce entropy.

We conclude by stating that (9) [and so (11)] holds for
the second-order models as well. In order for the number of
animals with k faces to be maximal, the system picks those
with a maximal number of sites. Equation (8) then immediately
follows. In addition, constructing θ , fractal animal are involved
so that Â in (A4) may be replaced with Â ⊆ ⋃

n An.2

APPENDIX B: CORRELATION LENGTH

In the following we derive the relation between the first-
order model finite correlation length and the critical tempera-
ture, formulated by (12). Observe that for animals in Â, (A3)
implies

mk

k
� 1 + ĉ√

k
+ · · · . (B1)

Hence there exists a sequence k̂n � k(εn) such that

θ � 1 + ĉ√
k̂n

+ · · · , (B2)

2We take Â ⊆ ⋃
n An to make sure that the inner supremum in (A4)

exists.
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leading to

θ = 1 + c1

ξ
+ · · · = inf

n

(
1 + ĉ√

k̂n

+ · · ·
)

, (B3)

with [ξ 2] = maxn(k̂n) and c1 = ĉ. The correlation length, as
follows from (B3), may be interpreted as a typical length
measuring large finite domains. Writing the right-hand side of
(12) as a power series

∑∞
n=0 cnx

n at x = ξ−1, it follows from
(A11) that limn→∞ n

√
cn = ξσ (1 − α), so the series indeed

converges to θ .

Observe that the above analysis can be extended to arbitrary-
q first-order systems. We expect that as q grows the deviations
from a perfect square critical giant component become smaller.
This may be formulated by constructing subclasses Â(q) ⊆ Â

with animals G(k,mk) satisfying supk
mk−k√

k
= B(q), where the

constants B(q) are expected to decrease with q. Replacing
Â in (A4) with Â(q), θ essentially becomes q dependent. It
acquires lower values as q grows, as also realized in Table I,
where the simulated temperature approaches better the bound
1/ ln q, when q changes from q = 5 to q = 10.
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