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Integer lattice gas with Monte Carlo collision operator recovers the lattice Boltzmann method with
Poisson-distributed fluctuations
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We examine a new kind of lattice gas that closely resembles modern lattice Boltzmann methods. This new
kind of lattice gas, which we call a Monte Carlo lattice gas, has interesting properties that shed light on the
origin of the multirelaxation time collision operator, and it derives the equilibrium distribution for an entropic
lattice Boltzmann. Furthermore these lattice gas methods have Galilean invariant fluctuations given by a Poisson
statistics, giving further insight into the properties that we should expect for fluctuating lattice Boltzmann methods.
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I. INTRODUCTION

The origin of fluctuations can be traced back to the discrete
nature of matter [1]. When one examines a small enough sys-
tem, these fluctuations, originating from the stochastic nature
of the dynamics of the discrete particles, manifest themselves.
With few exceptions, e.g., the dynamics close to a critical point
[2], these fluctuations become irrelevant for larger systems, and
the dynamics of this large-scale system becomes deterministic,
allowing us to describe the system as a continuum. These
continuum equations, like the continuity and Navier-Stokes
equations for fluids, are enormously successful at describing
macroscopic phenomena. So it is tempting to continue to utilize
these continuous equations of motion down to scales where
fluctuations become important. In these cases fluctuations that
were eliminated have to be somehow reintroduced. One way
to consistently introduce fluctuations is the Langevin approach
[3], which consists of introducing a fluctuating term in the
equations of motion and then adjusting the amplitude of the
fluctuating term to give correct fluctuations in equilibrium.
This is easily done since it is known that the states of the
system obey a Boltzmann statistics.

This general narrative is the template for the development
of fluctuating lattice Boltzmann methods. The original lattice
gases introduced by Frisch, Hasslacher, and Pomeau [4] con-
sisted of a hexagonal lattice and particles moving along the
links between nearest neighbor sites. The model was restricted
to having at most one particle moving along each link. While
it could be shown that this model had enough symmetry to
recover the Navier-Stokes equations in the hydrodynamic limit,
the model contained very large fluctuations that needed to be
averaged out to examine hydrodynamic phenomena. Part of
the derivation of the Navier-Stokes equations required taking
a formal ensemble average of the lattice gas, leading to a
Boltzmann equation for the lattice gas [4]. McNamara [5] then
realized that one could use this Boltzmann averaged lattice gas
as a method in its own right. This method became known as
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the lattice Boltzmann method. The original lattice Boltzmann
method was an exact ensemble average of the lattice gas,
retaining the unconditional stability of the lattice gas as well
as several of its flaws. At the time a key advantage of the new
lattice Boltzmann method was the elimination of all noise.

Soon it was discovered that the lattice Boltzmann method
could be simplified by using a Bhatnagar-Gross-Krook (BGK)
approximation for the collision operator [6]. The idea here is
that the distribution function will approach the local equilib-
rium distribution, consistent with the locally conserved density
and momentum. This significantly simplified the collision
operation and at the same time removed some undesirable
artifacts that had survived the transition from the lattice gas to
the lattice Boltzmann methods, like the velocity dependence
of the viscosity [4]. While the improvements of these novel
lattice Boltzmann methods made them extremely popular, any
application that needed fluctuations was stuck with lattice
gas methods. Ladd had utilized the fluctuations of lattice
gases to simulate the Brownian motion of colloids [7]. He
then developed a fluctuating version of the lattice Boltzmann
method by including a fluctuating stress tensor that would
recover the fluctuating hydrodynamic equations [8]. While
this recovered the correct hydrodynamic limit, the fluctuations
could be seen to be correct only for the wavelength of the size of
the system. Fluctuations at smaller scales were suppressed. The
reason for this became clear when Adhikari et al. noticed that
all kinetic modes, not only those related to the hydrodynamic
quantities, needed to have fluctuations added [9]. The theoret-
ical framework for this was work on generating a fluctuating
version of the linearized Boltzmann equation by Bixon and
Zwanzig [10]. Much work has gone into examining the correct
form of these fluctuations for lattice Boltzmann since then
[11–13]. The remaining difficulties with defining consistent
fluctuations for lattice Boltzmann systems also hinder the
progress for an extended version of the fluctuating lattice
Boltzmann method for nonideal systems [14–18].

One obvious extension to lattice gases that maintains their
discrete properties is to extend the occupation numbers from
Booleans to integers. In 1988 just one year after the FHP paper
[4], Kim Molvig et al. pioneered lattice gases that were able
to remove lattice artifacts in the pressure and viscosity [19],
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although the results are more sketched than presented in this
article. This article was later credited by Chen et al. to have in-
troduced an approach called “Digital Physics.” This approach
was the idea behind the founding of the Exa Corporation in
1991. There are some indications of further developments of
this approach, notably the transition from Boolean to integer
occupation numbers in subsequent papers [20–24], but most
of the details of the approach remain unpublished since they
formed the basis for proprietary technology. The paper by Chen
[20] sketches an approach of extending Boolean lattice gases
to lattice gases with integer occupation numbers reminiscent of
the one presented here, although it appears that it concerns an
algorithm that apart from mass and momentum also conserves
energy, rather than the approach presented here that, like
most standard lattice Boltzmann (LB) approaches, replaces
conservation of energy with an isothermal approach. We will
comment further on the similarities and differences later in the
paper.

The integer lattice gas approach was independently reintro-
duced by Boghosian et al. in 1997 [25]. The focus of this paper
is the thermodynamics behavior of integer lattice gases with
the finite number of bits. While the theoretical part focuses on
energy-conserving systems, the explanation of the sampling
method for the collision considers only mass and momentum
conservation. The collision process then consists of a nontrivial
sampling of points from a polyotope of allowed states, the
details of which remain unpublished.

One year later Chopard and Masselot [26,27] describe a
different integer lattice gas approach: they impose a collision
operator that closely mimics a standard lattice Boltzmann
BGK collision operator with an equilibrium distribution that
is quadratic in the velocities. The result of this LB-inspired
collision process is then a continuous probability distribution
that is sampled to obtain a new discrete distribution. The
sampling process, however, will lead to a violation of momen-
tum conservation, so an additional random walk process is
required until a distribution is found that is consistent with the
original momentum. This method shows a surprising density
dependence of the viscosity [27] that the authors attribute to
fluctuation effects.

Because of the rise of lattice Boltzmann, however, the
development of lattice gases was then significantly curtailed.
Even the EXA company switched to lattice Boltzmann im-
plementations, and little has been done on the development
of integer lattice gases since these early days. During his
Diplomarbeit, Geier worked on integer equivalents of the
lattice Boltzmann approach, but he judged this early effort
impractical for most real-world applications. Some remnants
of the integer representation can be seen in Ref. [28], but here
the appearance of integer rather than continuous distributions is
incidental rather than central to the approach and was given up
in further developments of the method in favor of continuous
distribution functions.

Our renewed interest in integer lattice gas methods stems
from our interest in fluctuations. We wanted to get away from
the approach of introducing fluctuations in a continuous system
through a Langevin approach, and back to a more natural
approach of obtaining fluctuations as a direct result of the
discrete nature of the fluid we are examining. The idea of
using a lattice gas as a starting point to derive fluctuating

lattice Boltzmann methods was pioneered by Duenweg [11],
who proposed a lattice gas with integer (rather than Boolean)
occupation numbers and a Monte Carlo collision operator
based on a zero-velocity equilibrium distribution as a starting
point to derive fluctuating lattice Boltzmann methods. But this
approach remained entirely theoretical without any attempt at
an actual implementation, similar to the original introduction
of lattice Boltzmann as a theoretical tool to derive the hydro-
dynamic limit of lattice gas methods.

The aim of this paper is to derive a discrete lattice gas version
that corresponds to current state-of-the art lattice Boltzmann
methods and that would have (at least in close approximation)
these lattice Boltzmann methods as its ensemble average and its
integer implementation shows Galilean invariant fluctuations
of an ideal gas. This means the occupation numbers should
be Poisson distributed in equilibrium. The results are very
encouraging: we show below that the Monte Carlo lattice gas
introduced in this paper recovers the equilibrium distribution of
the entropic lattice Boltzmann method [29,30] as its ensemble
average, and recovers Galilean invariant fluctuations at even
better accuracy than the approach by Kaehler et al. [12]. The
collision operator is to first order a multi-relaxation-time BGK
approach, but it has additional second order terms.

This paper is structured as follows: we first introduce the
basic lattice Boltzmann method and then use these results to
propose a lattice gas method with a Monte Carlo collision
operator. We then show how this is practically implemented
in one and two dimensions. The Boltzmann limit of this lattice
gas implementation is derived, and we show that it recovers
the entropic lattice Boltzmann method (rather than a lattice
Boltzmann method with a quadratic equilibrium that inspired
it) in the limit of small deviations from local equilibrium, but
without allowing for over-relaxation. The last section shows
that this implementation indeed recovers the independent
Poisson statistics for the densities exactly; this is the statistics
of an ideal gas that we previously tried to impose on lattice
Boltzmann methods but recovered only approximately [12].

II. BASIC LATTICE BOLTZMANN

The lattice Boltzmann algorithm consists of continuous
densities fi that are associated with velocities vi which are
lattice velocities. This means that if x is a lattice position,
x + vi will also be a lattice position. These densities are defined
on each lattice point x at discrete times t which are taken to
be integer values. They evolve in time according to the lattice
Boltzmann equation

fi(x + vi,t + 1) = fi(x,t) + �i, (1)

where �i is the collision operator. In its multirelaxation-time
(MRT) BGK form this collision operator can be written as

�i =
∑

j

�ij

[
f 0

i − fi(x,t)
]+ ξi, (2)

where f 0
i is the local equilibrium distribution and ξi is a noise

term. Most lattice Boltzmann methods are conserving mass and
momentum, but instead of conserving energy they are coupled
to a heat bath. We define the local density ρ and momentum
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density ρu through the velocity moments of the fi as

ρ =
∑

i

fi, (3)

ρuα =
∑

i

fiviα. (4)

Mass and momentum conservation is ensured by the require-
ment that the local equilibrium distribution also obey

ρ =
∑

i

f 0
i , (5)

ρuα =
∑

i

f 0
i viα. (6)

For the recovery of the Navier-Stokes equations we also require
higher order moments for the equilibrium distribution. From
analogy to the velocity moments of the Maxwell-Boltzmann
distribution we demand∑

i

f 0
i (viα − uα)(viβ − uβ) = ρθδαβ, (7)

∑
i

f 0
i (viα − uα)(viβ − uβ)(viγ − uγ ) = Qαβγ , (8)

where Qαβγ should be zero. Unfortunately for small veloc-
ity sets typically used which have v3

iα = viα because viα ∈
{−1,0,1} this is not possible [31]. But for the special choice of
θ = 1/3 it can be reduced to ρuαuβuγ , which is assumed to be
small for u � 1 found in lattice Boltzmann simulations. An
expansion of the Maxwell Boltzmann distribution to second
order in velocities then gives

f 0
i (ρ,u) = ρwi

(
1 + viαuα

θ
+ viαuαviβuβ

2θ2
− uαuα

2θ

)
. (9)

The wi are obtained by matching the discrete velocity moments
to the continuous velocity moments of the equilibrium distri-
bution. To recover the continuity and Navier-Stokes equations
we require the first three moments of the equilibrium distri-
bution [32]. The agreement between these moments and the
continuous moments of the Maxwell-Boltzmann distribution
are guaranteed by (9) when odd moments of the wi are zero
and the even moments obey∑

i

wi = 1, (10)

∑
i

wiviαviβ = θδαβ, (11)

∑
i

wiviαviβviγ viδ = θ2(δαβδγ δ + δαγ δβδ + δαδδβγ ). (12)

The collision matrix �ij is constructed so that the stress
moments are relaxed at a rate that determines the viscosity,
and other moments can be relaxed at different rates [33–35],
e.g., to optimize the stability of the method. In general we can
write the moments as

Ma =
∑

i

ma
i fi, (13)

where the first moments will be related to the hydrodynamic
moments. For completeness we require as many moments
Ma as we have densities fi so we can have a one-to-one

correspondence between moment and velocity space. It is often
useful to require that the square matrix generating the moments
be orthogonal with respect to some measure. Particularly for
fluctuating applications it is often [9,12,13,35] found to be
advantageous to require∑

a

wim
a
i m

a
j = δij . (14)

This requirement ensures that the noise terms added to the
modes Ma are uncorrelated. This requirement implies the
backtransform

fi =
∑

a

wim
a
i M

a (15)

as well as ∑
i

wim
a
i m

b
i = δab. (16)

This implies that moments ma
i are constructed starting from the

hydrodynamic moments of interest (density, momentum, stress
tensor), complemented by a set of ghost modes, which are then
orthonormalized with a Gram-Schmidt orthonormalization
scheme using the scalar product implied by (14). In this
representation the collision matrix is designed to be diagonal:

�ab =
∑
i,j

ma
i �ijwjm

b
j = 1

τ a
δab. (17)

Setting the τ a then fully determines the algorithm. Next we
will briefly discuss two common lattice Boltzmann velocity
sets for one and two dimensions.

A. D1Q3

The minimal lattice lattice Boltzmann method in one di-
mension consists of only three velocities corresponding to a
particle moving to a lattice site to the right, the lattice site to
the left, or a particle remaining at its lattice site. This is referred
to as the D1Q3 model. Our velocity set is given by

vix ∈ {−1,0,1}. (18)

The weights are given by

w0 = 2/3,

w−1 = w1 = 1/6. (19)

The moment matrix is given by

M =

⎛
⎜⎝

1 1 1
−√

3 0
√

3√
2 −

√
1
2

√
2

⎞
⎟⎠. (20)

The first two rows correspond to the conserved mass and mo-
mentum moments respectively. So there is only one relaxation
time for the moment related to the third row for the D1Q3
model.

B. D2Q9

In the D2Q9 implementation, our velocity set consists of
nine velocities given by the product set of the D1Q3 velocities
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FIG. 1. Numbering scheme for the D2Q9 velocity set.

of Eq. (18):

vi =
[

vx

vy

]
, (21)

where vx,vy ∈ {−1,0,1}. The weights in the two-dimensional
case are just products of the one-dimensional weights

w(vx ,vy ) = wvx
wvy

(22)

or, using the numbering of Fig. 1, the more standard

w0 = 4/9, (23)

w1−4 = 1/9, (24)

w5−8 = 1/36. (25)

The moment matrix is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0

√
3 0 −√

3 0
√

3 −√
3 −√

3
√

3
0 0

√
3 0 −√

3
√

3
√

3 −√
3 −√

3
0 3

2 − 3
2

3
2 − 3

2 0 0 0 0
0 0 0 0 0 3 −3 3 −3

−1 1
2

1
2

1
2

1
2 2 2 2 2

0 −
√

3
2 0

√
3
2 0

√
6 −√

6 −√
6

√
6

0 0 −
√

3
2 0

√
3
2

√
6

√
6 −√

6 −√
6

1
2 −1 −1 −1 −1 2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where the numbering of the rows and columns is given by the
numbering of the velocities in Fig. 1. We then get the moments

Ma =
∑

i

ma
i fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

jx

jy

σ−
σxy

σ+
qx

qy

ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where σ+ is related to the trace of the stress tensor, and σ−
is related to the first normal stress difference. This concludes
our very brief recap of the lattice Boltzmann algorithm (in its
most common form), and we will next present the Monte Carlo
lattice gas algorithm introduced in this paper.

III. THE MONTE CARLO LATTICE GAS ALGORITHM

The main idea behind defining a lattice gas that behaves
equivalently to a lattice Boltzmann method is that we will
use a Monte Carlo collision operator that explicitly conserves
mass and momentum and will recover the correct equilibrium
distribution for u = 0. At each lattice site x the number of
particles that streamed in from a lattice position x − vi is
denoted as ni(x,t). This number is an integer, in contrast to
the real number fi(x,t) in the lattice Boltzmann approach.
These particles then are redistributed due to collisions, and

this redistribution will be denoted as �i . We then have the
evolution equation

ni(x + vi,t + 1) = ni(x,t) + �i, (28)

which looks equivalent to the lattice Boltzmann equation (1),
except that the occupation numbers ni are integers, and that
the collision term is an inherently probabilistic term, not a
deterministic one as in the lattice Boltzmann approach. We
consider that this collision term is the accumulated effect
of many two-particle collisions. This may not be the most
numerically efficient algorithm, but it avoids complexities
encountered by Boghosian [25] and Duenweg [36] because
it is conceptually clean. It may be similar to the approach of
Digital Physics, as hinted at in Ref. [20], but we have been
unable to uncover the details of this approach.

To define the collision term �i we demand that it recover
the zero-velocity equilibrium distribution of lattice Boltzmann.
From Eq. (9) we see that it is given simply by

f
eq
i (ρ,u ≡ 0) = 〈ni〉 = ρwi. (29)

Since the lattice gas is a fluctuating method (unlike the
standard LB) it is important to distinguish between the global
equilibrium, denoted here as f

eq
i , and the local equilibrium, f 0

i .
Let us now consider a collision of two particles with velocities
vi and vj . We denote the probability of colliding these two
particles and ending up with two particles with velocities vk

and vl with Pij→kl . We assume detailed balance, which means
that the forward and backward collisions times the probabilities
of finding these pairs in equilibrium have to be equal. Let us
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assume that the number of particles at a lattice site is N . At one
lattice site the probability of picking a particle with velocity vi

is then wi .
We can then write the detailed-balance condition for the

equal probability for the forward and backward collisions as

wiwjPij→kl = wkwlPkl→ij . (30)

This fixes the ratios of the forward and backward collisions to

Pij→kl

Pkl→ij

= wkwl

wiwj

. (31)

Assuming that we do not have any additional conserved quan-
tities this condition will ensure that the system will approach
the lattice Boltzmann equilibrium distribution if the system has
a mean velocity of zero. For actual collisions, i.e., ij 
= kl, we
pick the transition probability

Pij→kl ∝ min

(
1,

wkwl

wiwj

)
δ(vi+vj ),(vk+vl ), (32)

where δ is the Kronecker delta with vector indices. In general
such a vector Kronecker delta can be written as the product of
Kronecker deltas for each dimension δvi ,vj

= ∏
α δviα,vjα

. Note
that this ensures the probability ratio requirement of Eq. (31),
which is always guaranteed for the case ij = kl. Next we have
to ensure that the probabilities add up to one:∑

kl

Pij→kl = 1, (33)

and of course we also require Pij→kl � 0. Formally we can
achieve this by introducing a proportionality factor λij,kl . This
proportionality factor simply scales the rate at which certain
classes of collisions will occur. We will show later in this paper
that these λij,kl enter into the relaxation rates of our modes
[see Eq. (78) and (90)]. Each λij,kl is a constant that is input
as a parameter at the beginning of each simulation [although
it could be made dependent on the fluid velocity to improve
Galilean invariance as indicated in Eq. (79)]:

Pij→kl =
{

λij,kl min
(
1, wkwl

wiwj

)
δ(vi+vj ),(vk+vl ) ij 
= kl

1 −∑
k′l′ 
=ij Pij→k′l′ ij = kl

(34)

and requiring λij,kl = λkl,ij to ensure Eq. (31). The δ-function
ensures that only collisions that conserve momentum (mass
conservation is trivially true) have a nonzero probability. Thus
the collision will conserve mass and momentum. Note that
the lower condition, together with the requirement of positive
probabilities, puts an constraint for the largest achievable λij,kl .

The lattice gas algorithm then consists of moving particles
according to their associated velocities vi and then picking C

pairs of particles at random and colliding them according to
the transition probabilities given above. In order to maintain
conceptual clarity we use the naive, straightforward, nonopti-
mized algorithm. As explained above, we denote the number
of particles at position x and time t moving in direction vi with
ni(x,t). The local density is then given by

N (x,t) =
∑

i

ni(x,t). (35)

At each lattice site we then pick a pair of particles to collide
by selecting two evenly distributed random numbers between
1 and N . These two random numbers r1 and r2 are mapped to
the respective velocities of these particles. The velocity index
of the first particle s1 is determined by

r1 → s1 for
s1−1∑
i=0

ni < r1 �
s1∑

i=0

ni, (36)

and a similar relation is used for the second particle. The
two numbers s1 and s2 then imply picking two particles with
velocities vs1 and vs2 . The next task is then to determine the
result of the collision by picking a velocity pair vs3 ,vs4 with
probability Ps1s2→s3s4 . In practice this is done by considering
all outcomes that have nonzero probability, i.e., have the same
momentum. The transition is then determined similarly to (36)
by picking a random number r between 0 and 1, and then
selecting

s1s2 → s3(k)s4(k) for (37)

k∑
i=0

Ps1s2→s3(i)s4(i) < r �
k+1∑
i=0

Ps1s2→s3(i)s4(i), (38)

where we introduced a notation that can number pairs of
velocities with a sequential index, e.g.,

s3(i) = i mod V, (39)

s4(i) = [i − (i mod V )]/V . (40)

In practice this sum can be simplified by only considering
transitions with Ps1s2→s3s4 > 0.

In each collision step multiple such two-body collisions are
performed. The total number of these collisions is denoted by
C, and we use the index c to denote each binary collision. The
effect of the cth binary collision is then given by a random
variable ϑc

i (s1,s2,s3,s4) that takes on the value

ϑc
i (s1,s2,s3,s4) = (δi,s3 + δi,s4 − δi,s1 − δi,s2 ). (41)

This corresponds to the change in the number of particles
corresponding to velocity vi after the collision (vs1vs2 →
vs3vs4 ) has occurred. Since this process is repeated C times
we get the full collision operator as the sum of these random
variables:

�i =
C∑

c=1

ϑc
i (s1,s2,s3,s4), (42)

where the occupation numbers ni are updated after each binary
collision so that the operators ϑc

i (s1,s2,s3,s4) are the result of
a collision for the state given by the previous subcollisions,
according to Eq. (36). Note that this collision operator explic-
itly conserves mass and momentum because of Eq. (32).

Next we will show two explicit implementations of this
algorithm in one and two dimensions for standard velocity
sets.

A. A D1Q3 implementation

A state is given by the numbers of particles ni moving
in direction vi . For this velocity set the only collision that
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conserves momentum and changes the state of the system
consists of two particles moving in opposite directions that
come to rest, or the inverse process of two rest particles that
will move apart in opposite directions:

{−1,1} → {0,0}, (43)

{0,0} → {−1,1}. (44)

For the D1Q3 lattice Boltzmann method the weights are given
by Eq. (19). We get for the transition probabilities

P−11→00 = λ, (45)

P−11→−11 = 1 − λ, (46)

P−11→1−1 = 0, (47)

P1−1→00 = λ, (48)

P1−1→1−1 = 1 − λ, (49)

P1−1→−11 = 0, (50)

P00→00 = 1 − λ/8, (51)

P00→−11 = λ/16, (52)

P00→1−1 = λ/16, (53)

where we have set some irrelevant switching probabilities to
zero since they do not change the state.

As a consequence of this small collision set, an accidentally
conserved quantity is introduced. The number of rest particles
at each lattice site will stay either even or odd throughout the
entire simulation, as they can only be created or destroyed
in pairs. This conserved quantity prevents us from exactly
recovering the equilibrium fluctuations, particularly the Pois-
son distributions. This is shown in Fig. 2 for a worst-case
scenario where all lattice sites have an even number of rest
particles. For this simulation, we used Lx = 100, C = 10,
ρ = 12, allowed the simulation to equilibrate for 20 000 time
steps, and averaged over 80 000 time steps.

B. A D2Q9 implementation

The velocities of Eq. (21) allow for many more collisions,
and these collisions can be grouped into equivalence classes,
in which each collision within a class is simply a rotation of the
other collisions. In order to ensure isotropy, we must ensure
that the λij,kl for all collisions in an equivalence class are the
same.

Some collisions in our D2Q9 model break the conservation
of “even or odd-ness” of n0 at each lattice site. However, in
the projection of our simulation along the x or y direction, we
still have that each row and column is constant in its “even or
odd-ness.” This has a much smaller impact on the simulation
as our lattice size grows. Let us assume the lattice has Lx

lattice sites in the x direction and Ly lattice sites in the y

direction. Then the number of conserved quantities grows only
as Lx + Ly , but the number of lattice sites grows as LxLy ,

0 5 10 15 20
ni

0

0.005

0.01

0.015

0.02

0.025

0.03

P(
n i)

n1
n0

FIG. 2. Poisson-like distributions with additional constraint are
found for the D1Q3 model. Symbols represent simulation results,
and solid lines represent the Poisson distribution corresponding to
the expected equilibrium distribution. All lattice sites were initialized
with an even number of rest particles, and this property is conserved
by collisions. Here P (n1) = P (n−1). Note that the difference between
the actual distribution and the Poisson distribution does not affect the
distribution of moving particles.

so the fraction of spuriously conserved degrees of freedom
becomes small for large lattices.

The equivalence classes are shown schematically in Fig. 3.
As a small side note, the collision 9 was first proposed by
Molvig [19]. This allows us to write all possible binary
collisions and their probabilities in principle, exactly in the
same way as we did for the D1Q3 model. We make the
simplification that the proportionality factors λij,kl are instead
referred to as λi , where each index i refers to the number of the
equivalence class identified in Fig. 3. We now have many more
collisions, which we will not explicitly list their probabilities
here. It should also be noted that there are three and more
particle collisions that could be included. For simplicity those
are neglected here.

IV. BOLTZMANN AVERAGE OF THE LATTICE GAS

To compare the lattice gas results to the lattice Boltzmann
method we will now examine a nonequilibrium ensemble
average of the lattice gas evolution equation. We define the
particle probability densities as

fi(x,t) = 〈ni(x,t)〉, (54)

where 〈〉 implies a nonequilibrium average over an ensemble
of microscopic realizations leading to the same macroscopic
state. We define the density as

ρ(x,t) = 〈N (x,t)〉. (55)

The evolution equation for the average particle densities is then

fi(x + vi,t + 1) = fi(x,t) + �i. (56)
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1

2 6(p)

73

4

5

6

8

9

FIG. 3. The nine equivalence classes for binary collisions that
both change the state and conserve momentum. Arrows correspond
to particles moving with the corresponding velocity vi , circles denote
rest particles. Each of these collision equivalence classes is associated
with a different proportionality factor λij,kl . The numbers are used to
identify the λi corresponding to each equivalence class. Versions of
these collisions rotated by multiples of 90◦ are implied. 6 and 6(p)
are related by parity and have the same relaxation rate. Note that 1–5
have a net momentum of zero, 6–7 have a total momentum of (1,0),
8 has a momentum of (1,1), and 9 corresponds to a total momentum
of (2,0).

The Boltzmann collision operator is the averaged version of
the lattice gas collision operator

�i = 〈 �i〉. (57)

We can define intermediate distribution functions recursively
as distribution functions affected by one single collision

f
(c+1)
i = f

(c)
i +

∑
jklm

ϑi(jklm)
f

(c)
j f

(c)
k

ρ2
Pjk→lm (58)

= f
(c)
i + �

(c)
i , (59)

where it is understood that

f
(0)
i = fi(x,t). (60)

The averaged collision operator can then be written as

�i =
C∑

n=1

�
(c)
i . (61)

From this collision operator we can obtain the equilibrium
distributions for the fi by demanding

0 =
∑
jklm

ϑi(jklm)
f

eq
j f

eq
k

ρ2
Pjk→lm. (62)

Note that it is sufficient for this purpose to consider a single
subcollision of Eq. (59), rather than the full collision operator
of Eq. (61). This gives us a quadratic matrix equation in the
equilibrium density. One might expect not to obtain a unique

solution. However, since we require that f
eq
i > 0 we will find

below that only one physical solution survives.

A. D1Q3 results

In the one-dimensional case of D1Q3 we find that Eq. (61)
gives

�(1)({fi}) = λ

ρ2

⎡
⎢⎣

f 2
0
8 − 2f−1f1

4f−1f1 − f0
2

4
f0

2

8 − 2f−1f1

⎤
⎥⎦. (63)

The equilibrium distribution has to be found with respect to
the corresponding conserved quantities of mass N (x,t) and
the momentum

N (x,t)U (x,t) =
∑

i

ni(x,t)vi. (64)

This corresponds to an ensemble averaged momentum of

ρ(x,t)u(x,t) = 〈N (x,t)U (x,t)〉. (65)

Furthermore we define a second moment

π =
√

2(f−1 − f0/2 + f1). (66)

We can use a matrix that transforms the fi vector onto the
conserved moments and one free moment of Eq. (20).

We then have the moments

M

⎡
⎣f−1

f0

f1

⎤
⎦ =

⎡
⎣ ρ√

3ρu

π

⎤
⎦. (67)

We can then write the collision operator for a single collision
of Eq. (59) in this moment space as

M�
(1)
i (fi) = λ

ρ2

⎡
⎣ 0

0
3√
32

(
f 2

0 − 16f−1f1
)
⎤
⎦

= λ

ρ2

⎡
⎣ 0

0
6u2ρ2−π(π+√

8ρ)√
8

⎤
⎦. (68)

In equilibrium the collision operator does not change the distri-
butions. Reversely, we can find the equilibrium distribution by
demanding that the collision operator be zero. Thus we obtain
π eq in terms of the conserved quantities as

π eq =
√

2ρ(−1 ±
√

1 + 3u2). (69)

The solution with the negative sign leads to negative densities,
while the other solution stays positive. We obtain the D1Q3
equilibrium distribution⎡

⎢⎣
f

eq
−1

f
eq
0

f
eq
1

⎤
⎥⎦ =

⎡
⎢⎣

ρ

6 (−1 − 3u + 2
√

1 + 3u2)
2ρ

3 (2 − √
1 + 3u2)

ρ

6 (−1 + 3u + 2
√

1 + 3u2)

⎤
⎥⎦, (70)

which can be written as

f
eq
i (ρ,ux)=ρwvix

[
1+3vixux +(3v2

ix − 1
)(√

1 + 3u2
x −1

)]
,

(71)
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FIG. 4. Comparison between the measured average 〈ni〉 (shown
as symbols) and the predicted equilibrium distribution,f eq

i , of Eq. (71)
(shown as solid lines) for the D1Q3 model. This is also compared to
the lattice Boltzmann equilibrium distribution, f 0

i , of Eq. (9) (dashed
lines).

where we introduced a weight wvix
, anticipating that the

weights for higher dimensions can be written as products
of one-dimensional weights. For u = 0 we recover f

eq
i =

ρwi , which was our starting point in selecting the collision
probabilities. Once the collision probabilities are fixed, they
also imply equilibrium distributions for different conserved
velocities. This equilibrium distribution, and its dependence
on u, is therefore the logical consequence of selecting the
collision probabilities corresponding to the imposed zero
velocity equilibrium distribution function.

We show a comparison of a measured equilibrium distribu-
tion to this prediction in Fig. 4. For the measured equilibrium
distribution we show results for 〈N〉 = 36, λ = 1, a lattice
size of Lx = 100 with periodic boundary conditions. We used
C = 10 collisions per iteration step, and the simulation was
initially run for 15 000 steps to equilibrate the simulation, and
then another 15 000 iterations were used for the measurements.
We find excellent agreement between this prediction and our
measurements of the equilibrium distribution. The agreement
between our new equilibrium distribution and that of a standard
LB equilibrium distribution function of Eq. (9) is also close for
|u| < 0.4 but diverges thereafter.

This difference implies that the second moment of the
equilibrium distribution will not obey the lattice Boltzmann
requirement of Eq. (7) for all u. This is not surprising since
the MCLG equilibrium distribution, unlike its LB equivalent,
is positive definite. This means that for a velocity of u = ±1
we require f±1 = ρ, and therefore the second moment must
be zero for this extreme value. However, lattice Boltzmann
simulations typically require u � 1, which is usually taken as
u < 0.1, so disagreements between these equilibrium distribu-
tions outside the range |u| < 0.1 have little practical relevance.

We show the second moment of Eq. (7) for our MCLG
equilibrium distribution in Fig. 5. As predicted, the effective
temperature for the MCLG method goes to zero for large

-1 -0.5 0 0.5 1
u

0

0.1

0.2

0.3

0.4

θ

LB θ=1/3
MDLG θ theory
MCLG θ measured

-0.2 -0.1 0 0.1 0.2
0.331
0.332
0.333
0.334
0.335

FIG. 5. Second velocity moment of Eq. (7) divided by the mean
density for the MCLG equilibrium distribution for D1Q3. The crucial
result here is that in the relevant region |u| < 0.1 there is excellent
agreement between the standard LB result and the MCLG result.

absolute velocities, as is unavoidable for a discrete method with
a restricted velocity set that has positive definite occupation
numbers. For the relevant region where |u| < 0.1, however,
there is excellent agreement between the MCLG and LB
results, as shown in the inset.

After identifying the global equilibrium distribution for the
D1Q3 MCLG, we should now examine the collision operator
more closely. Equation (68) implies that the collision operator
leaves the mass and momentum modes unchanged (as it has
to, since those are conserved) and alters only the π mode. Let
us define its deviation from equilibrium as π̃ = π − π eq. If we
denote π̃ (c) as the value of π̃ after c collisions, we can write
the effect of one collision as

π̃ (c+1) = π̃ (c) − λ

2
√

6

(
(π̃ (c))2

ρ2
+ π̃ (c)

ρ
2
√

6
√

1 + 3u2

)
.

(72)

If we interpret this as a nonlinear differential equation, we can
write the analytical solution after C collisions as

π̃ (C) = 2
√

6ρ
√

1 + 3u2 π̃ (0)

exp
(

Cλ
√

1+3u2

ρ

)
(2

√
6ρ

√
1 + 3u2 + π̃ (0)) − π̃ (0)

.

(73)

For the standard BGK approach in lattice Boltzman we would
have expected a pure exponential decay, corresponding to the
approximation of neglecting π̃2 in Eq. (72). The connection
between the LG collision operator and the LB BGK colli-
sion operator is interesting. The collision MCLG operator
is quadratic (and would also involve higher powers if we
allowed for multiparticle collisions), but the BGK operator
is linear. This apparent mismatch is resolved by writing the
collision operator in terms of the moments and examine
only the decay of the nonequilibrium moments. In such a
representation, close to local equilibrium, all moments are
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small, except for the conserved moments, most notably the
density. Because of the more complicated dependence of the
equilibrium distribution on the momentum, the momentum
dependence is more complicated than simply quadratic. So
quadratic terms that connect a mode to the local density will
dominate the collision operator, and since the density does
not change during the collision, the linear relaxation of those
moments is recovered. A BGK collision operator implies that
we have the matrix of Eq. (17),

�ab =
⎛
⎝0 0 0

0 0 0
0 0 1/τπ

⎞
⎠, (74)

where τπ is supposed to be a constant independent of the
(nonconserved) moments. We can obtain this if we assume
π̃ (0) � ρ and make the usual assumption u � 1 to get

π̃ (C) ≈ exp

(
−Cλ

ρ

)
π̃ (0). (75)

The relaxation time can then be deduced from the collision
term in moment form,

π̃ (C) = π̃ (0) − 1

τπ
π̃ (0), (76)

from which we get

τπ = π̃ (0)

π̃ (0) − π̃ (C)
(77)

≈ 1

1 − exp(−Cλ/ρ)
, (78)

which becomes a constant, i.e., independent of π̃ (0) and u,
only in the limit mentioned above. This means that the range
or reachable relaxation times are given by τπ ∈ [1,∞]. For
simple collisions the important over-relaxation regime for τ ∈
[1/2,1] that is often utilized in lattice Boltzmann simulations
is unavailable for this lattice gas method. An extension of the
collision process that includes over-relaxation is possible for
high enough densities, but it derivation is outside the scope of
this paper.

For systems far from equilibrium or high mach numbers
these relaxation times become functions of the state variables
in the lattice gas. The dependence of the relaxation time on u

violates Galilean invariance and can in principle be remedied
by setting

λ = λ̃√
1 + 3u2

(79)

for some constant λ̃, as can be seen in Eq. (73).
We test our analytical prediction of the decay of the π mode

by averaging 1000 realizations of an initial configuration of
ni(x,0) = {100,100,100} on a system with Lx = 1000 and
λ = 1 and examine the decay of 〈π〉 as a function of the
number of collisions. There is a small subtlety in relating
the result of the predictions of the Boltzmann averaged lat-
tice gas to actual fluctuating lattice gas simulations. Strictly
speaking the analysis we have performed corresponds to
relaxations of an ensemble average of systems where the both
the local density and the local velocity correspond to the
Boltzmann density ρ and Boltzmann velocity u only on aver-

0 500

(a)

(b)

1000 1500 2000
Collisions

0.1

1

10

100

1000

-π

Experimental
Exponential approximation
Theoretical
Experimental no stream

0 500 1000 1500 2000
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0.1

1

10

100

1000

 π
 

Exponential approximation
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Experimental
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FIG. 6. Measured and theoretical decay of the second moment
of a D1Q3 simulation with 300 particles per cell for two extreme
situations. In (a) all particles start as rest particles, in (b) there
are no rest particles. We observe excellent agreement between the
simulation and prediction of Eq. (73) for the relaxation of π̃ towards
global equilibrium. Also shown is the relaxation towards local
equilibrium for a simulation without streaming, which will lead to
a negative π̃ because of a small difference between the global and
local equilibrium, as discussed after Eq. (81). These results are also
compared to the linearized theory, leading to an exponential decay of
Eq. (75).

age and averaging over the fluctuations is implied. The same
is true for the equilibrium distribution: this is an equilibrium
average where the realizations averaged over are fluctuating
and only the expectation values correspond to the imposed ρ

and u.
To compare our Boltzmann theory to simulations we

therefore have to consider the average relaxation of π in
a full simulation, including streaming, of a macroscopically
homogeneous system. These results are shown in Fig. 6 and
show excellent agreement between simulation an theory.
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The local equilibrium distribution, i.e., without taking the
full Boltzmann ensemble average, has a density dependent sec-
ond moment. This is easily seen as a single particle with mean
velocity zero corresponds to the single state (n−1 = 0,n0 =
1,n1 = 0) which has π = −√

3/2. So the local equilibrium
distribution in moment representation is

Mf 0
i (ρ = 1,u = 0) =

⎛
⎜⎝

1
0

−
√

1
2

⎞
⎟⎠. (80)

For two particles we would have two states (n−1 = 0,n0 =
2,n1 = 0) and (n−1 = 1,n0 = 0,n1 = 1) with probability
16/17 and 1/17, respectively, according to Eq. (31). With this
we obtain

Mf 0
i (ρ = 2,u = 0) =

⎛
⎜⎝

2
0

− 28
17

√
1
2

⎞
⎟⎠. (81)

For larger number of particles and different velocities the
detailed calculation of the average occupation numbers be-
comes more complicated, but the existence of a small negative
contribution, which does remain of the order of −1 and does
not increase with the particle number, remains as a part of the
local equilibrium distribution.

Apart from the implementation details, there is an under-
lying physical reason for this. This second moment is related
to a local temperature. It is well known that in a molecular
system such a local temperature of a small domain depends
on the discretization, and at smaller discretization more of
the kinetic energy resides in fluctuations of the local velocity
and less in the temperature. In the extreme case of a single
particle in a discretization cell the temperature would be zero,
and all the energy would reside in the momentum of the
cell. Therefore the global equilibrium distribution will have
a definite momentum and a higher temperature, whereas a
local equilibrium will have a fluctuating momentum and a
lower temperature. Since the moments here are calculated with
respect to the global equilibrium distribution we find that the
local equilibrium distributions have small negative deviations
of the second moment. This is why the local second moment
does not decay towards zero in Fig. 6, but will become slightly
negative instead. In this figure we see that the full solution of
Eq. (73) gives a very good description of the nonlinear decay
for situations far from equilibrium.

B. D2Q9 results

The derivation of the D2Q9 collision operator follows the
D1Q3 derivation we just showed, but because we have six
modes that relax, instead of just one, collision rules become
very lengthy to write here. They are easily derived from the
collision classes presented in Fig. 3. We now have nine λi ,
which make the equivalent of Eq. (63) again rather lengthy to
write. The equivalent of Eq. (68) shows a similar structure:
many quadratic terms in the mi . Of the 93 = 729 possible
combinations, 243 actually occur, each typically associated
with several λi . See the Supplemental Material [37] for a
Mathematica notebook that contains all the terms in question.

To calculate the equilibrium distribution we need to set
�i = 0. This initially appeared to be a hard problem, and
Mathematica was unable to solve the resulting equations.
However, we noticed that using the product of two one-
dimensional equilibrium distribution functions

f
eq
i (ρ,u) = ρ

∏
α

wviα

[
1 + 3viαuα

+ (3v2
iα − 1

)(√
1 + 3u2

α − 1
)]

(82)

turns out to be the simple solution (no summations over
repeated Greek indices is implied here). It turns out that
the equilibrium distributions of an entropic lattice Boltzmann
derived in Ref. [29] and Eq. (82) are identical, even if they are
written in a very different form [38]. In retrospect this result is
not surprising since both methods will minimize theH function
[39]:

H ({fi}) =
∑

i

fi log

(
fi

wi

)
. (83)

To validate that our result for the equilibrium distribution
agrees with results of the simulation method we ran a simula-
tion on a lattice with dimensions Lx = 100, Ly = 10, C = 10,
λ1 = 15/128, λ2−7 = 1/4, λ8 = 1/8, λ9 = 18/144, 〈ρ〉 = 36,
and 〈Uy〉 = 0.25. We varied 〈Ux〉. We then iterated for 20 000
iterations to ensure we are in equilibrium and then measured for
another 10 000 iterations. The results of these simulations are
shown in Fig. 7. As expected our values for the f

eq
i agree ex-

actly with the measured values. We also compare the quadratic
equilibrium distribution of Eq. (9) to the values of the MCLG
equilibrium distribution (82) or, equivalently, the entropic LB.
They agree around u

eq
x = 0 by design, but for larger velocities

the two models begin to diverge. This is expected because as the
mean velocity increases, the f

eq
i of Eq. (82) eventually become

negative, which the ni cannot do. Note that we have picked a
very large Ux = 0.25 to emphasize the differences between the
entropic and polynomial equilibrium distributions.

As an example we show here the relaxation of the stress
mode, which is responsible for recovering the shear viscosity.
Similar to our analysis for the D1Q3 case we examine the
effect of the collision on the deviation of the distribution from
the local equilibrium distribution. We write the nonequilibrium
part of our moments as

dMa =
∑

i

ma
i

(
fi − f

eq
i

)
(84)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

σ− − ρ(Ax − Ay)
σxy − ρjxjy

σ+ − ρ(Ax + Ay − 2)
qx − √

2jx(Ay − 1)
qy − √

2jy(Ax − 1)
ε − 2ρ(Ax − 1)(Ay − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (85)

where we introduced

Ax =
√

1 + j 2
x

ρ2
, Ay =

√
1 + j 2

y

ρ2
(86)
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FIG. 7. Comparison of measured equilibrium distribution for the
lattice gas, the theoretical prediction of Eq. (82), shown as solid
lines, and the lattice Boltzmann equilibrium distribution of Eq. (9),
shown as dotted lines. We show the results as a function of ux

and have set uy = 0.25 to visually separate the different averages.
For smaller uy the agreement between MCLG and LB results
increases.

so that dMa = 0 in equilibrium. We write the effect of cth
single collision on these nonequilibrium moments as

dMa(c) = �a,(c) =
∑

i

ma
i �

(c)
i , (87)

and we replace the appearances of fi in the collision term with

fi = wi

∑
a

ma
i (dMa + Ma,eq). (88)

The conservation of mass and momentum immediately imply
that �0(c) = �1(c) = �2(c) = 0. For the collision term related
to the stress moment σxy we get the rather lengthy expression
(B1) given in Appendix B. The expression (B1) shows the
coupling of the various modes. Unlike in the one-dimensional
case we were unable to find an analytical solution for this
nonlinear relaxation. However, if we restrict our attention to
moments that are close to local equilibrium, then the only
terms that are not small are the conserved quantities. Here
there are three conserved quantities, ρ, jx , and jy . And since
jx = ρux and ux < 0.1 for typical applications we can make
the further assumption j 2

x � ρ2. This means that the leading
order terms are contained in the first six lines. The next order,
small only because |j | � ρ, are the terms in the last four lines.
The terms in lines 9 and 10 are smaller by one factor of jx/ρ �
1. The remaining terms are quadratic in the nonequilibrium
moments (remember those are zero in equilibrium) and can
be neglected for systems close to local equilibrium. To leading
order, neglecting |j |/ρ terms, we also have Ax = Ay = 1. The
leading order for the relaxation of the σxy mode is then given
by

σ (c+1)
xy = σ (c)

xy − 1

9ρ
[8λ1 + λ3 + 2(λ4 + λ6 + 2λ7 + 4λ8)]σxy.

(89)

Analogously to the one-dimensional case we can derive the
effective relaxation time as

τσxy = 1

1 − exp
(
−C(8λ1+λ3+2(λ4+λ6+2λ7+4λ8))

9ρ

) . (90)

Applying this approximation for all of the modes we obtain

�a,(c)= 2

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

σ
(c)
−
(− 2

9λ2 − 1
36λ4 − 4

9λ5 − 2
9λ7 − 1

36λ9
)

σ (c)
xy

(− 4
9λ1 − 1

18λ3 − 1
9λ4 − 1

9λ6 − 2
9λ7 − 4

9λ8
)

− 2
9

(
(σ (c)

+ ) − ε(c))λ2 + ( 1
4σ

(c)
+ + 1

8ε(c))λ3 + ( 1
8σ

(c)
+ + 1

4 t (c))λ4 + (σ (c)
+ + 1

2ε(c))λ7 + ( 1
8σ

(c)
+ + 1

4ε(c))λ9

)
q(c)

x

(− 2
3λ1 − 1

3λ7 − 1
3λ8 − 1

12λ9
)

q(c)
y

(− 2
3λ1 − 1

3λ7 − 1
3λ8 − 1

12λ9
)

−(ελ1 + ( 2
9ε(c) − 2

9σ
(c)
+ )λ2 + ( 1

36σ
(c)
+ + 1

72ε)λ3 + ( 1
18σ+ + 1

9ε)λ4 + ( 1
9σ+ + 1

18ε)λ7 + ( 1
18σ

(c)
+ + 1

9ε(c))λ9
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (91)

023310-11



THOMAS BLOMMEL AND ALEXANDER J. WAGNER PHYSICAL REVIEW E 97, 023310 (2018)

We see that the relaxation of all moments decouples, except for
the σ+ and t moments. To recover a diagonal collision matrix in
moment space �ab is equivalent to decoupling here. The eighth
moment couples to σ+ with the same coefficient that the fifth
moment couples to the eighth. We can set this coefficient to
zero by demanding

2
9λ2 − 1

36λ3 − 1
18λ4 − 1

9λ7 − 1
18λ9 = 0, (92)

which then decouples the modes and recovers the diagonal
collision matrix for D2Q9. Additionally, to recover an isotropic
stress tensor, we demand that the σxy and σ− be relaxed at the
same rate:

(− 2
9λ2 − 1

36λ4 − 4
9λ5 − 1

36λ9
)

= (− 4
9λ1 − 1

18λ3 − 1
9λ4 − 1

9λ6 − 4
9λ8

)
. (93)

The moments qx and qy are automatically relaxed at the same
rate.

To derive the Boltzmann average of this MCLG method of
Eq. (56) we first need to write the effect of C collisions for
Eq. (91). Once we ensured that the matrix terms decouple by
imposing Eq. (92) we obtain for the collision matrix

�ab = 1

τ a
δab, (94)

where the relaxation times are given by (90) for the σxy moment
and equivalent expressions for the relaxation of the other
modes. This means we have derived a multirelaxation-time
BGK collision operator (with the assumption that we are close
enough to equilibrium that the density mode is much larger
than the nonconserved moments and that ρ � |j |) from the
underlying lattice gas collision rules. We believe that this
is the first such derivation. Earlier introductions of a BGK
collision operator [6,40] were unable to derive this from a
lattice gas and instead did so as an ad hoc assumption. The
derivation is quite general: in moment space the dominant
terms are those which are proportional to the density, and
these leading order terms will contain only one power of one
nonequilibrium moment, meaning that the collision operator
can be written as a linear operator, i.e., a matrix collision
applied to the nonequilibrium part of the particle distribution
fi − f

eq
i .

The Boltzmann average of the Monte Carlo lattice gas
algorithm, with appropriate approximations discussed above,
can now be written as

fi(x + vi,t + 1) = fi(x,t) +
∑

j

�ij

[
f

eq
j (ρ,u) − fj (x,t)

]
,

(95)

where the collision matrix is given by Eq. (94) and the local
equilibrium by Eq. (82).

Since this is exactly the entropic lattice Boltzmann method
(without over-relaxation for the moment) the standard deriva-
tions show that we recover the continuity

∂tρ + ∇α(ρuα) = 0 (96)

and Navier-Stokes equation

∂t (ρuα) + ∇β(ρuαuβ)

= ∇αp + ∇β

[
ρν(∇αuβ + ∇βuα − 2

3∇γ uγ δαβ)
]

(97)

with

ν = (
τσxy − 1

2

)
θ. (98)

To validate our prediction for the shear viscosity we set up a
sinusoidal shear profile

ρ(x,y,0) = ρ0,

ux(x,y,0) = A sin

(
2πy

Ly

)
, (99)

uy(x,y,0) = 0,

for which the Navier-Stokes equation has the analytical solu-
tion

ρ(x,y,t) = ρ0,

ux(x,y,t) = A exp

(
−4π2νt

L2
y

)
sin

(
2πy

Ly

)
, (100)

uy(x,y,t) = 0.

To simulate this system with the MCLG method we set up
the lattice densities as 500 particles per lattice site, Lx =
100,Ly = 101, λ values the same as those given below
Eq. (83). To initialize the profile we set only the rest density
n0 and either n1 or n2 different from zero such that

∑
i ni =

500 and
∑

i nivix = 500 × 0.1 sin(2πy/Ly), where the last
equality is rounded to the nearest integer value. The densities
are then equilibrated by performing 10 000 collisions on
each lattice site (without streaming) to generate the initial
configuration for the start of the simulation. The results of our
MCLG simulations show a fluctuating version of the decay
of the sinusoidal profile of such a shear wave. We average
the result by averaging 100 x values. To reduce fluctuations
further we averaged this over 15 separate realizations of
this simulation. The simulation results show clean sinusoidal
profiles with amplitudes that decay exponentially as a function
of time. We obtain the amplitude from Eq. (A3), given in an
Appendix. The results are shown in Fig. 8, where we see that
there is excellent agreement between the decay of the shear
wave predicted by theory and the simulations, thus confirming
our predictions for the shear viscosity in the MCLG method.

V. FLUCTUATING PROPERTIES OF THE MCLG

So far we have focused on the Boltzmann average of our
lattice gas. The original reason we were interested in the lattice
gas were its fluctuating properties. The fluctuations in an ideal
gas have been discussed by Landau [41, Sec. 114], where he
shows that for a classical Boltzmann gas the number density
in subvolumes are Poisson distributed. The argument here is
trivially extended to lattice gases showing that each density ni

should be Poisson distributed:

P (ni) = exp
(−f

eq
i

)(
f

eq
i

)ni

ni!
. (101)
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FIG. 8. Comparison of predicted (solid lines) and measured
(symbols) decay of a shear wave with initial amplitude of A = 0.1. We
observe that the decay rate corresponds closely to the rate predicted
by Eq. (100) and Eq. (98), except for the smallest number of collisions
corresponding to a relaxation time of τ = 2.69.

As a consequence we obtain

〈ni(x,t)nj (y,t)〉 = f
eq
i f

eq
j + f

eq
i δij δxy. (102)

In the lattice Boltzmann context trying to recover a Poisson dis-
tribution is problematic, since the densities fi are continuous,
and there is no generally accepted extension of the Poisson
statistic to continuous variables. Instead of trying to impose
a Poisson distribution, Eq. (102) is used as the starting point
for the derivation of fluctuating lattice Boltzmann methods.
Using this second moment one finds that the lattice Boltzmann
densities approximately represent a Poisson distribution, as
seen in recent papers by Kaehler et al. [12] as well as by
Wagner et al. [13]. However, these solutions are never exact,
and it is important to be aware of where the assumption of
Poisson distributed fi , which is used as an input to derive these
methods, breaks down in the practical implementation.

It is important to note that this result is independent on the
transport parameters, or in our case the number of collisions
C, the various proportionality factors λi , the density or an
imposed fluid velocity. We therefore tested the prediction
of Poisson-distributed occupation numbers ni in the MCLG
method for a large variety of densities and imposed velocities
and throughout found excellent agreement with the prediction
from Eq. (101). An example is shown in Fig. 9. Similarly we
can test the independence of the ni by looking at

〈ninj 〉 − f
eq
i f

eq
j√

f
eq
i f

eq
j

?= δij . (103)

Again we found excellent agreement for all densities and
velocities that we tested. For the results shown here we used
the same values for λi as above, we initialized the lattice with
a density of 360 and an initial velocity ux with uy = 0. We
performed C = 10 collisions per site per iteration. We then
discarded the first 150 000 iterations to ensure we are looking
at an equilibrium system. We averaged over the next 500 000

0 5 10 15
ni

0

0.01

0.02

0.03

0.04

P(
n i)

n0
n1
n2
n7

FIG. 9. n0, n1, n2, n7, plotted with respect to local density at Ux =
−0.25, Uy = 0.25 and ρ = 18. Symbols represent the measured
values, and the solid lines are the theoretical distribution.

steps on a lattice with Lx = 100, Ly = 10. We show the worst
case result with respect to the results of Fig. 10 and Table I.
We see that we have excellent agreement with our prediction
of Eq. (103).

To examine the agreement for different velocities without
printing many of these tables we look at a measure of the
deviation of the correlation matrix from the expected value

E(ux,uy) =
∑
i,j

⎛
⎝ 〈ninj 〉 − f

eq
i f

eq
j√

f
eq
i f

eq
j

− δij

⎞
⎠

2

. (104)

A graph of this error function as a function of the mean velocity
is shown in Fig. 10. We see that there is no apparent systematic
variation of this error function with u even for extreme values

-1 -0.5 0 0.5 1
ux

1e-06

1e-05

0.0001

E(
u x)

FIG. 10. The deviation of the expected Poisson distribution statis-
tic from the measured correlations from Eq. (104) for different
velocities u. There is no discernible pattern, and the error continues
to decrease with increased averaging.
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TABLE I. Representation of the correlator of Eq. (103) for pairs of 〈ninj 〉 for the worst statistical outlier for ux = −0.68 of Fig. 10.

n0 n1 n2 n3 n4 n5 n6 n7 n8

n0 0.998863 − 0.000028 − 0.000482 − 0.000170 − 0.000343 0.000001 − 0.000114 − 0.000082 0.000010
n1 − 0.000028 0.999171 0.000001 0.000143 − 0.000072 − 0.000127 − 0.000047 0.000013 0.000057
n2 − 0.000482 0.000001 0.999809 − 0.000112 0.000177 − 0.000515 − 0.000110 − 0.000022 0.000482
n3 − 0.000170 0.000143 − 0.000112 1.000230 − 0.000079 0.000014 0.000008 − 0.000048 − 0.000067
n4 − 0.000343 − 0.000072 0.000177 − 0.000079 0.999648 0.000492 − 0.000023 − 0.000103 − 0.000480
n5 0.000001 − 0.000127 − 0.000515 0.000014 0.000492 − 0.999567 − 0.000065 − 0.000046 0.000593
n6 − 0.000114 − 0.000047 − 0.000110 0.000008 − 0.000023 − 0.000065 0.999801 − 0.000085 0.000086
n7 − 0.000082 0.000013 − 0.000022 − 0.000048 − 0.000103 − 0.000046 − 0.000022 0.999687 − 0.000117
n8 0.000010 0.000057 0.000482 − 0.000067 − 0.000480 0.000593 0.000086 − 0.000117 0.999215

for u and with increasing averaging the error continues to
diminish. This suggests that we have found a reference lattice
gas implementation that exactly fulfills the predictions for a
fluctuating ideal gas, a feat that has not been fully achieved to
date for fluctuating lattice Boltzmann methods [12].

As a consequence of the correctly Poisson-distributed fluc-
tuations of the ni follows that all equal time correlators of
composite quantities like the density or the momentum are
correct and obey their respective Poisson or Skellam (i.e.,
the distribution of a difference of Poisson-distributed random
variables) distributions.

VI. CONCLUSIONS

In this article we have introduced an integer lattice gas
method which employs a Monte Carlo collision operator. We
show that the Boltzmann limit of this lattice gas recovers the
entropic lattice Boltzmann method (without over-relaxation
for the moment), which agrees with the usual lattice Boltz-
mann distribution with a polynomial distribution function
for moderate velocities |u| < 0.1. Remarkably we were able
to derive a BGK collision operator directly from the lattice
gas collision rules. Previously the BGK collision operator
had been postulated only but not derived. The equilibrium
distribution recovered here is identical with that of entropic
lattice Boltzmann [29] and Boltzmann average of the lattice
gas obeys the standard H theorem.

Remarkably the fluctuating properties of this MCLG re-
cover Poisson statistics exactly in a fully Galilean invariant
manner. This suggests that an optimized version of this MCLG
method may become a promising contender for the simulation
of fluctuating fluids. Extending this result to nonideal fluids
will require a better understanding of fluctuations in these sys-
tems. We will examine what fluctuations for nonideal systems
with the help of the molecular dynamics lattice gas (MDLG)
introduced by Parsa et al. [42]. Developing an implementation
that can compete with lattice Boltzmann approaches with
regard to speed will require an implementation of a lattice gas
collision operator that can perform multiple collisions at one
time and a way to introducing over-relaxation that has been the
way of lowering transport coefficients below the value obtained
for full relaxation to local equilibrium. This is the subject
of current research, and we anticipate presenting solutions to
these questions in subsequent publications.

APPENDIX A: AMPLITUDE OF SINE-WAVE DECAY

We can look at the problem of finding the amplitude
A(t) that corresponds to the best fit of a profile uth

x =
A(t) sin(2πy/Ly) to some data Ux(t,y). The mean-square
deviation E(A) would be given by

E(A) =
∑

y

[Ux(y) − ux(y)]2, (A1)

and the requirement of this being minimal gives us

0 = dE(A)

dA

= d

dA

∑
y

[
A2 sin2

(
2πy

Ly

)
+ A sin2

(
2πy

Ly

)

×Ux(y) + U 2
x (y)

]

=
∑

y

[
2A sin2

(
2πy

Ly

)
+ sin

(
2πy

Ly

)
Ux(y)

]
, (A2)

so we get

A(t) =
∑

y sin
(

2πy

Ly

)
Ux(y)∑

y sin2
(

2πy

Ly

) . (A3)

We can look at E(A)/A2 as a measure for the quality of the fit.

APPENDIX B: DECAY OF SHEAR STRESS MODE

This is the explicit decay of the shear stress mode for the
D2Q9 model:

σ (c+1)
xy = σ (c)

xy + 1

9ρ
[(−8(−2 + Ax)(−2 + Ay)ρ)λ1

+ (−(−1 + 2Ax)(−1 + 2Ay)ρ)λ3

+ (−2 + 4Ax + 4Ay − 8AxAy)ρλ4

+ (−2 + 4Ax + 4Ay − 8AxAy)ρλ6

+ (8 − 10Ax − 10Ay + 8AxAy)ρλ7

+ (16 − 20Ax − 20Ay + 16AxAy)ρλ8

+ (8λ1 − 2λ3 − 4λ4 − 4λ6 − 2λ7 − 4λ8)σ (c)
+

+ (−4λ1 − 2λ3 − 4λ4 − 4λ6 + 4λ7 + 8λ8)ε(c)]σ (c)
xy

023310-14



INTEGER LATTICE GAS WITH MONTE CARLO … PHYSICAL REVIEW E 97, 023310 (2018)

+ 2jxjy

9ρ2
(4λ1 − λ3 − 2λ4 − 2λ6 − λ7 − 2λ8)σ (c)

+

+ 2jxjy

9ρ2
(2λ1 + λ3 + 2λ4 + 2λ6 − 2λ7 − 4λ8)ε(c)

+ 2

9ρ
(2λ1 + λ3 + 2λ4 + 2λ6 − 2λ7 − 4λ8)q(c)

x q(c)
y

+ [4(Ax − 2)λ1 + (2Ax − 1)λ3 + 2(2Ax − 1)λ4

+ 2(2Ax − 1)λ6 − (4Ax − 5)λ7 − (8Ax − 10)λ8]

×
√

2jyq
(c)
x

9ρ

+ [4(Ay − 2)λ1 + (2Ay − 1)λ3 + 2(2Ay − 1)λ4

+ 2(2Ay − 1)λ6 − (4Ay − 5)λ7 − (8Ay − 10)λ8]

×
√

2jxq
(c)
y

9ρ
. (B1)
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