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Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)] hypothesized that the local box-counting
dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution
(NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit
formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula
expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of
the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations
to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary
ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases,
we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent
agreement between their data and our theory. We also study numerically the local box-counting dimensions of the
Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models
of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical
formula is found to accurately describe the numerically computed local box-counting dimension.
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I. INTRODUCTION

In fractal geometry [1], scale invariance is quantified
through the so-called fractal dimension. A constant fractal
dimension is often defined as the scaling exponent of a
geometric power law. The box-counting dimension is the
simplest and most pervasive example of a fractal dimension
(see, for example, Ref. [2] for definitions and review). “Fractal
analysis,” which is a term that is frequently used in many
different contexts throughout the sciences, in practice, often
means to seek out scaling behavior and ultimately deduce
a fractal dimension from a log-log plot of the box-counting
function. Except for special mathematical sets such as the
classical fractals, log-log plots of the box-counting function are
never perfect straight lines. In other words, the box-counting
dimension is generally nonconstant and a function of the
measurement or observation scale and is strictly constant only
in special cases (e.g., the classical fractals) [3].

The box-counting dimension has in fact quite often been
observed to be a smooth or discontinuous function of the
measurement scale. An example of the former case is fluid
interfaces in turbulence [4] and an example of the latter
is fracture networks in geophysics [5]. There are, however,
very few examples for which the scale dependence of the
box-counting dimension is understood analytically. One well-
known theoretical example is the family of statistical mechan-
ical models involving randomly distributed spheres, rods, and
disks [6].

Interestingly, the box-counting dimensions of discrete
quantum energy-level spectra have also been found to be
smooth functions of the measurement scale [7]. The exact
scale-dependent behaviors of the box-counting dimensions are

not known analytically, and it is this particular problem that we
wish to address in this Rapid Communication. Before we begin,
it is important to establish the background to this problem.

In 1985, Cederbaum et al. [8] (CHP) defined a scale-
dependent generalization of the box-counting dimension,
which they called the “fractal dimension function,” that de-
pends on both the measurement scale and the number of ele-
ments in a given set. They applied it to discrete quantum spectra
and found that different spectra (of a prescribed length) had
different scale-dependent behaviors and that certain statistical
properties of spectra essentially determined the behavior of
their scale-dependent fractal dimension. CHP were also able
to derive an analytical formula for the “fractal dimension
function” of a finite discrete quantum spectrum, which inter-
estingly they found depended on the nearest-neighbor spacing
distribution (NNSD) of the spectrum and on the length of the
spectrum (i.e., the number of energy levels in the sample).
There are, however, serious problems that arise from the
dependence on the number of energy levels, and some of these
problems were pinpointed and discussed 12 years later in a
paper by Wang and Ong (WO) [7].

WO argued that, for a discrete eigenvalue spectrum, the
function Db(r) defined in the next section [see Eq. (3)],
which is a formal scale-dependent generalization of the box-
counting dimension, should only depend on the NNSD of the
spectrum [9]. Although reasonable, their hypothesis lacked
analytical proof in the sense that they could not give an
explicit formula (exact or otherwise) for Db(r) in terms of
the spacing distribution. WO computed Db(r) numerically
for spectra having Poisson and Wigner spacing distributions
and also for the vibrational spectra of the SO2 molecule. The
authors also stated that box-counting methods are amenable
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to numerical implementation, but “will encounter difficulties
when one attempts to search for an analytical solution.” There
is, in principle, no difficulty in seeking out an analytical
solution, and in this Rapid Communication, we will derive an
exact general formula for the (scale-dependent) box-counting
dimension Db(r) of a discrete quantum spectrum using only
elementary results from the statistical theory of spectra [10].
As we shall see, Db(r) does indeed depend only on the NNSD
of the spectrum.

II. LOCAL BOX-COUNTING DIMENSION

To define the box-counting dimension, we first consider a
uniform partition of the embedding space of a given set into a
grid of nonoverlapping boxes of side length r . (The embedding
space for an energy spectrum is R, in which case the boxes are
actually line segments of length r .) This grid of boxes is often
called an r-mesh. Let N (r) denote the number of boxes needed
to cover the set, that is, the number of boxes that have a non-
empty intersection with the set. The box-counting dimension
Db of a set can be defined as follows [2,3]:

Db = − lim
r→0

d loga[N (r)]

d loga(r)
, (1)

where the base a > 1 is arbitrary. For a given set, the box-
counting function N (r) may or may not follow a power law of
the form

N (r) ∼ r−Db . (2)

In the latter case, the given set possesses a scale-dependent
geometry and the interest then lies in understanding the
behavior of the box-counting dimension as a function of the
measurement or observation scale r . In other words, the object
of interest in such cases is the function

Db(r) = −d loga[N (r)]

d loga(r)
. (3)

The above function is well defined provided N (r) is a smooth
function of the measurement scale. Note that Db(r) will be
constant only when N (r) is an exact power law and is non-
constant otherwise. The function Db(r) has several different
names in the physics literature. For instance, in the well-known
and often cited text by Takayasu [3], it is referred to as the
“effective fractal dimension,” so called after Mandelbrot, who
in his book [1] discussed the notion of an “effective dimension”
that depends on the resolution or the scale of measurement. We
shall refer to Db(r) as the local box-counting dimension, which
is the terminology used in Ref. [11].

III. DISCRETE EIGENVALUE SPECTRA

Suppose we are given a countably-infinite discrete spectrum
for which the spacing s between adjacent energy levels is
described by a probability density function P (s) with mean
s̄ = ∫ ∞

0 sP (s)ds. Consider the subset of the spectrum that
lies in the interval [Emin,Emax] and partition this interval into
(Emax − Emin)/r ≡ L/r intervals (boxes) of size r . Let N (r)
denote the number of these intervals that contains one or more
eigenvalues. The fraction N (r)/(L/r) = (r/L)N (r) of boxes
that contain eigenvalues is equivalent to the probability Q(r)

that one of the boxes chosen at random contains one or more
eigenvalues. This probability can alternatively be expressed
as Q(r) = 1 − E(r), where E(r) is the probability that an
arbitrary interval of length r (i.e., a box of length r chosen at
random) contains no eigenvalues. Thus, the number of boxes
needed to cover the subset of the spectrum lying in [Emin,Emax]
is the number of intervals L/r multiplied by Q(r):

N (r) = L

r
[1 − E(r)]. (4)

Using definition (3) and the fact that

loga[N (r)] = loga(L) − loga(r) + loga[1 − E(r)], (5)

the local box-counting dimension Db(r) for a discrete energy-
level spectrum is therefore

Db(r) = 1 + r

[1 − E(r)]

dE(r)

dr
. (6)

All that remains to determine is E(r) and dE(r)/dr . Given
P (s), it is a relatively simple matter to write down an expression
for E(r).

In the statistical theory of spectra, the function E(x) is
known as the “gap probability” [12]. The link between E(x)
and P (s) can be quickly established using elementary results
from the statistical theory of spectra. We shall here simply
quote the following identity from Ref. [10]: dE(x)/dx =
−(1/s̄)F (x), where F (x) is the probability that there are no
eigenvalues within a distance x of an eigenvalue chosen at
random, or equivalently, the probability that the distance to
the nearest neighbor is greater than x [13]. The complemen-
tary probability �(x) ≡ [1 − F (x)] is the probability that the
nearest neighbor (to an eigenvalue chosen at random) is within
a distance x. In other words, �(x) is the probability that the
nearest-neighbor distance is less than or equal to x, which, by
definition, is given by

∫ x

0 P (s)ds. Combining these two results
yields the following identity relating E(x) and P (s):

dE(x)

dx
= −

(
1

s̄

)
[1 − �(x)] = −

(
1

s̄

)∫ ∞

x

P (s)ds. (7)

Integrating Eq. (7), and noting that E(0) = 1, the probability
that an arbitrary interval of length r does not contain any
eigenvalues is

E(r) = 1 −
(

1

s̄

) ∫ r

0
[1 − �(x)]dx. (8)

Substituting (7) and (8) into (6) then immediately yields the
following general formula for Db(r) in terms of P (s):

Db(r) = 1 − r
∫ ∞
r

P (s)ds∫ r

0

∫ ∞
x

P (s)ds dx
. (9)

The above formula is the main theoretical result of this Rapid
Communication [14]. Note that although N (r) depends on
L (and hence on the size of the sample spectrum), Db(r) is
independent of L. Armed with formula (9), we are now in a
position to derive the local box-counting dimension of specific
sequences of levels.
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FIG. 1. The local box-counting dimension Db(r) versus r/s̄ for
energy-level spectra having Poisson and Wigner spacing distributions.
The solid and open circles are the numerical values of the “effective
fractal dimension” obtained by WO [7] for levels having Poisson
and Wigner spacing distributions, respectively. The solid and dashed
curves are the theoretical Db(r) formulas (11) and (13) obtained for
levels having Poisson and Wigner spacing distributions, respectively.
The dashed-dotted lines are for reference only and correspond to the
special case of equally spaced levels. The inset shows a close-up view
around the intersection of the two theoretical curves from which it is
obvious that the Poisson and Wigner curves do not intersect at r = s̄

(contrary to the observations of WO [7]).

IV. APPLICATIONS

A. Poisson spectra

The NNSD for an ordered sequence of independent random
levels is given by [10]

PP (s) = (1/s̄) exp(−s/s̄), (10)

where again s̄ is the mean spacing. Substituting (10) into (9)
and performing the straightforward algebra yields

Db(r) = 1 − (r/s̄) exp(−r/s̄)

1 − exp(−r/s̄)
. (11)

This is displayed in Fig. 1, and for comparison, we also plot
the “effective fractal dimension” data obtained numerically by
WO for a Poisson spectrum. Note that 100 000 levels were
used by WO to numerically compute Db(r). The WO data is
in excellent agreement with formula (11).

B. GOE spectra

We seek here to obtain a closed-form approximation to
Db(r) in the case of spectra that follow Gaussian orthogonal
ensemble (GOE) statistics. In order to do so, we shall use the
Wigner surmise for the GOE:

PW (s; β = 1) = π

2s̄
(s/s̄) exp

(
−π

4
(s/s̄)2

)
. (12)

Although the above distribution (commonly referred to as the
Wigner distribution) is an exact result only for real symmetric
2 × 2 random matrices, it serves as an excellent analytical
approximation to the asymptotic Mehta-Gaudin distribution
appropriate for arbitrarily large random matrices from the GOE
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FIG. 2. Db(r) versus r/s̄ for 10 000 high-lying zeros of the
Riemann zeta function. The open circles are numerical derivatives
calculated from the ln[N (r)] versus ln(r/s̄) data, which is shown as
open squares in the inset. The solid curve is the theoretical Db(r)
formula (15) obtained for levels having GUE spacing statistics. The
dashed-dotted lines are for reference only and correspond to the
special case of equally spaced levels.

[10]. Substituting (12) into (9) and performing the necessary
algebra yields

Db(r) = 1 − (r/s̄) exp
[ − π

4 (r/s̄)2
]

erf
[√

π

2 (r/s̄)
] , (13)

where erf(z) is the error function [16]. This result is displayed
in Fig. 1 along with the “effective fractal dimension” that was
calculated numerically by WO [7] for a spectrum possessing a
Wigner spacing distribution (12). Once again, the WO data is
in excellent agreement with formula (13).

C. GUE spectra

In the case of spectra that follow Gaussian unitary ensemble
(GUE) statistics, a nonelementary closed-form approximation
to Db(r) can be obtained by using the Wigner surmise for the
GUE:

PW (s; β = 2) = 32

π2s̄
(s/s̄)2 exp

(
− 4

π
(s/s̄)2

)
. (14)

Although (14) is exact only for Hermitian 2 × 2 random
matrices, it serves as an excellent analytical approximation
to the asymptotic Mehta-Gaudin distribution appropriate for
arbitrarily large random matrices from the GUE [10]. Sub-
stituting (14) into (9) and performing the necessary algebra
yields

Db(r) = 1−
(r/s̄)

{
erfc

[
2√
π

(r/s̄)
]+ 4

π
(r/s̄) exp

[− 4
π

(r/s̄)2
]}

1− exp
[ − 4

π
(r/s̄)2

]+(r/s̄)erfc
[

2√
π

(r/s̄)
] ,

(15)

where erfc(z) is the complementary error function [16].
As a numerical example, we examine the local box-

counting dimension of 10 000 high-lying zeros of the Rie-
mann zeta function, in particular, the (1022 + 1)th zero to
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the (1022 + 104)th zero [17]. It is conjectured that (asymp-
totically) the zeta zeros have the same statistical properties
as the eigenvalues of arbitrarily large random matrices from
the GUE, and numerical observations so far corroborate
this conjecture [18]. We computed the local box-counting
dimension of the above-specified 10 000 zeros by calculating
the average slope at each point of the numerically deter-
mined ln[N (r)] versus ln(r/s̄) plot. This is shown in Fig. 2.
The theoretical Db(r) curve [Eq. (15)] accurately describes
the numerically computed local box-counting dimension.

D. GSE spectra

In the case of spectra that follow Gaussian symplectic
ensemble (GSE) statistics, a nonelementary closed-form ap-
proximation to Db(r) can be obtained by using the Wigner
surmise for the GSE:

PW (s; β = 4) = 218

36π3s̄
(s/s̄)4 exp

(
− 64

9π
(s/s̄)2

)
. (16)

Substituting (16) into (9) and performing the necessary algebra
yields

Db(r) = 1 −
(r/s̄)

{
erfc

[
8

3
√

π
(r/s̄)

] + [
16
3π

(r/s̄) + 2048
81π2 (r/s̄)3

]
exp

[ − 64
9π

(r/s̄)2
]}

1 − [
1 + 16

9π
(r/s̄)2

]
exp

[ − 64
9π

(r/s̄)2
] + (r/s̄)erfc

[
8

3
√

π
(r/s̄)

] . (17)

As a numerical example, we computed the local box-
counting dimension of 10 000 alternate levels of a GOE
spectrum (consisting of 20 000 eigenvalues) by calculating
the average slope at each point of the numerically determined
ln[N (r)] versus ln(r/s̄) plot. This is shown in Fig. 3. As before,
the theoretical Db(r) curve [Eq. (17)] accurately describes the
numerically computed local box-counting dimension.

V. CONCLUSION

To summarize, we have provided an analytical theory for the
local box-counting dimension of discrete quantum eigenvalue
spectra. Our main formula [Eq. (9)] explicitly shows that the
local box-counting dimension of a discrete spectrum depends
only on its NNSD, as was first hypothesized two decades ago
by Wang and Ong [7]. In fact, according to Eq. (9), the local
box-counting dimension of a discrete spectrum is simply an
integral transformation of its NNSD.

As applications of our theory, we derived an analytical
formula for Poisson spectra and closed-form approximations
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FIG. 3. Db(r) versus r/s̄ for 10 000 alternate levels of a GOE
spectrum (of length 20 000). The open circles are numerical deriva-
tives calculated from the ln[N (r)] versus ln(r/s̄) data, which is shown
as open squares in the inset. The solid curve is the theoretical Db(r)
formula (17) obtained for levels having GSE spacing statistics. The
dashed-dotted lines are for reference only and correspond to the
special case of equally spaced levels.

to the local box-counting dimension for spectra having GOE,
GUE, and GSE spacing statistics. In the Poisson and GOE
cases, we compared our theoretical formulas with the pub-
lished numerical data of WO [7] and observed impeccable
agreement between their data and our theory. We also studied
numerically the local box-counting dimensions of the Riemann
zeta function zeros and the alternate levels of GOE spectra,
which are often used as numerical models of spectra possessing
GUE and GSE spacing statistics, respectively. In each case, the
corresponding theoretical formula [Eq. (15) for GUE spectra
and Eq. (17) for GSE spectra] was found to accurately describe
the numerically computed local box-counting dimension.

Quantum eigenvalue spectra might appear to be just another
mathematical playground for the tools of fractal geometry, and
from the standpoint of the more general discussion given in
the Introduction, discrete quantum spectra are indeed cited as
just another example of point sets having a scale-dependent
geometry. However, in quantum mechanics itself, the geo-
metric scaling properties of energy-level spectra have a much
more profound significance (see, for example, Refs. [19–23]).
So, unlike in many lines of research where fractal geometry
has been adopted mainly as a descriptive tool, applying the
concepts of fractal geometry to quantum eigenvalue spectra is
not merely for descriptive purposes.

We conclude with the following clarification, which is
important in the above context. WO think of discrete spectra
as “sets of a series of discrete points that exhibit fractal
properties,” or more simply, as “fractal sets.” Unless it is made
absolutely clear in what sense discrete spectra are fractal sets,
it is ambiguous (and even wrong) to refer to them as such
[24]. By merely computing Db(r) for a discrete spectrum, one
has not (to quote WO) “investigated the fractal properties”
of the spectrum. In fact, the numerical studies of WO clearly
demonstrate that discrete quantum spectra do not have box-
counting type scaling behavior (i.e., no “fractal structure”
defined in terms of a constant box-counting dimension) and
thus have a scale-dependent geometry.
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