PHYSICAL REVIEW E 97, 023311 (2018)

Rational design of stealthy hyperuniform two-phase media with tunable order

Robert A. DiStasio, Jr.,! Ge Zhang,? Frank H. Stillinger,” and Salvatore Torquato®>:"
' Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
3Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational
Mathematics, Princeton University, Princeton, New Jersey 08544, USA

® (Received 4 December 2017; published 27 February 2018)

Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have attracted recent
attention because of their novel structural characteristics (hidden order at large length scales) and physical

properties, including desirable photonic and transport properties. It is therefore useful to devise algorithms that
enable one to design a wide class of such amorphous configurations at will. In this paper, we present several
algorithms enabling the systematic identification and generation of discrete (digitized) stealthy hyperuniform
patterns with a tunable degree of order, paving the way towards the rational design of disordered materials

endowed with novel thermodynamic and physical properties. To quantify the degree of order or disorder of the
stealthy systems, we utilize the discrete version of the t order metric, which accounts for the underlying spatial
correlations that exist across all relevant length scales in a given digitized two-phase (or, equivalently, a two-spin
state) system of interest. Our results impinge on a myriad of fields, ranging from physics, materials science and
engineering, visual perception, and information theory to modern data science.

DOI: 10.1103/PhysRevE.97.023311

I. INTRODUCTION

A hyperuniform state of matter is characterized by an
anomalous suppression of density fluctuations at large length
scales [1,2]. For example, a hyperuniform many-particle
system in d-dimensional space R? possesses a local number
variance o2(R) within a spherical observation window of
radius R that grows slower than R? (i.e., window volume)
for large R. Equivalently, it is one in which the well-known
structure factor S(k) (which is proportional to the scattering
intensity [3,4]) tends to zero as the wave number k = |Kk| goes
to zero, i.e.,

lim S(k) =0. (1)

lk|—>0
Hyperuniform systems include all perfect crystals, perfect
quasicrystals, and some exotic disordered systems. Typical
disordered systems, such as liquids and structural glasses,
have variances with the standard volume scaling o>(R) ~ R<.
Figure 1 depicts two disordered non-hyperuniform config-
urations with different levels of short-range order and two
hyperuniform configurations, one disordered and the other
ordered.

Disordered hyperuniform patterns are exotic amorphous
states of matter poised between perfect crystals and liquids
in that they exhibit suppressed large-scale density fluctua-
tions (like perfect crystals) while simultaneously presenting
as statistically isotropic with no Bragg peaks (like liquids)
[1,2,7,8]. In this sense, hyperuniform systems are characterized
by hidden order that is not apparent on large length scales
[7] and are therefore endowed with several novel thermody-
namic and physical properties. To date, these extraordinary
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states of matter can be found in maximally random jammed
particle packings [9-12], jammed athermal granular media
[13], jammed thermal colloidal packings [14,15], dynamical
states of cold atoms [16], transitions in nonequilibrium systems
[17,18], quantum systems [19-21], surface-enhanced Raman
spectroscopy [22], terahertz quantum cascade lasers [23], wave
dynamics in disordered potentials based on supersymmetry
[24], avian photoreceptor patterns [25], as well as certain
Coulombic systems [21].

Disordered hyperuniform patterns of the so-called stealthy
variety have the additional (and unusual) property of being
transparent to radiation across a select range of wavelengths,
e.g., S(k) =0 in a sphere of radius K around the origin
k = 0, meaning that they anomalously suppress density fluc-
tuations for these wave vectors. It is noteworthy that there
are equilibrium many-particle systems with certain long-range
pairwise potentials whose ground states are highly degen-
erate disordered configurations with these stealthy structure
factors [6,7,26]. By mapping such stealthy hyperuniform
configurations of particles onto network solids, what was
previously thought to be impossible became possible: the
rational design of disordered cellular solids that have complete
isotropic photonic band gaps comparable in size to photonic
crystals [27], thereby providing novel and unexplored ways to
manipulate light [28-31]. Moreover, it has recently been shown
that disordered stealthy dispersions are endowed with nearly
optimal transport properties while being statistically isotropic
[32,33]. The fact that stealthy many-particle systems cannot
tolerate arbitrarily large holes between the particles [34] is a
structural characteristic that is an important factor in bestowing
novel properties to disordered stealthy materials [35].

Two-phase heterogeneous media (e.g., composites, porous
materials, polymer blends, biological media, suspensions, gels,
etc.) represent a very general class of materials, and yet we
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FIG. 1. Graphical depiction of four different many-particle configurations (patterns) that contain varying degrees of structural order, the
latter two of which are hyperuniform. (a) Poisson configuration with no discernible short-, intermediate-, or long-range order. (b) Configuration
generated via random sequential addition (RSA) with short-range order [5]. (c) Inclusion of very small collective displacements of the particles
in (b) to form a hyperuniform configuration [6], a statistically isotropic configuration that contains hidden long-range order yet displays no
Bragg peaks. In comparing these two patterns by eye, it can be very difficult to detect the presence of such long-range order in the hyperuniform
configuration. (d) Crystalline configuration displaying order across all length scales (and characterized by Bragg peaks).

know little about their existence as stealthy hyperuniform states
from a fundamental theoretical perspective. In this paper, we
focus our attention on discrete or digitized realizations of
two-phase media, since digital images are necessarily pixelized
(or voxelized) and modern three-dimensional (3D) printing
technologies use digitized data as input, thus providing several
immediate and practical applications of the work described
herein. Moreover, such digitized systems can be regarded as
two-state spin systems. The capability to systematically gener-
ate stealthy hyperuniform disordered two-phase heterogeneous
media with a tunable degree of order is in its infancy. This work
also directly addresses this issue by bringing together aspects
of pattern recognition, quantification of order in digitized
two-phase media, and the theory of heterogeneous media [36]
in the design of a series of algorithms that allow for the
systematic identification and generation of digitized stealthy
hyperuniform patterns. Accordingly, we design two-phase
digitized stealthy hyperuniform patterns with a funable or
prescribed degree of order. It should be noted that there has
been a very recent investigation concerning the design of
hyperuniform two-phase materials [33] that complements the
approaches that we report in this paper, which is discussed
further in Sec. V.

While there is no perfect order metric [37], the existence
of stealthy disordered patterns that contain hidden order (i.e.,
difficult to discern by visual inspection) makes it desirable to
utilize an order metric that is able to quantify the degree of
order in a given pattern across all relevant length scales. In this
work, we introduce and employ a binary-system version of the
T scalar order metric—an order metric that has been fruitfully
applied to study translational order across length scales in
stealthy point patterns in continuous spaces [7,32]—to rank
digitized two-phase patterns. In this regard, the order metric
herein can also be viewed as the discrete reciprocal-space
analog of the real-space descriptors successfully employed in
the inverse reconstruction of two-phase media textures [38].

The remainder of this article is organized as follows. In
Sec. II, we provide some necessary mathematical definitions
and preliminaries. We introduce in Sec. III the discrete version
of the T order metric and discuss its utility for rank ordering

digitized two-phase systems, especially the stealthy variety.
In Sec. IV, we present and apply three different numerical
procedures to systematically identify and construct digitized
stealthy hyperuniform two-phase systems with tunable or pre-
scribed degrees of order: enumeration, stochastic optimization,
and superposition procedures. We demonstrate that 7 is not
only unambiguously consistent with our intuitive notion of
order, but can also discriminate subtle textural differences
(e.g., hidden order) that exist in discrete stealthy hyperuniform
patterns which are not easily discernible by visual inspection.
In Sec. V, we make concluding remarks and discuss some
implications of our results.

II. MATHEMATICAL DEFINITIONS
AND PRELIMINARIES

For concreteness, we focus in this paper on two-dimensional
(2D) patterns discretized by (square) binary pixels that are
arranged on a square (Z?) lattice (subject to periodic boundary
conditions along the x and y axes). Such patterns can be
represented mathematically by o (m,n), a function which takes
two integers as input (rm and n, the indices specifying the
pixel location in the lattice) and yields a binary output (either
zero or 1) [39—41]. Accordingly, we can use this formalism to
describe any two-state system, such as up and down spins (i.e.,
the Ising model [42,43] for ferromagnetism in statistical me-
chanics), occupancy and vacancy (i.e., the lattice gas model),
or phases A and B in the case of digitized two-phase media.

If Ly and L, are the side lengths (in pixels) for a given
pattern, then the total number of pixels is simply given by
Ny =L x Ly. Thisrestrictsmandntol <m < Ljand1 <
n < Ly, respectively. Throughout this work, N was chosen
to represent the number of up spins or occupied sites [or the
phase assigned a value of 1 in o (m,n) for the case of two-phase
media] and is therefore given by N = Y51 S 5 (m n).
As aresult, f = N/N; will be used to represent the relative
fraction of up spins, occupied sites, or a given phase in two-
phase media, and is defined in the interval [0, 1].

X-ray and neutron-scattering techniques provide powerful
ways to probe the structure of matter [3,4]. In this regard,
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the static structure factor S(k) encodes such information and
has a long-standing tradition as a means for quantifying
order (and disorder) in both experiments and simulations. In
particular, features such as peaks, rings, and streaks in S(k)
are well-established indicators for analyzing the appearance
and presence of order in complex materials. Accordingly, S(k)
plays a central role in the order metric defined in this work
(vide infra) and is given by

Sk—l|~k|2 2
()—Np(). )

In this expression, we utilize the following discrete form of the
collective density variable [6]:

L] Lz
Py =) 0@ =3 "> ommetmHn - (3)
sites m=1n=1

with k, and k, representing the x and y components of the wave
vector k. A digitized pattern will be referred to as “stealthy up
to some exclusion radius K if S(k) = 0 forall 0 < |k| < K.
When combined with the definition of S(k) in Eq. (2), this
has two important implications that are used throughout this
work. First, if a pattern o(m,n) is stealthy up to some K,
then the inverse of this pattern, oy(m,n) = 1 — oy(m,n), is
also stealthy up to the same K. This results from the fact
that 01(K) has to vanish for all 0 < |K| < K when o(m,n)
is stealthy up to K. In this case, p,(k) also vanishes for all
0 < |k| < K, from which it follows that S(k) = +|62(k)|* =
0 in this range of k, making o,(m,n) stealthy up to K as
well. Second, if two patterns o(m,n) and o,(m,n) are both
stealthy up to some K and 0 < oy(m,n) + 02(m,n) < 1 holds
for every m and n, then the superposition of these two patterns,
o3(m,n) = oy(m,n) + o,(m,n), is also stealthy up to K. This
results from the fact that the collective density variables for
these two individual patterns are both zero. Since p3(k) =
p1(K) + p2(K) = 0, S(k) = 0 for o3(m,n), which makes this
pattern also stealthy up to K. We denote such a pattern
as “multi-stealthy” since this configuration is comprised of
multiple stealthy configurations and note in passing that such a
configuration (by definition) is also endowed with the property
of being “multi-hyperuniform.”

In computing S(k), one only needs to consider a finite
number of k-vectors due to the following three reasons. First,
the k-vectors need to be consistent with the size of a given
pattern, i.e., k, and k, must be integer multiples of 27 /L,
and 27/ L,, respectively. Second, since S(K) is periodic for the
discretized systems considered herein,

L L» 2

l Z Z o (m,n)e! ks +2mm-+hyn]
N b

m=1 n=1

S(ky + 27T,ky)

L L, 2

1 . .
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2
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N

m=1 n=1

— S(keky), @)

and similarly, S(ky,ky + 27w) = S(ky,ky), thereby reducing
the number of k-vectors via translational symmetry.
Furthermore, S(k) for approximately half of these k-vectors
are independent variables since [cf. Egs. (2) and (3)] S(0) = N
and S(—k) = S(k).

III. QUANTIFYING THE DEGREE OF ORDER
IN DISCRETE PATTERNS: THE v METRIC

Although no perfect order metric necessarily exists [37],
many order metrics have been devised to quantify the degree of
order or disorder of complex systems at various length scales,
including those that account for bond orientations [44,45] and
translational order [46,47]. For some of these metrics, the
degree of order is referenced to a particular perfect crystalline
structure and in other instances a reference state is not assumed.
Invariably, all previously employed order metrics incorporate
only spatially local information in practice.

Here we introduce and apply the discrete-space version of
the continuous-space t order metric that was originally for-
mulated to capture pair correlations of many-particle systems
across length scales in Euclidean spaces [7]. The discrete ©
metric for a two-phase system with phase volume (occupation)
fraction f is defined as

f[61= Y [Sek) — Sp®P = Y [Setk) — (1 — ),
k0 k£0

(&)

in which both summations are over all k-vectors associated
with the natural period of the simulation box [excluding the ori-
gin (k # 0)] and S¢(k) and S»(k) = 1 — f are the structure
factors, i.e., the Fourier transforms of the corresponding real-
space two-point correlation functions [48], for a configuration
of interest (%) and an ensemble of uncorrelated (Poisson)
patterns (&), respectively. We note in passing that t is also
closely related to the two-particle excess entropy [49], since
both of these order metrics are defined as integrals over the
pair statistics in a given system.

Similar to the continuous case, the order metric defined in
Eq. (5) will register large values due to the occurrence of sharp
peaks in ordered periodic patterns, which are of finite height
in any finite system but become infinite (Dirac § functions)
in the infinite-system-size limit. For finite periodic patterns,
one can study how t grows with the system size. Furthermore,
this definition also implies that 7 is invariant with respect to
trivial symmetry operations, including translations, rotations,
and reflections. It is also important to stress here that t will
also register very large values in the vicinity of critical points
(e.g., Ising-like critical points [50,51]), due to the fact that S(k)
diverges as k — 0 in the infinite-system-size limit. Hence,
while one should exercise caution in interpreting such an order
metric in the vicinity of a critical point, T might also be fruit-
fully employed to detect whether a disordered system is in fact
approaching a critical point. This is a potentially interesting
research avenue to explore in the future as all of the examples
considered herein are located far away from any critical points.

By defining 7 with respect to an ensemble of spatially
uncorrelated Poisson point processes, i.e., a collection of
random and disordered arrangements of particles that is char-
acterized by S»(k) =1 — f V k #£ 0, T can also be seen as a
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FIG. 2. Graphical depiction of two patterns discretized on a periodic L x L square lattice (with L = 20) comprised of N = 80 “particles”
(occupied sites) with f = 0.2, which are represented by blue squares. While the disordered pattern (%) on the left is hyperuniform and stealthy
for an exclusion radius of K = 1 (in units of 277 /L), the disordered pattern (Z?) on the right is simply an uncorrelated (Poisson) pattern that,
of course, is neither stealthy nor hyperuniform. The stealthy hyperuniform pattern was generated using the stochastic optimization method
described in Sec. IV B. This figure demonstrates that while stealthy hyperuniform patterns look very similar to uncorrelated patterns at short
range, they contain hidden long-range order (i.e., suppression of large-scale number density fluctuations) that is not easily detectable by eye.
Since t[€]/7[ 7] = 3/2, the T order metric quantitatively illustrates the fact that this disordered stealthy hyperuniform configuration—purely
through the presence of hidden long-range order—is indeed significantly more ordered than the uncorrelated pattern.

reciprocal-space analog of the real-space descriptors success-
fully employed in the inverse reconstruction [38] of two-phase
media textures. Such textures are of importance across a wide
variety of fields, ranging from the microscopic length scales
encountered in materials science (e.g., the microstructure
of sandstones, metal-ceramic composites, and concrete) and
systems biology (e.g., the structure of plant and animal tissues,
cell aggregates, and medical imaging) to the macroscopic
length scales found in ecology (e.g., distributions of trees in
forests) and cosmology (e.g., galaxy distributions and stellar
constellations).

As seen in Eq. (5), T accumulates the deviation of S¢ (k)
from 1 — f for all k # 0 (in a single period as defined by the
k-point mesh required to accurately sample a square lattice
with a spatial extent of length L x L;), thereby providing an
unbiased estimate of the order contained within a given discrete
pattern by equally accounting for contributions across short-,
intermediate-, and long-range distances. As such, t is therefore
of particular importance in the discrimination of stealthy hy-
peruniform configurations—patterns which are characterized
by the presence of hidden long-range order arising from the
suppression of number density fluctuations on large length
scales. As seen in Fig. 2, such patterns are often difficult, if
not impossible, to detect by eye, as the contrast sensitivity
of human vision peaks at fairly short distances [52], thereby
placing a larger relative weight on observed textural similarities
(or lack thereof) in this portion of the distance spectrum. This
limitation is overcome by the use of the 7 order metric: by
quantitatively detecting the presence of order across all length
scales, 7 can easily discern a disordered stealthy hyperuniform
configuration from a random Poisson point pattern.

The strength and utility of T as a quantitative and unbiased
estimator of the degree of order in a given discretized pattern
lies in the fact that T not only agrees with our intuitive definition
of order in unambiguous textural comparisons (i.e., by clearly

differentiating significantly ordered crystalline structures from
disordered Poisson configurations) but can also discriminate
subtle textural differences that are not so easily discernible
by visual inspection (i.e., by clearly differentiating disordered
patterns that contain some degree of hidden order, such as the
aforementioned class of stealthy hyperuniform configurations,
from truly random spatially uncorrelated Poisson patterns).
Moreover, the fact that this discrete version of T has also been
used to uncover hidden multiscale order in the prime numbers
[53] is a strong indication of its utility as an order metric.

IV. DESIGN OF STEALTHY HYPERUNIFORM DIGITIZED
TWO-PHASE MEDIA WITH TUNABLE ORDER

A. Enumeration procedure

Here, we explicitly investigate all the possible patterns
that can exist on the 2D square lattice with side lengths
Ly=L, =1L €({3,4,5,6}, subject to standard periodic
boundary conditions along both axes. Unlike the case of
continuous point-particle systems, for which the configurations
that can exist comprise an uncountable infinite set, the systems
considered herein have a discrete number of degrees of freedom
due to the fact that each lattice site is binary and can either be
occupied by a particle or vacant (unoccupied). As such, there
exists a finite number of possible patterns that can be dis-
cretized on a square lattice of side length L, namely 2-*%, and
each configuration must be enumerated to obtain an accurate
count of the number of stealthy hyperuniform patterns that exist
on these underlying lattices. The largest system considered was
the 6 x 6 square lattice, which required explicit enumeration
of 2% = 6.9 x 10'° configurations. For each configuration,
the corresponding structure factor, S(k), was computed for the
smallest k-vectors contained in the reciprocal-space (k-point)
mesh, namely, k; = [1,0] and k, = [0,1],as S(k;) = S(ky) =
0 is the minimal requirement for classification as a stealthy
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FIG. 3. The number of distinct stealthy hyperuniform patterns
identified by an exhaustive enumeration of the discrete patterns
existing on a periodic L x L square lattice (with L € {3,4,5,6}),
sorted by (a) L and K (in units of 27r/L) and (b) L and N.

hyperuniform pattern (with a corresponding exclusion radius
of K =1). Each time a configuration met this criterion,
it was added to a running list of stealthy hyperuniform
configurations (that was maintained throughout the execution
of the enumeration algorithm) and explicitly compared against
all other structures on the list to remove trivial configurational
degeneracies due to symmetrical equivalence (via the set
of translations, rotations, and reflections defined by the
periodicity of the wunderlying lattice). The final list
of nonredundant and symmetry-unique configurations
constituted the set of existing stealthy hyperuniform
configurations for a given lattice [40].

The results of this enumeration study are summarized in
Fig. 3. As L increases, Fig. 3(a) shows that the number of
unique configurations that are stealthy up to a certain K
also increases, as expected. However, the growth increments
are not uniform. For instance, the number of configurations
that are stealthy up to K = 1 increases dramatically when L
increases from 5 to 6, but not as much when L is increased
from 4 to 5. This nonuniformity is caused by the underlying
relationship between the prime factorization of L and the set of
N values that can admit stealthy hyperuniform configurations.

As Fig. 3(b) shows, only the N values that are integer multiples
of 5 admit stealthy configurations for L =5 =1 x 5. For
L =4 =2 x 2, only the N values that are multiples of 2 admit
stealthy configurations. The L = 6 = 2 x 3 case, however, is
much richer. The set of allowed N values not only includes
multiples of 2 and 3, but also includes sums of multiples of
2 and 3. As a result, N can have any value between zero and
6 x 6, except 1 and 35. Here, the exception for N = 1 is due
to the fact that 1 is not a sum of a multiple of 2 and 3. The
exception for N = 35 follows from the fact that this case is
the inverse of N = 1. Compared to the L = 5 case,the L =6
case allows many more N choices and therefore produces a
drastically increased number of stealthy patterns. We note in
passing that Fig. 3(b) also shows that the distribution of N in
the stealthy hyperuniform configurations is roughly a Gaussian
(aparabola in our semilogarithmic plot) centeredat N = L2 /2.

Figure 4 shows a series of discretized patterns obtained via
an exhaustive enumeration of the configurational space corre-
sponding to a periodic 6 x 6 square lattice: six representative
stealthy hyperuniform patterns [in which S(k) = 0 for some
positive exclusion radius, K > 1, in units of 27r /L throughout
the paper] are arranged from most to least ordered according
to their respective T values. From this figure, it is clear that the
crystalline striped-phase and simple checkerboard configura-
tions represent the most ordered stealthy hyperuniform patterns
that can be discretized on a 6 x 6 square lattice, a fact that is
appropriately reflected in their computed order metric values
of 7 = 1.000 and relatively large exclusion radii of K =3
and K = 3+/2, respectively. With an order metric value of
T = 0.390, the staircase configuration is visibly less ordered
than the configurations on the left, and is also accompanied by
a smaller exclusion radius of K = /5.

More importantly, the success of T extends well beyond
visually detectable ranges of order. For the three remaining
stealthy hyperuniform configurations in Fig. 4, all of which
have an exclusion radius of K = 1, it becomes increasingly
more difficult to discern the level of order (or lack thereof)
in these patterns by eye. In this regard, a careful visual
examination of the configuration characterized by 7 = 0.110
reveals that this pattern can be constructed via the introduction
of several defects (i.e., replacements of select occupied sites
by vacancies) into the simple checkerboard pattern, a fact
which is quantitatively captured by t. However, the fact
that the two remaining stealthy hyperuniform configurations
on the right of Fig. 4 appear as patterns that contain no
apparent or discernible order is an inaccurate assessment of
these configurations. When compared to the aforementioned
crystalline configurations, these two patterns are visibly more
disordered, a fact which is again quantitatively reflected by
the relatively lower value of T = 0.012 computed for each of
these configurations. In the same breath, these two patterns are
indeed stealthy hyperuniform configurations [with S(k) =0
for K = 1] and, as such, these patterns contain some degree
of hidden long-range order that is not present in a spatially
uncorrelated Poisson pattern, an example of which is given on
the far right of Fig. 4, wherein S(k) # 0 for K = 1.

B. Stochastic optimization algorithm

In this work, we also utilized the simulated annealing (SA)
global optimization scheme [54] in conjunction with classi-
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FIG. 4. Top: Graphical depiction of a representative series of six stealthy hyperuniform configurations and a single uncorrelated (Poisson)
configuration discretized on a periodic L x L square lattice (with L = 6). Each of these configurations, ¢, is comprised of N = 18 particles
(which corresponds to an occupancy of f = 18/36 = 0.5) that are represented by blue squares. Middle: Corresponding structure factors, S (k),
for each configuration. For the six stealthy hyperuniform configurations, S (k) = 0 for some positive exclusion radius, K > 1 (in units of
2m /L), a property which is not shared by the spatially uncorrelated Poisson pattern on the far right. Bottom: Corresponding order metric values,
7[%¥], for each configuration as defined by Eq. (5). Note that these patterns have been arranged from most ordered to least ordered, based on the
computed values of t[%]. These values have been normalized based on the T measures for the most ordered configuration on the 6 x 6 square

lattice, i.e., the striped or checkerboard configuration.

cal (Metropolis-Hastings) Monte Carlo (MC) simulations to
generate stealthy hyperuniform configurations discretized on
square lattices that were too large for an exhaustive enumer-
ation study. For a given trial configuration, ¢, the fictitious
energy (or objective function) employed in these SA-MC
simulations was chosen to be

0lE1= Y [Se@)—Sz®I = Y [Se®P,

k.0<|k|<K k.0<k|<K
(6)

in which S¢ (k) and S (k) are the corresponding structure
factors for € and a target (.77) configuration, respectively,
and the summations are carried out over all k for which
0 < |k|] < K, based on a predefined exclusion radius K . Since
our goal is to use SA-MC to stochastically generate stealthy hy-
peruniform configurations, we take .7 to represent a fictitious
target stealthy hyperuniform configuration that is characterized
by Sz(k) =0V {k | 0 < |k| < K}. Quite interestingly, this
objective function is a direct analog of 7, demonstrating
the utility of this order metric in the first systematic design
of stealthy hyperuniform two-phase digitized patterns with
prescribed degrees of order.

The simple quadratic functional form for 6 in Eq. (6) is
therefore minimized once a configuration % is located with
S« (k) = 0 for all k-vectors contained within the aforemen-
tioned exclusion radius, thereby yielding a stealthy hyperuni-
form configuration with a prescribed degree of order. Due to
the presence of “multiple minima” on these high-dimensional
PESs, which hinders the success rate of global optimization
techniques such as SA-MC, we applied a logarithmic transfor-
mation on the objective function, i.e., 0= log,((8), to clearly
differentiate the energy scales associated with global and local
minima. As Fig. 5 shows, this logarithmic transformation dras-
tically improves the depth of the ground-state energy basins,
making them much more favorable at lower temperatures. A
true ground state (in this case a stealthy hyperuniform pattern)
should have # =0 or # = —oo. Due to machine precision
(double precision arithmetic was employed throughout this

work), the evaluated @ is often around —60. Based on this
observation, we considered a SA-MC run to be successful in
generating a stealthy hyperuniform configuration once (%] <
—50 (which corresponds to 8[%’] < 107° & 0).

During the SA-MC optimizations, the temperature 7 was
slowly decreased using an exponential cooling schedule, i.e.,
T = exp(—3 x 1077N,/N), in which N, is the number of trial
MC moves attempted (at a given 7) and N is the number of
particles (or occupied sites), until 7 = T, < 0.1. To allow
for finer refinements of the trial configuration and further
minimization of the fictitious energy, an additional 2000N
trial MC moves were attempted at 7 = 0. Initially, the trial
MC moves consist of swapping a randomly chosen occupied
site with a randomly chosen unoccupied site. However, the
acceptance ratio for this specific type of trial MC move
becomes too low as T decreases (i.e., the system is not
exploring configurational space and is essentially stuck). To
remedy this issue, we switched to “local” trial MC moves

g SAATATATATA

E =log I
—_—

VY Vvt L
3 3

FIG. 5. Graphical depiction of a one-dimensional slice through
a high-dimensional potential energy surface (PES) before (left) and
after (right) the application of a logarithmic transformation on the en-
ergy, E, i.e., E = log,,(E), as a function of the configurational coor-
dinate, £. The existence of multiple minima in such high-dimensional
PES (depicted here by the presence of two degenerate global minima
in the vicinity of three low-lying and nearly degenerate local minima)
plagues global optimization techniques such as simulated annealing
(SA) and can be significantly alleviated via the application of this
logarithmic transformation on the objective function.
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TABLE I. Success rates for generating stealthy hyperuniform
configurations via simulated annealing Monte Carlo (SA-MC)
simulations as a function of N and K on a 10 x 10 square lattice.
For each N and K, 1000 independent SA-MC runs were attempted
to determine the final success rate.

f Success rate for K =

1 V2 2 NG V8 3
0.1 1.000 1.000 0.980 1.000 0.999 0.989
0.2 0.995 0.987 0.158 0.001 0.000 0.000
0.3 0.993 0.771 0.047 0.000 0.000 0.000
0.4 0.993 0.726 0.039 0.000 0.000 0.000
0.5 0.989 0.600 0.007 0.000 0.000 0.000

once the acceptance ratio dips below a preset threshold of
Apin = 0.1 (i.e., less than 1000 accepted moves per 10 000
trial moves). These local trial MC moves involved swapping
a randomly chosen occupied site with a randomly chosen
unoccupied site that is located within a specified cutoff distance
(usually set to approximately three to four units in the lattice
spacing). Furthermore, we also gradually decrease this cutoff
distance thereafter (until it reaches one unit in the lattice
spacing) to maintain an acceptance ratio above Ap,. These
algorithmic details and associated parameters were primarily
determined through a trial-and-error approach that maximized
the success rate and computational efficiency of this stochastic
optimization procedure. Here we stress again that the loga-
rithmic transformation described above plays a critical role in
locating stealthy hyperuniform patters via SA-MC simulations,
where one is faced with a PES that is plagued with multiple
nearly degenerate minima (see Fig. 5).

The success rate for our SA-MC program on a 10 x 10
lattice (L = 10) is summarized in Table I for f = N/L? <

0.5. Since our numerical method treats occupied sites and
unoccupied sites symmetrically, the success rate for f = x >
0.5 should be equal to the success rate for f =1 —x. As
f approaches 0.5, the observed decrease in the success rate
is most likely due to the fact that the search space, i.e.,
the number of configurations with a particular N, given by
(L)!/[NW(L* = N)!], is largest for f = 0.5. In this regard,
it would be interesting to find robust alternative methods for
overcoming this numerical difficulty and one such approach is
presented below. Four configurations (with f = 0.2) identified
using this SA-MC method are shown in Fig. 6. The annealed
configurations are disordered for the smaller three K values,
but crystalline for K = /5. We note here that this disorder-
to-order transition with increasing K was also observed in
continuous stealthy hyperuniform systems [6].

C. Stealthy designs via superposition

To find stealthy hyperuniform patterns for a particular
system size and N, one can simply enumerate all possible
configurations if the system size is small and use SA-MC for
larger systems if N is small. That leaves us with the following
question: what method should one use if the system size and
N are both large? Here we present one such method, which
involves a superposition of stealthy hyperuniform patterns
with smaller N values. As discussed above, if two patterns
oi1(m,n) and o,(m,n) are both stealthy up to some K and
o3(m,n) = o1(m,n) + or(m,n) is always between zero and 1
(i.e., there is no overlap in a given phase between the two
configurations), then o3(m,n) is also stealthy up to K. As such,
we simply identify “building block” patterns with relatively
small N values and then translate them to eliminate overlaps
before superposition.

Figure 7 contains several examples of stealthy hyperuni-
form patterns (up to K = 1) that have been generated using
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FIG. 6. Top: Graphical depiction of a representative series of stealthy hyperuniform patterns generated using our SA-MC approach. Each of
these stealthy patterns is discretized on a periodic 10 x 10 square lattice and comprised of N = 20 particles (f = 0.2). Middle: Corresponding
structure factors, S(k), for each stealthy pattern in which S(k) = 0 for some positive exclusion radius, K > 1. Bottom: Corresponding exclusion
radii, K, for each stealthy pattern. Note that these stealthy patterns have been arranged in increasing order based on the values of K. The
corresponding T order metric values (normalized here by N?) for each of these stealthy patterns were computed as 0.18, 0.19, 0.33, and 2.59,
respectively, indicating that T and K are again positively correlated in these instances.
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FIG. 7. Top left: Vectorial representation of a stealthy pattern comprised of N = 2 particles. The corresponding structure factor, S(k) =
%| Z?’:l explik - r j]\z, will vanish at a given pair of k-vectors, k; and k,, when r; and r;, satisfy the following equations: (1) exp[ik; - r{] +
explik; - r;] = 0 and (2) exp[ik; - r1] + exp[ik; - r;] = 0. Any set of N = 2 particles whose coordinates satisfy these constraints constitutes a
doublet (D). Bottom left: Graphical depiction of a series of stealthy patterns discretized on a periodic 6 x 6 square lattice that were constructed
via superposition of multiple doublets (i.e., D, = D @ D and Dy = D @ D & - - - @ D). Since each doublet constitutes a stealthy pattern, the
superposition of multiple doublets (without overlap) constitutes a stealthy (or multi-stealthy) hyperuniform pattern as well. Top right: Vectorial
representation of a stealthy pattern comprised of N = 4 particles. The corresponding structure factor will vanish at a given pair of k-vectors,
k; and k,, when ry, r;, r3, and r, satisfy the following equations: (1) exp[ik; - ri] + exp[ik; - r,] = 0, (2) explik; - r3] + exp[ik; - r4] =0,
(3) explik; - ri] + exp[ik; - r;] = 0, and (4) explik; - r,] + explik; - r4] = 0. Any set of N = 4 particles whose coordinates satisfy these
constraints constitutes a quartet (Q). Note here that a quartet is not simply a pair of doublets, i.e., Q # D, = D @ D. Bottom right: Graphical
depiction of a series of stealthy patterns discretized on a periodic 6 x 6 square lattice that were constructed via superposition of multiple doublets
and quartets (i.e., OD=Q0® D, 0, =0 D Q,and Q3D =0 @ 0D Q & D & D & D). Since each doublet and each quartet constitute a
stealthy pattern, the superposition of multiple doublets and quartets (without overlap) constitutes a stealthy (or multi-stealthy) hyperuniform

pattern as well. Hence, this superposition technique can be utilized to directly generate stealthy patterns with both large L and N.

this superposition technique. We chose L = 6 for visual clarity,
but the method is equally (and particularly) suitable for larger
systems. For this system size and K, our enumeration study
found one stealthy configuration with N = 2 and nine stealthy
configurations with N = 4. The configuration with N = 2 is
denoted as a doublet (D) and represents the smallest building
block in this superposition scheme. Of the nine N = 4 con-
figurations, five of them can be decomposed as superpositions
of pairs of doublets, denoted by D, = D @ D as a doublet of
doublets. The remaining four configurations with N = 4 are
therefore quartets (Q). As Fig. 7 illustrates, we can superpose
these doublet and quartet building blocks to create complex
stealthy hyperuniform patterns. For example, by superposing
nine doublets one can create the configuration labeled Dy in
Fig. 7 and by superposing three quartets and three doublets, one
can create the configuration labeled Q3 Ds. For a configuration
generated by this superposition technique to be stealthy up to
a given K value, S(k) at two different k-vectors is constrained
to be zero. Figure 7 also demonstrates how D and Q building
blocks satisfy these constraints.

V. DISCUSSION

In summary, we have devised several algorithms and meth-
ods that enable the systematic identification and generation of

digitized stealthy hyperuniform patterns with machine-level
precision with a tunable or prescribed degree of order. Thus,
our work provides a platform to explore their potentially novel
thermodynamic and physical properties that are only beginning
to emerge in condensed matter physics, materials science,
and engineering [26,27,29-33]. Our work brings together the
quantification of order in digitized two-phase media and the
theory of heterogeneous media [36]. It is noteworthy that our
stealthy designs can easily be fabricated using 3D printing
technologies [55].

It is instructive to remark on the related work by Chen
and Torquato [33] that was mentioned in the Introduction.
These authors demonstrated that one can construct hyperuni-
form two-phase systems with a prescribed (targeted) “spectral
density” (directly related to the structure factor of a digitized
system) with relatively high precision by performing simulated
annealing with an energy defined as the sum of the squared
error from the target. This procedure can produce nearly
stealthy two-phase media if the target is set to zero in a certain
range near the origin. In this paper, we generate stealthy two-
phase media with a more precise requirement for the stochastic
optimization algorithm: S(k) is exactly zero when calculated
analytically, or S(k) is on the order of machine precision
when calculated numerically. As we have seen in this paper,
this increase in required precision greatly reduces the system
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sizes this method can handle. This motivated us to explore
other methods (enumeration and superposition procedures) to
generate such exactly stealthy hyperuniform systems.

Our work highlights the strength and utility of the t
order metric to detect order in a given digitized two-phase
configuration at short-, intermediate-, and long-range dis-
tances, especially its ability to detect hidden order in stealthy
hyperuniform systems. We have already noted that it has been
recently employed to uncover hidden multiscale order in the
spatial distribution of the prime numbers [53]. These results
suggest that this order metric could be fruitfully employed
across a myriad of fields, including visual perception [56],
digital image processing and complex pattern recognition (e.g.,
facial and voice recognition, linguistics, and lexical similarity)
[57], information theory (e.g., Shannon entropy, cryptography,
and encoding) [58-61], as well as data-intensive statistical
efforts such as supervised and unsupervised machine learning.
In this regard, t (or appropriate modifications thereof) could
be employed in pattern recognition algorithms to identify
and quantitatively discern textural similarities and differences
that exist across all length scales relevant to the problem at
hand. While the Fourier transform is the basic mathematical
operation underlying the definition of 7, alternative order met-
ric definitions which utilize different integral transformations
should also be considered. One such direction could involve
“wavelets” [62]. The central comparison issue here would
be whether or not such an alternative strategy manages to
produce equal sensitivity to short-, intermediate-, and long-
range patterns or textures.

We expect that the generalization of the methods and
algorithms presented herein to the rational design of 3D
stealthy hyperuniform patterns with tunable order will be
extremely useful and warrants further research. In this regard,
the extension of the underlying mathematical formalism in
Sec. I1is very straightforward and simply requires an additional
dimension in o(m,n) [and therefore an additional sum in
Eq. (3) for the collective density variable]. However, the three

algorithms introduced in this work will have significantly
different levels of computational complexity as the spatial di-
mension increases. For one, the explicit enumeration technique
in Sec. IV A will have the worst computational scaling (i.e.,
the number of configurations that will need to be considered
goes from 251*L2 in two dimensions to 2L1*12%Es in three
dimensions), thereby limiting its domain of applicability to
even smaller systems in three dimensions. On the other hand,
both the stochastic optimization algorithm (Sec. IV B) and the
superposition procedure (Sec. IV C) will work better in 3D
as their associated computational complexities are constant
with an increase in the spatial dimension. Accordingly, we
expect that these algorithms will be quite useful in extending
our ability to design textures with tunable multi-scale order in
three dimensions.
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