
PHYSICAL REVIEW E 97, 032104 (2018)

Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions
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The fractal dimension of domain walls produced by changing the boundary conditions from periodic to
antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and
the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find
that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that
interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer
than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica
symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization
group results for the fractal dimension are in good agreement with essentially exact numerical results, but the
small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there
is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our
numerical results are consistent with this expectation.
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I. INTRODUCTION

One of the outstanding problems of statistical physics is
the nature of the ordered phase of spin glasses. While this
problem is primarily of interest to researchers in statistical and
condensed matter physics, spin-offs from its study have found
their way into different fields of research, such as computer
science and neural networks. Unfortunately, standard methods
used in condensed matter physics, such as the renormalization
group and mean-field theory, have resulted in a confusing
situation for the nature of the spin-glass state. The picture that
derives from mean-field theory, valid for infinite-dimensional
systems, is that of replica symmetry breaking (RSB) [1–5].
However, results using real-space renormalization group (RG)
methods, which are better for low-dimensional systems, sug-
gest a spin-glass state with replica symmetry [6–10]. The
purpose of this work is to present additional numerical results
beyond those presented in Ref. [8] that suggest that in space
dimension d � 6 the low-temperature phase of spin glasses is
replica symmetric and that it is only for dimensions d > 6 that
RSB prevails.

In the absence of RSB, the droplet picture (DP) [11–13]
is expected, i.e., when d � 6. In the DP the low-temperature
phase is replica symmetric and there is no de Almeida–
Thouless line [14] in the presence of an applied field. Its prop-
erties are determined by the excitation of droplets whose free-
energy cost on a length scale � goes as �θ and which have fractal
dimension ds < d. In the RSB picture there exist system-size
excitations which have a free-energy cost of O(1) and which
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are space filling, i.e., have ds = d. Thus, by investigating the
value of ds of interfaces in the low-temperature phase, it is
possible to determine whether the low-temperature state is best
described by RSB or the DP. Direct Monte Carlo simulations
to determine the value of ds in d = 3 have proved inconclusive
(see, for example, Ref. [15] and references therein). This is
because the numerically accessible system sizes in equilibrated
simulations are just too small to distinguish RSB [16,17] from
the DP behavior [18]. One advantage of using real-space RG
methods such as the strong-disorder renormalization group
(SDRG) method is that one can study much larger system sizes
than can be thermalized in Monte Carlo simulations. Therefore,
in this study we extend our previous SDRG calculations [8]
of ds for spin glasses in different space dimensions d, but in
addition we also use the greedy algorithm to estimate ds.

The paper is structured as follows. In Sec. II we introduce
the model studied and describe how by studying the link
overlap one can determine the fractal dimension of interfaces.
In Sec. III we give some details of the SDRG procedure as
developed by Monthus [7] and outline why it is expected to
work better in two dimensions than in six space dimensions.
Our results for ds in dimensions d = 2, 3, 4, 5, and 6 are
reported in Sec. IV. The greedy algorithm (GA) used here as
well is described in Sec. V. We conclude with a brief discussion
in Sec. VI.

II. MODEL AND OBSERVABLES

We study the Edwards-Anderson (EA) Ising spin-glass
model [19] on a d-dimensional hypercubic lattice of linear
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extent L described by the Hamiltonian

H = −
∑
〈ij〉

JijSiSj , (1)

where the summation is over nearest-neighbor bonds and the
random couplings Jij are chosen from a standard Gaussian
distribution of unit variance and zero mean. The Ising spins
take the values Si ∈ {±1} with i = 1,2, . . . ,Ld .

The fractal dimension ds can be obtained from the link
overlap

q� = 1

Nb

∑
〈ij〉

S
(π)
i S

(π)
j S

(π )
i S

(π )
j

(
2δJπ

ij ,J π
ij

− 1
)
. (2)

Here S
(π)
i and S

(π )
i denote the ground states found with periodic

(π ) and antiperiodic (π) boundary conditions, respectively.
One can change from periodic to antiperiodic boundary condi-
tions by flipping the sign of the bonds crossing a hyperplane of
the lattice. In addition, Nb is the number of nearest-neighbor
bonds in the lattice, which for a d-dimensional hypercube
is given by Nb = dLd . The L dependence of the quantity �

determines ds via

� ≡ 1 − q� = 2�DW

dLd
∼ Lds−d , (3)

where �DW is the number of bonds crossed by the domain
wall bounding the flipped spins [20]. The domain wall could
be fractal, i.e., its “length” �DW ∼ ALds . If the interface were
straight across the system, its length would be ∼Ld−1. In the
RSB phase ds = d, so d − 1 � ds � d. The SDRG (and also
the GA) methods are just means by which one can determine
the (approximate) ground states needed in Eqs. (2) and (3).

III. THE SDRG ALGORITHM

In this section we outline the SDRG method as described
by Monthus in Ref. [7]. For each spin Si , the local field is

hloc
i =

∑
j

Jij Sj . (4)

The SDRG focuses on the largest term in absolute value in the
sum corresponding to some index jmax(i),

max
j

(|Jij |) ≡ |Ji,jmax(i)|. (5)

The question for the accuracy of the SDRG is whether the local
field hloc

i ,

hloc
i = Ji,jmax(i)Sjmax(i) +

∑
j �=jmax(i)

JijSj , (6)

is dominated by the first term.
The “worst case” is when the spins Sj of the second

term in Eq. (6) are such that (JijSj ) all have the same sign;
their contribution to the local field is then maximal. Monthus
introduced the difference

�i ≡ |Ji,jmax(i)| −
∑

j �=jmax(i)

|Jij |. (7)

For �i0 > 0, the sign of the local field hloc
i0

is determined by
the sign of the first term Ji0jmax(i0)Sjmax(i0) for all values taken by

the other spins Sj with j �= jmax(i0),

sgn
(
hloc

i0

) = Sjmax(i0)sgn
[
Ji0,jmax(i0)

]
. (8)

Then the spin Si0 can be eliminated via

Si0 = Sjmax(i0)sgn
[
Ji0jmax(i0)

]
(9)

so that Eq. (1) becomes

H = −∣∣Ji0jmax(i0)

∣∣ −
∑

(i,j )�=i0

J R
ij SiSj , (10)

where the renormalized couplings connected to the spin Sjmax(i0)

are

J R
jmax(i0),j = Jjmax(i0),j + Ji0,j sgn

[
Ji0jmax(i0)

]
. (11)

Let z be the number of neighbors of a site, where z = 2d. Then,
in d = 1, z = 2 and the difference �i0 defined in Eq. (7) would
be always positive, i.e., the SDRG would be exact. Alas, it fails
to be exact in higher dimensions as �i0 is not always positive.

Monthus argued that “the worst is not always true.” Indeed,
in a frustrated spin glass, the worst case discussed above where
all the spins Sj are such that (JijSj ) have all the same sign is
atypical. It is much more natural to compare with a sum of
random terms of absolute values Jij and of random signs, i.e.,
to replace the difference �i of Eq. (7) by

	i ≡ |Ji,jmax(i)| −
√ ∑

j �=jmax(i)

|Jij |2. (12)

Note that for the case of z = 2 neighbors, 	i actually coincides
with �i , so the exactness discussed above is the same. How-
ever, for z > 2, it is expected that 	i is a better indicator of the
relative dominance of the maximal coupling for the different
spins. Monthus’s version of the SDRG procedure was based
on the variable 	i .

At each step, the spin-glass Hamiltonian is similar to that
of Eq. (1). The variable 	i of Eq. (12) is computed from the
couplings Jij connected to Si . The iterative renormalization
procedure is defined by the following decimation steps.

(i) Find the spin i0 with the maximal 	i , i.e.,

	i0 ≡ max
i

(	i). (13)

(ii) The elimination of the spin Si0 proceeds via Eq. (9) and
all its couplings Ji0,j with j �= jmax(i0) are transferred to the
spin Sjmax(i0) via the renormalization rule of Eq. (11).

(iii) The procedure ends when only a single spin Slast is left.
The two values Slast = ±1 label the two ground states related
by a global flip of all the spins.

From the choice Slast = +1, one can reconstruct all the
values of the decimated spins via the rule of Eq. (9).

Monthus [7] studied how the value of 	i evolves with each
iteration for the EA model for d = 2 and d = 3. For the SDRG
to be exact one needs �i to be always positive and hopefully
	i acts as a useful proxy for �i . She found that for the early
iterations the 	i were indeed positive but turned negative for
the later stages of the iteration procedure, indicating that the
SDRG was failing. She suggested that the fractal dimension
ds was dominated by the early stages of the iteration, which
correspond to long length scales. We have extended her studies
of 	i up to d = 6 and have found that as the dimension d

increases, the crossover where the SDRG would appear to
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FIG. 1. Representative evolution of 	i of the decimated spin as
a function of the RG step, which corresponds to the number of spins
which have been decimated for the EA model for (a) d = 2 and L =
100 and (b) d = 6 and L = 6. Over most of the iteration range for
d = 2, 	i is positive. The SDRG estimate for the exponent ds is
also quite accurate in this case. As d increases, the values of 	i turn
negative after a decreasing number of iterations, suggesting that the
SDRG becomes less accurate in higher dimensions, as can be seen
for d = 6 [in (b)]. Note the different horizontal scales.

become steadily worse (i.e., where the 	i turn negative) occurs
at successively earlier stages of the RG iterations. Figure 1
shows the form of the 	i in d = 2 and d = 6 space dimensions.
Because the SDRG could be exact only if 	i > 0 for all i, the
data for d = 6 are far from satisfying this criterion.

A defect of the SDRG is that when it terminates it can
give a spin state in which not all the spins are even parallel to
their local fields. We have investigated the problem carefully
in two dimensions and found that a small fraction of spins
fail to be parallel to their local fields and these seem to be
the spins which sit in very small values of the local field. We
have generated from these states a one-spin flip stable state
by flipping these spins and their neighbors thereon until there
are no spins left that are not parallel to their local fields. With
these new states we find that the coefficient A in �DW ∼ ALds

is slightly modified: Its logarithm ln(�) is shifted by a small
amount (of order 0.005) for a wide range of L values. Because
it does not seem to significantly influence the value of ds , we
choose not to investigate this problem in greater detail here.

IV. THE SDRG RESULTS

In Fig. 2 we plot ln � versus ln L using the SDRG method
of Monthus [7] to compute the link overlap. One change from
our previous work in Ref. [8] is that we have added more
data. In particular, for d = 6 we have increased the largest
system studied from L = 10 to L = 14. The new data show
that for d = 6 the curve is leveling off, implying that ds → d.
We have also increased the values of L studied in d = 2
and 3, going far beyond the system sizes studied in Ref. [7].
Table I lists simulation parameters, such as the number of bond
configurations M for each value of the linear system size L in
space dimension d.
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FIG. 2. Plot of ln � for various space dimensions d as a function
of ln L computed using the SDRG algorithm. Note that � ∼ Lds−d .
Our estimate of ds is determined by the slope of the straight lines
drawn through the points at large-L values. Note how the data for
d = 6 level off, i.e., ds → d . (See Fig. 3 for an enlarged figure in six
dimensions.) Error bars are smaller than the symbols.

The SDRG seems to give quite accurate results for the value
of ds at least in low space dimensions. Thus, in d = 2, Monthus
found from the SDRG a value of ds ≈ 1.27 from L values up
to 340, a result which is similar to a recent study of systems up
to L = 104 [21] based on fast polynomial time algorithms for
finding ground states (which, however, only work in two space
dimensions) which give ds = 1.273 19(9). In d = 3, Monthus
finds ds = 2.55 for systems of size up to L = 45. In Ref. [18] a

TABLE I. Dimensionality d , system size L, and the number of
disorder realizations M studied using the GA and SDRG methods.
Some of the SDRG data used here are taken from Ref. [8].

Method d L M

SDRG 2 {10,20,30,40,50,100,200,400,800} 10000
SDRG 2 1200 3000
SDRG 2 1600 1000
SDRG 3 {4,6,8,10,12,16,20,24,32} 3000
SDRG 3 {64,128} 1000
SDRG 4 {4,5,6,7,8,9,10,12,16,20,24} 3000
SDRG 4 28 717
SDRG 4 32 121
SDRG 5 {4,5,6,7,8,9,10,12,14} 3000
SDRG 5 16 1000
SDRG 6 {4,5,6,7,8} 3000
SDRG 6 9 1843
SDRG 6 10,11,12 1000
SDRG 6 {13,14} 200
GA 2 {4,8,12,16,32,64,128,256,512} 3000
GA 3 {4,6,8,10,12,16,20,24,32,64} 3000
GA 4 {4,6,8,10,12,16,20,24,32} 3000
GA 5 {4,5,6,7,8,9,10} 6000
GA 5 {12,14,16} 3000
GA 6 {4,5,6,7,8,9,10} 3000
GA 6 {12,14} 1000
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FIG. 3. Plot of ln � for d = 6 as a function of ln L computed using
the SDRG and GA algorithms. Our estimate of ds is determined by the
slope of the straight lines drawn through the points at large-L values.
Using � ∼ Lds−d , the leveling off of the lines at the larger values of
L implies that ds → d in six dimensions. Error bars are smaller than
the symbols.

value of 2.57 is quoted from studies on systems up to L = 12.
The SDRG is just an algorithm which attempts to find the
ground-state spin configuration. It is exact in one space
dimension. While it seems to give excellent values for ds, it
gives poor values for the actual ground-state energy itself and
the energy cost of the interface. If the domain-wall energy
scales ∼Lθ , then Monthus reports θ ≈ 0 whereas the recent
high-precision calculations show that θ = −0.2793(3) [21].

Because Monthus’s value for ds in d = 2 seemed to be
compatible with the high-precision calculations [21], we spec-
ulated in Ref. [8] that the SDRG might be accurate because
the interface is a self-similar fractal [22]. The SDRG seems
to be accurate in the early stages of the RG process where
the 	i are positive (see Fig. 1) where a coarse approximation
of the domain lengths is performed (see Fig. 4). In the later
stages of determining the domain length, the SDRG’s accuracy
will decrease. In particular, in the relation �DW ∼ ALds we
suspect that the SDRG might determine ds quite accurately,
but that the coefficient A might be obtained with less accuracy.
To estimate A to high accuracy would require an RG process
accurate on all length scales, both short and long. In this paper
we extend the system sizes studied far beyond those studied
by Monthus in d = 2 and find that ds = 1.2529(14), which
indicates that the SDRG is not exact for ds in d = 2, but
just a good approximation. Our estimate of A is 1.4040(106),
whereas the recent high-precision estimate is 1.222(3) [21].

We also extend Monthus’s work in d = 3 from L = 45 to
L = 128 and find ds = 2.5256(30). If we had only system sizes
up to 12 in d = 3, as in the Monte Carlo studies of Ref. [18],
then because of finite-size effects (visible in Fig. 2), we would
have reported a value of ds ≈ 2.6093(50). A value of 2.57 was
reported in Ref. [18] based on the same range of L values up
to L = 12.

The SDRG is not an analytical treatment but a numerical
technique and in high dimensions (e.g., d = 5 and 6) this
limits us to studying rather small linear system sizes. As a

(a) (b)

(c) (d)

FIG. 4. The bifurcation of a tree is a self-similar fractal. The
four figures are measurements of its length using square domains
whose linear size is reduced at each step of the renormalization.
For a self-similar fractal, like the ponderosa pine depicted here, the
scaling dimension ds is the same no matter what length scale is used
to determine it. Panel (a) shows the coarsest measurements which are
successively refined by reducing the size of the squares in (b)–(d).
Note that the domains are smaller than the image resolution in (d).
The fractal dimension of the ponderosa pine is approximately 1.88.
One could in principle obtain the correct fractal dimension by studies
at the coarsest length scales, which is why we suspect that the SDRG,
which works better on the coarsest length scales, is capable of getting
accurate answers for ds.

consequence, estimates of exponents can be affected by finite-
size corrections as previously mentioned for d = 3. Thus, it is
hard to be certain that ds = d in six dimensions. We therefore
decided to also use a greedy algorithm to complement the
SDRG results. It is already known from analytical studies that 6
is the upper critical dimension for the GA, at least for the fractal
dimension associated with minimum spanning trees [23,24].
Here we want to know whether numerical studies of the value
of ds would also show that 6 is a similarly special dimension for
the fractal dimension of domain walls with the GA algorithm.

V. GREEDY ALGORITHM

The GA (also studied by Monthus [7]) works as follows.
The bonds in the order of decreasing absolute magnitude are
satisfied in turn, unless a closed loop appears and then the
bond is skipped, until the relative orientation of all the spins is
determined. In Table I, we give details of the system sizes and
numbers of different bond realizations which we have studied
in dimensions d = 2, . . . ,6. In Fig. 5 we plot ln � versus ln L

determining the link overlap using the GA. Notice that the
corrections to scaling in d = 6 seem smaller for the GA than
for the SDRG method, because the data seem independent of
L even for the smallest system sizes.
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FIG. 5. Plot of ln � for various space dimensions d for the EA
model as a function of ln L computed using the GA. Note that � ∼
Lds−d . Our estimate of ds is determined by the slope of the straight
lines drawn through the points at large-L values. Error bars are smaller
than the symbols.

Like the SDRG procedure, the GA is just a way of finding
the spin configuration for a putative ground state of the system.
There is no bond renormalization as in the SDRG [see Eq. (11)].
It is just as poor for the ground-state energy and the exponent θ
as the SDRG [7]. In d = 2 we obtain dGA

s 
 1.2196(11), which
is comparable to Ref. [25], which quotes dGA

s = 1.216(1).
Note that the SDRG value for ds is in much better agreement
with the high-precision value of Ref. [21]. In d = 3 the GA
result is dGA

s 
 2.4962(19), which is closer to that of the
SDRG. An earlier estimate in three dimensions is that of
Ref. [26], which quotes dGA

s 
 2.5 ± 0.05. In Fig. 6 we have
plotted ds − d + 1 versus d using the ds from both the GA

0
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1

0 1 2 3 4 5 6

d
s
−

d
+

1

d

SDRG

GA

FIG. 6. Greedy algorithm results (blue pentagons) compared with
strong-disorder renormalization group results (red squares) for d = 2,
3, 4, 5, and 6. The upper bound ds − d + 1 at unity is marked by a
horizontal blue line, while the lower bound at zero is marked with
a horizontal red line. The value ds = 0 for d = 1 is exact and given
by both methods. Only statistical errors are included and error bars
are smaller than the symbols. Numerical values are summarized in
Table II.

TABLE II. Numerical estimates of the fractal dimension ds of the
SDRG and GA methods. Here ds = 0 for d = 1, as both methods are
exact for the one-dimensional model. Error bars are statistical errors.

Method d = 2 d = 3 d = 4 d = 5 d = 6

SDRG 1.2529(14) 2.5256(30) 3.7358(36) 4.884(60) 5.9899(60)
GA 1.2196(11) 2.4962(19) 3.7190(47) 4.9068(32) 6.0023(22)

and the SDRG algorithms. As the dimension d approaches 6
the two estimates appear to merge and give ds = d in d = 6.
The analytical expectation of Refs. [23,24] was that 6 is the
upper critical dimension for the fractal dimension of minimum
spanning trees within the GA. Our numerical work suggests
that within the GA, domain walls also have 6 as their upper
critical dimension.

VI. DISCUSSION

We have obtained numerical results (Fig. 6) using a strong-
disorder renormalization group method and a greedy algorithm
that are consistent with 6 being a special space dimension
above which the conventional EA model with a Gaussian
bond distribution has RSB behavior and summarized them
in Table II. For d � 6, we have found that within our nu-
merical procedures the EA model is behaving according to
droplet model expectations because ds < d. That 6 is a special
dimension for the behavior of spin glasses is in accord with
some older expectations based on analytical results [27,28],
but these have been controversial [29,30]. Because both the
GA and the SDRG are approximations, we regard the results
presented here as not decisive.

We note, however, that real-space RG methods such as
the SDRG are capable of endless refinements. Monthus [7]
herself discussed a variant, the box method, which improved
the value of the zero-temperature exponent θ in d = 2 from
the very poor value θ ≈ 0 obtained by the SDRG method
described in this paper to at least a negative value of θ ≈ −0.09
[the high-precision estimate of Ref. [21] is θ = −0.2793(3)];
note that the value of ds was hardly altered. It might be
possible to find a real-space RG procedure that gives accurate
numbers on all quantities of interest for three-dimensional spin
glasses. The SDRG and the GA have a common feature in
that they both recognize that the largest bonds are likely to
be satisfied in the ground state. We suspect that will be an
ingredient of any future successful RG scheme for spin-glass
systems.
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