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Nonequilibrium two-dimensional Ising model with stationary uphill diffusion
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Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest
density ones. Although rare, the opposite phenomenon (known as “uphill diffusion”) has also been observed in
multicomponent systems, where it appears as an artificial effect of the interaction among components. We show
here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a
consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in
contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude
but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which,
by tuning the reservoir magnetizations, the current in the system changes from “downhill” to “uphill”. Moreover,
we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a
value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a
relation between equilibrium and nonequilibrium properties.
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Introduction. When a metal bar is put in contact at its
extremity with two heat sources at different temperatures, heat
is transported from one side to the other. Fourier’s law [1] of
heat conduction, J = −κ∇T , states that the heat current J is
proportional to the temperature gradient ∇T and the constant
of proportionality κ defines the thermal conductivity. Fourier’s
law also provides a minus sign for the current, whose direction
is against the temperature gradient (i.e., the heat current flows
from the hottest to the coldest side). One then says that the
current goes “downhill”.

Surprisingly, the phenomenon of “uphill diffusion”—
namely, a current which goes up the gradient, and thus has
the “wrong” sign—has been observed in several instances,
including experiments measuring the diffusion of carbon in
austenite metals [2], multicomponent mixtures [3], and mi-
croscopic systems with multiple conservation laws [4,5]. The
work described here is motivated by such unexpected behavior
that seems to contradict the empirical laws of transport (e.g.,
Fourier’s law for heat transport or Fick’s law for mass transport)
whose general validity is based on the physical property
that diffusion is a phenomenon smoothening concentration
gradients. However, in all the previous examples the diffusion
flux of any species (or conserved quantity) is strongly coupled
to that of its partner species. If one focuses on one particular
species, one sees the other species acting as an effective
external field. As a result of this coupling uphill transport may
occur in one particular component [6–8].

In this Rapid Communication we shall show that uphill
diffusion may arise as a substantial effect in single-component
systems in the presence of a phase transition. In our setting
the current flowing in the wrong direction is a consequence
of the work that is performed by external reservoirs. We
shall consider simplified mathematical models of interacting

particle systems (stochastic lattice gases) in a nonequilibrium
stationary state due to a boundary-driven current [9,10]. We
shall show that in such systems there is uphill diffusion, i.e.,
the current brings mass from the region with the smallest
density phase to the one with the largest density. Some
theoretical evidence of this intriguing physical phenomenon
was recently reported in [11–14] for one-dimensional (1D)
particle systems with Kac potentials (where phase transitions
are obtained in a mean-field limit). We shall study here the
simplest mathematical model of a physical system displaying
a true phase transition, i.e., the two-dimensional (2D) Ising
model in a nonequilibrium stationary state. This is an example
of a model with a phase transition exhibiting nonequilibrium
steady states with uphill diffusion.

The model and the main result. We consider the nonequi-
librium dynamics of the nearest-neighbor ferromagnetic Ising
model on a finite squared lattice � of linear size L coupled to
magnetization reservoirs on the horizontal direction. To each
lattice site i ∈ � we associate a spin variable σi(t) ∈ {−1,+1}
that describes the microscopic state at time t . The Ising
model is equivalent to a lattice gas model via the standard
mapping between spin variables σi and occupation variables
ηi ∈ {0,1} [ηi = (1 + σi)/2] withηi = 1 (respectively, ηi = 0)
denoting the presence (respectively, absence) of a particle. The
spins interact with their nearest neighbors according to the
Hamiltonian

H (σ ) = −1

2

∑
i,j∈�
|i−j |=1

σiσj , (1)

where the boundary conditions are specified below. In the
infinite volume limit it is well known that the 2D Ising
model has a phase transition at the inverse critical temperature
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FIG. 1. Schematic picture of the 2D Ising model coupled to
reservoirs R+ and R−. A spin up is represented with a filled (blue)
circle; a spin down is represented with an empty (white) circle.

computed by Onsager [15]:

βc = ln(1 + √
2)

2
≈ 0.440 686.

For inverse temperatures β > βc the model exhibits a sponta-
neous magnetization given by the formula [16]

mβ = [1 − sinh−4(2β)]1/8. (2)

We consider the system in the low-temperature region β >

βc and let the spins evolve following a continuous-time
stochastic dynamics with two contributions: a conservative
exchange dynamics in the bulk and independent spin flips at
the boundaries. The dynamics at the boundaries simulates two
infinite reservoirs, R+ on the right and R− on the left, that
force a magnetization m+ ∈ [0,1] on the right column and a
magnetization m− = −m+ on the left column. See Fig. 1 for
a description of the setup in numerical experiments.

More precisely, in the bulk the spins follow a Kawasaki
dynamics, i.e., the spins of a bond 〈i,j 〉 exchange values at
rate

c(i,j ) =
{

1 if �H = H (σ ij ) − H (σ ) � 0
e−β�H otherwise,

where σ ij denotes the configuration obtained from σ by
exchanging the spins at sites i and j . At the horizontal
boundaries the spins flip independently, i.e., they change sign
at rate

c−(i) = 1 − σim−
2

if i = (1,y),

c+(i) = 1 − σim+
2

if i = (L,y).

Due to the presence of the reservoirs, the dynamics is not
reversible with respect to the Boltzmann-Gibbs measure with
Hamiltonian (1). A nonequilibrium steady state sets in char-
acterized by a uniform current in the horizontal direction. A
similar setting has been considered in [17], where the stable
region with normal mass transport was considered and the
fluctuations of the interface separating the two phases were
studied. Thus, the focus in [17] was different than in our Rapid
Communication.

As a result of the simulations we observe the following
phenomenology: as m+ decreases from m+ = 1 the current is

first negative and, past a critical value mcrit, it becomes positive.
We conclude from the simulations that

(1) if m+ > mcrit, then the magnetization flows from the
plus to the minus phase (from R+ to R−) so that the current
is negative (in agreement with the Fick’s law) and the current
goes downhill; and

(2) if m+ < mcrit the magnetization flows from the minus to
the plus phases (from R− to R+), thus the current is positive
and we have “uphill diffusion”.

As we shall see, the value of the critical magnetization
marking the transition from down- to uphill diffusion mcrit =
mcrit(β,L) is a function of both the inverse temperature β and
the system size L. For simplicity, in the following we avoid
writing explicitly such dependences. Our results suggest that
in the limit of large boxes L → ∞ the critical magnetization
approaches the equilibrium spontaneous magnetization mβ .

Numerical analysis of the current. The integrated current
Jt over any horizontal bond up to time t can be measured by
counting the number of positive spins that cross the bond from
left to right minus the number of positive spins that cross the
bond in the opposite direction. The current J in the stationary
state is then obtained as J = limt→∞ Jt/t . We have fixed
β = 1 and run computer simulations with L � 40 for various
values of m+ and m− = −m+. We imposed periodic boundary
conditions (BCs) on the direction orthogonal to the current.
Namely, denoting by i = (x,y) the coordinates of site i, we
set σ(x,L+1) = σ(x,1) for all x = 1, . . . ,L. On the longitudinal
direction we considered two types of boundary conditions: (a)
fixed BC, i.e., σ(0,y) = −1, σ(L+1,y) = +1 for all y = 1, . . . ,L;
(b) shifted BC, namely, we let σ(1,y) interact with σ(1,y−L/4)

and σ(L,y) interact with σ(L,y−L/4). We will explain later this
choice of BC (that is inspired by [18]). No difference in the
results obtained using the two different boundary conditions
on the longitudinal direction was observed in our simulations.
We used different initial conditions, for instance, random or
instantonlike (i.e., σ(x,y) = −1 for x ∈ [1,L/2] and σ(x,y) = 1
for x ∈ (L/2,L]), checking that our results do not depend on
this choice.

We run two independent programs by implementing both
the classical Metropolis Monte Carlo method as well as the
kinetic Monte Carlo method [19]. Whereas the two dynamics
yield the the same stationary state, the first algorithm is
better suited to measure the current and the second, which
implements a continuous-time dynamics, is more efficient to
probe the magnetization time average.

Our main result is illustrated in Fig. 2. There we plot the
current J as a function of the right reservoir magnetization
m+, which varies in the interval [0.9975,1] in steps of 10−4.
Such a narrow interval is due to the value of the spontaneous
magnetization at β = 1 (mβ=1 ≈ 0.999 27) and finite-size
corrections that are of order L−2/5 [20]. The current has to
be measured over a sufficiently long time span to get rid of
fluctuations and to ensure the convergence to the stationary
regime. This can be tested by monitoring the running average
of the current and looking at the scale of its fluctuations. As
a result, we have verified that 1012 spin exchanges are needed
to guarantee relative fluctuations of 1% in the worst cases.In
Fig. 2 errors bars are smaller than the size of the points. From
Fig. 2 we see the existence of a critical value mcrit ≈ 0.999 31
such that if m+ > mcrit, then the current is negative, and if
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FIG. 2. Current vs reservoir magnetization for system size L=40.
Each data point is the current J measured in the nonequilibrium
stationary state with a given value m+ on the right reservoir R+ and
m− = −m+ on the left reservoir R−. The inset shows the integrated
current Jt up to time t = 3×108 steps for m+ = 0.9995 (negative
slope) and for m+ = 0.999 10 (positive slope). The initial datum used
in the Monte Carlo simulations is σ(x,y) = −1 for x ∈ [1,L/2] and
σ(x,y) = 1 for x ∈ (L/2,L].

m+ < mcrit, the current is positive. To better appreciate the
change of sign we plot in the inset the integrated current Jt up to
time t = 3×108 steps. We see that for m+ = 0.999 50 there is a
straight line with a negative slope, whereas for m+ = 0.999 10
we measure a positive slope.

In order to gain some understanding on the transition from
down- to uphill diffusion we start from equilibrium (i.e., the
setting without reservoirs) considering the canonical Gibbs
measure with Hamiltonian (1), inverse temperature β > βc,
and total magnetization m = 0. This is the Wulff problem
first studied in [20]. For a system of large linear size L it
is proved in [20] that the typical configurations have the
following structure: there is a vertical strip centered at L/2
of macroscopically infinitesimal thickness: to the right of the
strip the magnetization is essentially mβ and to the left −mβ

(or vice versa).
In the nonequilibrium setting the interface separating the

plus and minus phase is perturbed by the current originated by
the reservoirs, while the optimal magnetization profile must
also interpolate between the value at the right side m+ and its
negative value m− = −m+ at the left side. When m+ = 1, one
expects that the instanton is stable: the magnetization profile
m(r) in the macroscopic coordinate r = x/L (thus r ∈ [0,1])
starts from m(0) = −1, for r < 1/2 increases monotonically
to −mβ , at r = 1/2 it has a jump of magnitude 2mβ and finally
increases monotonically again for r > 1/2 from mβ to m(1) =
1 (see Fig. 3). Such profile sustains a negative current, which is
microscopically due to positive spins (respectively, negative)
that cross the interface from the right (respectively, left) and are
eventually absorbed by the left (respectively, right) reservoir.

When m+ < 1 a second microscopic mechanism produces
a current: positive spins (respectively, negative) that are created
at the left (respectively, right) reservoir and travel to the right
(respectively, left), thus yielding a positive contribution to the

FIG. 3. Sketch of the magnetization profile m(r) in the macro-
scopic coordinate r = x/L (r ∈ [0,1]), when m+ = 1.

current. Indeed, we see in Fig. 2 that the current increases as
m+ is decreased from 1. At m+ = mcrit the two contributions
to the current of microscopic origin balance themselves, thus
yielding zero current. Past mcrit the positive contribution to the
current is dominant.

The analysis of the typical spin configurations and time-
averaged magnetization profiles show that past mcrit there is
a change in the structure of the nonequilibrium steady state.
We run a simulation with kinetic Monte Carlo method doing
1010 spin exchanges and plot in Fig. 4 the spin configuration at
the end of the run [panels (a)–(c)] and the time-averaged mag-
netization profiles [panels (d)–(f)]. Figure 5 reports a zoom of
Fig. 4 in a neighborhood of the top of the magnetization profile.
Whereas for m+ > mcrit the nonequilibrium stationary state is
still concentrated on the instanton profile [Fig. 4, panels (a) and
(d)], for m+ < mcrit we see from the numerical simulations that
the instanton becomes unstable. Two regimes can be clearly
detected: a metastable phase where the instanton is replaced by

FIG. 4. Spin configurations [panels (a)–(c)] and time-averaged
magnetization profiles [panels (d)–(f)] for three values of the reservoir
magnetization: m+ = −m− = 0.9995 stable phase [panels (a) and
(d)]; m+ = −m− = 0.9990 metastable phase [panels (b) and (e)];
m+ = −m− = 0.9980 weakly unstable phase [panels (c) and (f)].
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FIG. 5. Zoom of the time-averaged magnetization profiles of
the three bottom panels of Fig. 4 for three values of the reservoir
magnetization: m+ = −m− = 0.9995 stable phase [panel (a)]; m+ =
−m− = 0.9990 metastable phase [panel (b)]; m+ = −m− = 0.9980
weakly unstable phase [panel (c)]. The continuous and dashed lines
represent mβ and m+, respectively.

a bump [Fig. 4, panels (b) and (e)] and, continuing to lowering
m+, a weakly unstable phase appears with a profile with two
bumps [Fig. 4, panels (c) and (f)]. Note that in Fig. 2 the
current has a discontinuity around m+ 
 0.9987, which signals
the onset of a dynamical transition from the “bump” typical
configuration (in the metastable region) to the “two-bumps”
configuration (in the weakly unstable region). Remarkably, a
similar scenario was also observed in [13, Fig. 14] in the case
of a 1D particle system equipped with an attractive long-range
Kac potential.

Estimate of the critical magnetization. We claim that the
critical value mcrit of m+ can be estimated with an independent
method. Following the theory given in [18], the key quantity
is the magnetization value meq on the rightmost column of
the lattice measured at equilibrium, i.e., in the absence of
reservoirs. We claim that meq must be very close to mcrit. Indeed
if m+ = meq (and m− = −meq), then in the nonequilibrium
setting the reservoirs are trying to impose a magnetization
which is already there, so that their influence is negligible.
Therefore the current in the presence of the reservoirs is essen-
tially the current without reservoirs, which is zero. The choice
of the shifted BC guarantees that even close to the boundaries
one would see in a very large system a magnetization mβ to
the right of the interface and −mβ to the left. However, when
L is finite the magnetization at the boundaries is not exactly
equal to mβ due to finite-size effects. Thus meq at finite volume
might well be different from mβ . For a system size L = 40 the
simulation at equilibrium yields a value for meq ≈ 0.999 31,
thus in perfect agreement with the value of mcrit obtained
from the nonequilibrium simulations. We measured the value
of meq for several system sizes with L in the range [10,40].
We found that these values decrease with increasing L. A plot
against L is shown in Fig. 6, together with an exponential fit.
The extrapolation to the infinite volume is compatible with
an asymptotic value of meq equal to 0.999 27, that coincides
approximatively with mβ in (2) evaluated at β = 1.

10 15 20 25 30 35 40
L

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

m
eq

Data
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FIG. 6. Time-averaged magnetization on the last column meq at
equilibrium (i.e., without reservoirs) versus system size L. The hor-
izontal line is mβ ≈ 0.999 27. The continuous line is an exponential
fit mβ + ae−bL with a = 0.0015 ± 0.0004 and b = 0.10 ± 0.02.

Discussion. In this Rapid Communication it is argued that
uphill diffusion appears in the nonequilibrium Ising model
coupled to magnetization reservoirs. A few final comments are
in order. First we observe that our results imply no violation of
the thermodynamic principles. Indeed, our system (composed
of a channel and left/right reservoirs) is not an isolated system.
On the contrary, the Glauber dynamics at the boundaries is
such that energy is systematically pumped into the channel.
A second issue is the extrapolation to the thermodynamic
limit L → ∞. While this remains an admittedly open issue,
we observe that our simulations with L = 40 provide perfect
agreement between the critical magnetization value mcrit sig-
naling the onset of uphill diffusion and the magnetization value
meq measured at equilibrium on the rightmost column of the
lattice. Furthermore, in the range L ∈ [10,40] we could verify
the expected exponential convergence of meq to equilibrium
spontaneous magnetization mβ . All this is evidence that our
nonequilibrium simulations are capable of reproducing the
infinite volume equilibrium state including its finite volume
corrections. We are currently investing larger sizes [21] to
verify the conjecture that uphill diffusion persists in the
thermodynamical limit L → ∞.

The apparent contradiction between uphill diffusion and
the validity of Fick’s law can be resolved by looking at the
magnetization profiles. Specifically, in panel (e) of Fig. 4 we
measured a value of magnetization at the peak of the bump
that is between m+ and mβ , namely, m+ = 0.9990 < mbump =
0.999 25 < mβ ≈ 0.999 27 [see panel (b) of Fig. 5]. In between
the peak and the right boundary, the magnetization profile is
monotonically decreasing, thus most of the magnetization pro-
file is compatible with a positive current that is down the gra-
dient. In panel (f) of Fig. 4 we found instead m+ = 0.9980 <

mβ ≈ 0.999 27 < mbump = 0.999 40 [see panel (c) of Fig. 5].
Thus, being mβ < mbump, we have again downhill current.

It is natural to ask what is the structure of the nonequilibrium
stationary state as one continues to lower m+. We see from the
simulations that the weakly unstable region with a double bump
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persists until, approximately, the value m+ = 0.92. We do not
investigate here what happens below this value, where one
enters a chaotic region with the stationary measure dominated
by several typical configurations. We will report results on the
chaotic region elsewhere.
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