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We have revised our results, we found some errors concern-
ing the real order parameter for this system, and we have to
change the main conclusions of the original paper. The first
conclusion that will change is that this system does not have
a spin glass phase and does not change its universality class.
Instead, this system is a ferrite, and the proper critical behavior
is in the Ising universality class with logarithmic corrections.

In the original article and in the first Erratum [1] we
have determined the Edwards-Anderson (EA) order parameter
qEA, the susceptibility χ , the specific heat c, and the Binder
cumulant gL by using the replica exchange Monte Carlo
technique (also known as parallel tempering) [2–5], which
is suited to approach the problem of determining the steady
state of systems with complex energy landscapes composed
of many local minima and to find the ground state of systems
with nonperiodic interactions.

But, by analyzing the same system with the Octonacci
sequence [6], to be published elsewhere, we calculated the
dynamical correlation to see if the system exhibits slow dynam-
ics, i.e., aging. But the system exhibits aging for ferromagnetic
systems [7], so, unlike the way in which we concluded in our
original article, the system is ferromagnetic, and its ground
state is an aperiodic ferrite. The correct order parameter
is the staggered magnetization. We were motivated by the
change in the specific heat critical behavior and, apparently,
we equivocally concluded that the critical exponents for qEA

matched the critical exponent for specific heat. However, as
we show, the critical behavior of the specific heat is changed
by logarithmic corrections.

By using the replica exchange Monte Carlo technique, we
obtained the staggered magnetization order parameter 〈q〉, the
associated susceptibility χ , the specific heat c, and the Binder
cumulant g,

q = 1

N∗

N∑

i

S0
i Si, (1)

χ = N (〈q2〉 − 〈q〉2)/T , (2)

g = 1 − 〈q4〉
3〈q2〉2

, (3)

where 〈· · · 〉 stands for a thermal average over sufficiently
many independent steady state system configurations, S0

i,j is
the ground state of the system, and L and T are the lattice size
and the absolute temperature, respectively. Equations (1)–(3)
replace (2)–(5) of our original article. We use the same values of

the lattice size L: 34, 55, 89, 144, and 233, which are Fibonacci
numbers Fn, given by the recursion rule,

Fn = Fn−1 + Fn−2, (4)

where F0 = 1 and F1 = 1.
To determine the proper critical behavior, we have used

the following finite size scaling (FSS) relations [8] with
logarithmic corrections [9–12],

q ∝ Lβ/ν(ln L)β̂+βλ̂fq(ϑ), (5)

χ ∝ L−γ /ν(ln L)γ̂−γ λ̂fχ (ϑ), (6)

c ∝ (ln L)−α̂fc(ϑ), (7)

where β = 1/8, γ = 7/4, α = 0 (logarithmic divergence),
and ν = 1 are the critical exponents [the Ising two-dimensional
(2D) ones]. α̂, β̂, γ̂ , and λ̂ are the logarithmic correction
exponents. Equations (5)–(7) replace (6)–(8) of our original
article. fi(ϑ)’s are the FSS functions with a logarithmic
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FIG. 1. Binder cumulant g versus temperature T for different
lattice sizes L. The values of L obey the Fibonacci sequence. We
estimated the critical temperature of Tc ≈ 1.274 by averaging the
numerical values of the temperatures where the curves intersect each
other.
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FIG. 2. The order parameter q as a function of temperature T for
different lattice sizes L. The values of L obey the Fibonacci sequence.
The inset: The curves suggest a second-order phase transition.

corrected scaling variable,

ϑ = L1/ν(T − Tc)| ln |T − Tc||−λ̂. (8)

Equation (8) replaces (9) of our original article. The correction
exponents α̂, β̂, γ̂ , and λ̂ obey the following scaling relations
[12]:

α̂ = 1 − dν λ̂, (9)

2β̂ − γ̂ = −dν λ̂, (10)

where d = 2 is the dimensionality of the system. The scaling
relation (9) is valid only for α = 0 (logarithmic divergences)
in the general case of α̂ = −dν λ̂. For α = 0 and α̂ = 0, we
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FIG. 3. The susceptibility χ as a function of temperature T for
different lattice sizes L. The values of L obey the Fibonacci sequence.
The inset: The susceptibility diverges at Tc in the large lattice size
limit.
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FIG. 4. Specific heat cv as a function of temperature T for
different lattice sizes L. When increasing the lattice size, we observe
a crescent maximum, suggesting a logarithm divergence at the critical
temperature of Tc ≈ 1.274.

have the double logarithmic divergence (ln ln L) of the specific
heat as seen for the 2D diluted Ising model [12]. Because of
the changing of the proper order parameter from qEA to the
staggered magnetization q and the changing of the scaling
properties to take into account the logarithmic corrections,
Figs. 2, 5, 8, and 9 of our original article should not be
considered.
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FIG. 5. Data collapse of the specific heat c, rescaled by (ln L)−α̂

versus the scaling parameter L1/ν(T − Tc)| ln |T − Tc||−λ̂ for differ-
ent lattice sizesL. The inset: Specific heat c, rescaled by 1/ ln Lversus
the scaling parameter L1/ν(T − Tc) for different lattice sizes L. We
can see that the FSS relation without logarithmic corrections does not
collapse our numerical data. The best collapse is performed by using
the values for the logarithmic correction exponents: α̂ = 3/5 and
λ̂ = 1/5. The model is in the Ising universality class with logarithmic
corrections.
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FIG. 6. Data collapse of the order parameter q and the susceptibility χ , rescaled by Lβ/ν(ln L)β̂+βλ̂ versus the scaling parameters L1/ν(T −
Tc)| ln |T − Tc||−λ̂ and L−γ /ν(ln L)γ̂−γ λ̂ versus the scaling parameter L1/ν(T − Tc)| ln |T − Tc||−λ̂, respectively, for different lattice sizes L.
The best collapse is performed by using the values for the logarithmic correction exponents: β̂ = −1/20, γ̂ = 3/10, and λ̂ = 1/5. Therefore,
the model is in the Ising universality class with logarithmic corrections.

We have used 1 × 105 Monte Carlo Markov (MCM) steps
to make the Nt = 600 system replicas (each system replica
has a different temperature) reach the equilibrium state, and the
independent steady state system configurations are estimated in
the next 1 × 106 MCM steps with ten MCM steps between one
system state and another one to avoid self-correlation effects.
Every MCM step is composed of two parts, a sweep and a swap.
One sweep is accomplished when all N spins were investigated
if they flip or not, and one swap is accomplished if all the Nt

replicas are investigated if they exchange or not their tem-
peratures (swap part). We carried out 105 independent steady
state configurations to calculate the needed thermodynamic
averages.

We have reestimated the critical temperature by using
the Binder cumulant given by Eq. (3) for the staggered
magnetization in order to obtain the critical temperature.
We show the Binder cumulant in Fig. 1 which replaces
Fig. 3 of our original article. The critical temperature Tc is
estimated at the point where the curves for different size
lattices intercept each other as shown in the inset. We obtained
Tc ≈ 1.274 by using the Binder cumulant for the staggered
magnetization.

We display the order parameter q versus temperature T in
Fig. 2 which replaces Fig. 4 of the our first Erratum [1]. The
inset shows the original data for staggered magnetization q, and
the main figure shows data collapse by using the FSS relation
written in Eq. (5) in Fig. 6.

Continuing the analysis of the critical behavior, we obtained
the susceptibility χ as a function of temperature T , Fig. 3 which
replaces Fig. 7 of our original article. In the large lattice size
limit, the susceptibility diverges at Tc ≈ 1.274. Also, we show
the data collapse of the susceptibilities for different lattice sizes
according to the FSS relation given in Eq. (6). All maxima
are well fitted by using the FSS relation with logarithmic
corrections and the Ising critical exponents as shown in Fig. 6.
This figure replaces Fig. 12 of the our first Erratum [1].

Finally, we show the specific heat c as a function of
temperature T , Fig. 4 which replaces Fig. 10 of our original
article. We have estimated the α̂ exponent by collapsing the
specific heat c for different lattice sizes following the scaling
relation presented in Eq. (7) as we show in Fig. 5. We have noted
that the maxima of the specific heat diverges as a power of ln L

as shown in Fig. 5, unlike the pure model in which the maxima
scales as ln L as shown in the inset of Fig. 5, which substitutes
for Fig. 11 of our original article. When using the exponent of
the pure model without logarithmic corrections, our numerical
data are not collapsed. Our best estimate for the α̂ exponent
ratio is α̂ = 3/5, which obeys the scaling relations for the
logarithmic correction exponents given in Eq. (7). Choosing
the order parameter, the susceptibility and the specific heat
logarithmic correction exponents preserve the scaling relations
Eqs. (9) and (10). We show the data collapsed for the staggered
magnetization and its susceptibility in Fig. 6, which substitutes
for Fig. 12 of our original article.
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