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It has been suggested that bubble-wall velocities cannot exceed the sound speed in the liquid at the bubble
wall [K. Yasui, Phys. Rev. E 64, 016310 (2001)]. Here we show that this upper bound was derived omitting the
partial derivatives with respect to time, i.e., assuming that the flow was in the steady state. For collapsing bubbles,
however, the steady-flow assumption requires justification, as the partial time derivatives appear to have the same
orders of magnitude as the other terms in Euler’s and the continuity equations. Furthermore, numerical solutions
of the hydrodynamic equations with a HYADES hydrocode yielded supersonic velocities in the liquid at and near
the collapsing bubble. We also show the spatial distributions of pressure, density, sound speed, and mass flux
density around the supersonically collapsing bubble.
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High bubble-wall velocities have been predicted since
works of Besant [1] and Rayleigh [2], showing an infinite
growth of the bubble-wall velocity during the implosion of
an empty spherical cavity in incompressible liquids [3]. The
sound speed in incompressible liquids is infinite, and the flow
velocities are subsonic. In compressible liquids, the sound
speed is finite, and the flow can be supersonic. In the supersonic
flow, sound waves propagate only downstream [3]. Hence, for
a supersonically imploding bubble, no sound can leave the
supersonic shell around the bubble, and the bubble behaves
like a black hole for sound. The upstream flow becomes
independent of pressure and density variations downstream
and in the bubble.

Intriguingly, it has been suggested that the fundamental
theory of fluid dynamics imposes an upper bound on the
bubble-wall velocity so that it cannot exceed the sound speed
in the liquid at the bubble wall [4]. If valid, this upper bound
would have significant consequences, limiting collapse veloc-
ities and, as a consequence, the extreme conditions produced
by the collapsing bubbles. This is particularly important for
applications involving violent implosions of bubbles, such
as in attempts to achieve thermonuclear fusion [5–9], or for
intense cavitation at high static pressures [5,10–27]. So far,
however, the upper bound has been considered in only a few
numerical studies [4,28]. Moreover, the upper bound disagrees
with previous investigations predicting bubble-wall velocities
greater than the speed of sound [29–31]. To help resolving this
disagreement, we discuss the assumptions made in deriving
the upper bound in Ref. [4].

There are examples when the theory of fluid dynamics
imposes a sonic limit on fluid velocity [3]. For one, it is
impossible to achieve supersonic velocities with a steady flow
in a continually narrowing tube, a converging nozzle [3]. This
result may appear, at first, to support the validity of the upper
bound, as the spherically symmetric flow around the bubble
can conceivably be subdivided into flows through a plurality
of frictionless tubes converging at the bubble center. However,
as later discussed, the flow in the converging tube was assumed
to be invariable with time, i.e., in the steady state [3].

Here we show that the steady-flow assumption was also
used to derive the upper bound in Ref. [4]. For the collapsing
bubbles, however, the fluid velocity, density, and pressure
vary with time [1–3], so the applicability of the steady-flow
assumption requires justification. We show that the partial
time derivatives have the same orders of magnitude as the
other terms in hydrodynamic equations. This raises a question
on the validity of omitting the partial time derivatives in
deriving the upper bound in Ref. [4]. We also show results of a
numerical simulation with a HYADES hydrocode [32], yielding
bubble-wall velocities faster than sound. Finally, we discuss
the mass flux density for subsonic and supersonic steady flows,
and show the mass flux density for the unsteady flow around
the imploding bubble.

The upper bound was derived from Euler’ s equation

∂u
∂t

+ (u · grad) u = − 1

ρ
grad P (1)

and the equation of continuity

∂ρ

∂t
+ div (ρu) = 0, (2)

where u is the fluid velocity, t is time, ρ is the density, and P

is the pressure [3].
For a radially symmetric flow, spatially dependent only on

the distance r from the center of the bubble, Eqs. (1) and (2)
can be written as follows [3]:

∂u

∂t
+ u

∂u

∂r
= − 1

ρ

∂P

∂r
, (3)

∂ρ

∂t
+ 1

r2

∂ (ρur2)

∂r
= 0. (4)

For a steady flow, the partial time derivatives vanish:

u
∂u

∂r
= − 1

ρ

∂P

∂r
, (5)

1

r2

∂ (ρur2)

∂r
= 0. (6)
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Equations (5) and (6) lead to the equations used to derive
the upper bound in Ref. [4], specifically, Eq. (A1)

u du = − dP

ρ
= − dP

dρ

dρ

ρ
= − c2 dρ

ρ
(7)

and Eq. (A3)

dρ

ρ
+ du

u
+ dA

A
= 0, (8)

where c is the sound speed and A is the cross section of the
fluid flow perpendicular to the flow direction [4].

Thus, the upper bound in Ref. [4] appears to be derived
omitting the partial time derivatives ∂u/∂t and ∂ρ/∂t . To
justify this steady-flow assumption, one needs to show that
the partial time derivatives are negligible in comparison with
the other terms in Euler’ s and the continuity equations. In
Euler’ s equation, the ratio of the convective term u ∂u/∂r to
the partial time derivative ∂u/∂t is on the order of

u
∂u

∂r

∂u

∂t

∼
u

�u

�r

�u

�t

∼ u

�r

�t

, (9)

where �t is a time and �r is a length on the order of the
times and distances over which the fluid velocity undergoes
significant changes �u [3]. For example, for a sinusoidal
sound, �r is on the order of a wavelength and �t is on
the order of a period, so the ratio �r/�t is on the order of
the sound speed c, and the ratio (9) is on the order of u/c.
The velocity u is often smaller than c, and the convective term
u ∂u/∂r is smaller than ∂u/∂t .

For the bubble wall, the ratio �r/�t is on the order
of the bubble-wall velocity U . The liquid velocity u at the
bubble wall is also U . Hence, the ratio (9) is on the order of
one, suggesting that the partial time derivative ∂u/∂t has the
same order of magnitude as the convective term u ∂u/∂r .

Likewise, in the continuity equation, the ratio of the term
u ∂ρ/∂r to the partial time derivative ∂ρ/∂t is on the order of

u
∂ρ

∂r

∂ρ

∂t

∼
u

�ρ

�r

�ρ

�t

∼ u

�r

�t

, (10)

and, at the bubble wall, is on the order of one. This suggests
that the partial time derivative ∂ρ/∂t is on the same order of
magnitude as the term u ∂ρ/∂r .

If one neglects both of these terms as being small in compar-
ison with the other terms in the continuity equation, the upper
bound is meaningless. Indeed, the sum of these two terms is
the material time derivative dρ/dt , which describes the density
variations at the bubble wall as it moves in space. Neglecting
dρ/dt leads to the incompressible approximation with an
infinite sound speed, making the upper bound meaningless.

This assessment is supported by numerical simulations
showing supersonic liquid velocities at and in the proximity
to the collapsing bubbles [29–31]. We modeled a spherically
symmetric bubble using the one-dimensional (1D) HYADES

code (Cascade Applied Sciences, Inc., USA). HYADES is a La-
grangian hydrodynamics and energy transport code, originally

developed to model dense plasma [32] and later adapted for
modeling cavitation bubbles [5,10–15].

We modeled a 50-μm argon bubble in water. Initially, water
and gas were in thermal equilibrium at temperature T of 297 K
and at rest. The outer boundary of water, located at 101.6
mm from the bubble, was driven by an oscillatory pressure
P (t) = P0 − Pa sin(2πf t) [33]. The driving frequency f was
25982 Hz, corresponding to one of the spherically symmetric
resonance modes of the fluid volume [5,10–27]. The static
pressure P0 was 20 MPa; the acoustic pressure Pa at the outer
boundary of water was 2 MPa. This pressure wave spherically
converged to the center, producing a net negative pressure that
expanded the bubble to the radius Rmax ≈ 0.83 mm with the
growth-collapse cycle lasting ∼14.5 μs [26].

For modeling, the bubble and the liquid were divided into
concentric zones. We used 16–64 zones in the bubble and
1000–1500 zones in the liquid, decreasing zone sizes for finer
resolution near the collapse [5,10–15,26]. Zones moved with
the mass. HYADES does not model mass diffusion, and the
amount of gas in the bubble remained unchanged. HYADES

also does not include a number of other liquid-gas interface
phenomena, such as vaporization, condensation, dissociation,
and surface tension. The Laplace pressure produced by the
surface tension, however, appeared to be insignificant for
the bubble sizes and pressure modeled here. Specifically, the
Laplace pressure for the smallest bubble radius [Rmin ≈ 23 μm
at the moment of the collapse, Fig. 1(a)] was less or about 0.01
MPa, i.e., smaller than the static pressure by three orders of
magnitude.

Apparently, the 1D code does not model any surface
instabilities at the liquid-gas interface. As a consequence, the
spherical model of the bubble diverged from the experimental
observations showing a microjet and daughter microbubbles
during the rebound [26]. We modeled only the first growth-
collapse cycle of the bubble. The pressure, density, and tem-
perature during the collapse are shown in Ref. [26] (Fig. 2 and
video 1); here we show primarily the liquid velocity and the
sound speed.

HYADES calculates the sound speed using equations of state
and the relation

c2 =
(

∂P

∂ρ

)
S

=
(

∂P

∂ρ

)
T

+
(

∂P

∂T

)
ρ

(
∂T

∂ρ

)
S

, (11)

where S is the entropy. The thermodynamic derivatives
(∂P/∂ρ)T and (∂P/∂T )ρ are found directly from the equations
of state. The derivative (∂T /∂ρ)S is found using a Maxwell’s
relation (

∂T

∂ρ

)
S

= 1

ρ2

(
∂P

∂S

)
ρ

(12)

and the equation (
∂P

∂S

)
ρ

= T

(
∂P

∂E

)
ρ

, (13)

which follows from the second law of thermodynamics dE =
T dS − PdV , where E is the internal energy and V is the
volume. Inserting (12) and (13) in Eq. (11) gives

c2 =
(

∂P

∂ρ

)
T

+ α T

ρ2

(
∂P

∂T

)
ρ

, (14)
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FIG. 1. Bubble radius R(t), bubble-wall velocity U (t), sound
speed in the liquid at the bubble wall C(t), and the bubble-wall Mach
number U/C. The bubble-wall velocity U (t) was negative during the
implosion phase (t < 0) until the moment of the collapse (dashed
line). A dotted-line rectangle highlights the time interval (−36.7 to
−4.9 ns) when the bubble-wall velocity was supersonic (|U | > C).

where α = (∂P/∂T )ρ/(∂E/∂T )ρ . HYADES determined the
sound speed using Eq. (14), where the thermodynamic deriva-
tives were found from the equations of state (EOS) from the
SESAME library (Los Alamos National Laboratory, USA). We
used the SESAME EOS 5171 (HYADES EOS 93) for argon and
SESAME EOS 7153 (HYADES EOS 315) for water.

Figure 1 shows the bubble radius R(t), the bubble-wall
velocity U (t) = dR/dt , the sound speed in the liquid at the
bubble wall C(t), and the bubble-wall Mach number U/C. At
the moment of the collapse (t = 0, dashed line) the bubble-wall
implosion came to an end, bringing the bubble to its minimum
radius [Fig. 1(a)]. The bubble-wall velocity U [Fig. 1(b)] was
negative during the implosion (t < 0) and positive during the
rebound phase. Here we consider only the implosion phase.

During the last ∼10.7 ns prior to the moment of the collapse,
the sound speed in the liquid at the bubble wall C was rapidly
increasing [Fig. 1(c)]. This increase of C was faster than the
increase of |U |, so that the magnitude of the bubble-wall
Mach number U/C [Fig. 1(d)] started to decrease even though
|U | continued to increase until t ≈ −3.5 ns [Fig. 1(b)]. As a
consequence, the bubble-wall Mach number U/C reached its
maximum magnitude of ∼1.4 at t ≈ −10.7 ns [Fig. 1(d)].
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FIG. 2. Velocity magnitude |u| and sound speed c in the liquid
at three moments in time: t1 = −14.7 ns, t2 = −12.7 ns, and t3 =
−10.7 ns. Bubble-wall positions are shown by the dashed lines: r1 =
68.5 μm at t1, r2 = 63.3 μm at t2, and r3 = 57.8 μm at t3. Bubble’s
interior (to the left of the dashed lines) is not shown. Dotted lines mark
the locations of |u| = c: 73.7 μm at t1, 67 μm at t2, and 59.2 μm at
t3. The highlights (between the dashed and the dotted lines) indicate
regions with supersonic velocities.

Figure 2 shows radial distributions of liquid velocity mag-
nitude |u| and sound speed c in the liquid around the imploding
bubble at three moments in time. The bubble wall was moving
toward the bubble center (from right to left in Fig. 2) with
supersonic velocities: U1 = 2516 m/s at t1, U2 = 2640 m/s at
t2, and U3 = 2827 m/s at t3. The velocity of the liquid proximal
to the bubble (highlighted regions) was also supersonic. To the
right of the dotted lines, the liquid velocity was subsonic due
to a decrease of |u| and an increase of c in the proximity to the
bubble.

Figure 2 can be used to assess u ∂u/∂r and ∂u/∂t . The
derivative ∂u/∂r is given by the slope of u(r) at a fixed moment
in time, while ∂u/∂t is a change of velocity u at a fixed distance
r . Let us estimate these terms at r1. In the ±2 ns time interval
around t2, the velocity magnitude changed from u1(r1) = 2516
m/s (circle) to u3(r1) = 2226 m/s (square). Dividing this
change by 4 ns gives ∂u/∂t as 7.3E + 10 m/s2. To estimate
u ∂u/∂r , we multiply the liquid velocity u2 at r1 (2360 m/s,
diamond) by the slope of the curve u2 at r1 (4.2E + 7s−1).
This gives u ∂u/∂r ≈ −9.9E + 10 m/s2, showing that the
convective term u ∂u/∂r and the partial time derivative ∂u/∂t

had the same orders of magnitude.
The derivatives ∂u/∂t and u ∂u/∂r had opposing signs.

The sum of these two terms gives the material time derivative
du/dt = ∂u/∂t + u ∂u/∂r , i.e., the acceleration of a liquid
particle as it moves in space. The acceleration of the bubble
wall dU/dt is the slope of the curve U (t) in Fig. 1(b). When the
slope was negative, the bubble wall was accelerating toward
the bubble center, and the magnitude of u ∂u/∂r exceeded
∂u/∂t . These two terms became equal in magnitude at t ≈
−3.5 ns, when the slope of U (t) was zero (dU/dt = 0) and
the bubble-wall velocity reached its greatest magnitude of
3.84 km/s [Fig. 1(b)]. After that, the bubble-wall velocity
decelerated [dU/dt > 0, Fig. 1(b)]. During the final 1.2 ns
of the implosion, both ∂u/∂t and u ∂u/∂r were positive. Their
sum dU/dt reached a broad maximum of 3.4E + 12 m/s2 at
∼0.4 ns prior to the moment of the collapse.
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Let us now consider a steady flow in a converging tube,
as it is instructive to discuss a known example when the
fundamental theory of fluid dynamics limits velocities by the
sound speed (Ref. [3], §97). For the steady adiabatic flow we
can use Eq. (7) (Eq. (A1) in Ref. [4])

dρ

du
= − ρ

u

c2
. (15)

Multiplying it by u and substituting u dρ from the identity
u dρ = d(uρ) − ρ du gives a relation (Eq. 83.5 in Ref. [3])

d(uρ)

du
= ρ

(
1 − u2

c2

)
. (16)

This relation is valid along streamlines and shows that the
magnitude of the mass flux density j ≡ uρ behaves differently
for subsonic and supersonic velocities. For subsonic velocities
(|u| < c), an increase of velocity magnitude |u| increases
j . For supersonic velocities (|u| > c), an increase of |u|
decreases j . The mass flux density reaches maximum at |u| = c

and vanishes along with the density ρ at some maximum
velocity (|umax| > c), attained by the flow out into a vacuum
(Ref. [3]).

One can use Eq. (16) to show that it is impossible to reach
supersonic velocities in a steady flow through a continually
narrowing tube [3]. Let us assume that the flow at the inlet
of the tube is subsonic, and that the cross section of the tube
is relatively small and slowly narrowing such that the mass
flux density j is parallel to the axis of symmetry in every cross
section. For a time-independent flow, the mass passing through
every cross section in unit time is the same so that a decrease
of the cross-sectional area is associated with an increase of the
mass flux per unit area, j . As the right-hand side of Eq. (16) for
the subsonic velocities is positive, the increase of j requires
an increase of u. Thus, the velocity u increases along the
converging tube. The increasing velocity u, however, cannot
become supersonic, as the right-hand side of Eq. (16) would
become negative, decreasing j , which contradicts the increase
of j along the converging tube. The steady-flow velocity can
reach the sound speed only at the outlet of the converging tube
and become supersonic in a diverging tube [3].

For the unsteady flow, the above argumentation is inappli-
cable. First, we cannot invoke the requirement that the mass
flux must be the same through every cross section, as the mass
may vary in time. For example, the mass in a given region may
increase at one moment in time and decrease at a later moment
in time. Second, Eq. (16) was derived neglecting the partial
time derivate ∂u/∂t , i.e., assuming that the flow was in the
steady state.

The inapplicability of Eq. (16) for the unsteady flow around
the collapsing bubbles is illustrated in Fig. 3, showing the
mass flux density in the liquid around the imploding bubble
at a fixed moment in time. In the region with supersonic
velocities (highlighted), the velocity magnitude |u| increases
monotonically toward the bubble wall (from right to left),
but the mass flux density is nonmonotonic, reaching the
maximum at r ≈ 70 μm. This differs from the steady flow, for
which—according to Eq. (16)—the mass flux density would
monotonically increase with r in the highlighted region with
supersonic velocities (from the bubble wall to the vertical

FIG. 3. Mass flux density j , velocity magnitude |u|, sound speed
c, pressure P , and density ρ in the liquid near the bubble wall (left-
most position) at t = −14.7 ns. The supersonic region (highlighted)
extends from the bubble wall to r = 73.7 μm (vertical dotted line).

dotted line at r ≈ 73.7 μm) and decrease with r in the region
with subsonic velocities (r > 73.7 μm).

Figure 3 also shows the pressure, the density, and the sound
speed in the liquid around the collapsing bubble. The sound
speed increased with the pressure, reaching approximately
3000 m/s at pressure of 1 GPa.

The dependence of sound speed on pressure in water can
be illustrated using the isentropic equation of Tait

P + B

P0 + B
=

(
ρ

ρ0

)n

, (17)

where B and n are fitting parameters, and ρ0 is the density at
the reference pressure P0. Figure 4 shows the sound speed c =√

dP/dρ calculated using P0 = 0.1 MPa, ρ0 = 997 kg/m3,
and three sets of fitting parameters B and n from previous
studies [34–36].

The increase of the sound speed with pressure (Fig. 4) is
among the main factors reducing the extent of the supersonic
region around the collapsing bubbles. The dependence of the
sound speed on pressure (Fig. 4) also shows the need to know
the pressure (or density) to determine whether the bubble-wall
velocity is supersonic. For example, recent experiments at high
static pressure have shown bubble-wall velocities as high as

FIG. 4. Sound speed vs pressure calculated using Eq. (17) with
three sets of parameters: (i) B = 300 MPa and n = 7 (red dashed line,
Ref. [34]), (ii) B = 314 MPa and n = 7 (dotted blue, Ref. [35]), and
(iii) B = 295.5 MPa and n = 7.44 (solid black, Ref. [36]).
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7.5 km/s [27]. According to Fig. 4, these bubble-wall velocities
would remain supersonic up to the pressure of 12 GPa.

In conclusion, the present analysis shows that the upper
bound on the bubble-wall velocity [4] appears to be derived
omitting the partial derivatives with respect to time. This
steady-flow assumption requires justification, as the partial
time derivatives can have the same orders of magnitude as
the other terms in the hydrodynamic equations. Furthermore,
the results of numerical simulations from this (Figs. 1–3) and
other studies [29–31,33] show bubble-wall velocities greater

than the sound speed in the liquid at the bubble wall. This poses
a question on the extent to which the upper bound is applicable
for the collapsing bubbles.

The author thanks S. E. Nicholson for HYADES simulations
and the development of HYADES visualization software, as
well as for proofreading this manuscript, Dr. J. T. Larsen
for advice on the HYADES code, and Dr. D. F. Gaitan for his
contribution to adapt the HYADES code for modeling cavitation
bubbles.
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