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We present a generalized network model for simulating capillary-dominated two-phase flow through porous
media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—
described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017)]—
which comprises pores that are divided into smaller elements called half-throats and subsequently into corners.
Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats
of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The
corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow
conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the
two-phase flow model that is used to compute the averaged flow properties of the generalized network, including
relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow
simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional
pore-network model and experimental measurements of relative permeability in the literature.
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I. INTRODUCTION

Modeling multiphase flow through porous media is im-
portant for understanding processes such as fluid flow in
hydrocarbon reservoirs, contaminant transport, carbon storage
in underground geological formations, and fuel cells. Pore-
scale modeling has been used to provide a link between the
pore-scale fluid and rock properties to their macroscopic coun-
terparts, such as relative permeability and capillary pressure.
Moreover, it can be considered a complement to experimental
measurements of these parameters that are, in turn, used as
input to field-scale models to predict the large-scale behavior
of flow [1–3].

A variety of different methods have been used to in-
vestigate single and multiphase flow through porous me-
dia. These methods include molecular simulations studying
fluid-rock interactions at nanometer scales to continuum-
scale numerical methods such as lattice Boltzmann and fi-
nite volume, which can model two-phase flow directly on
three-dimensional (3D) images of the pore space, and pore-
network models [4]. The following paragraphs present a brief
review of the strengths and limitations of each of these
methods.

Direct simulation, which solves the flow equations numeri-
cally while accounting for interfacial forces, is widely used to
study two-phase flow at the pore scale. Grid-based approaches,
such as volume-of-fluid interface capturing methods [5–7]
and diffuse-interface approximation of fluid-fluid boundaries
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using a density functional approach [8,9], have been applied
to immiscible flows in porous media [10–13]. Particle-based
methods such as the lattice-Boltzmann method have been
used to compute absolute and relative permeabilities [14,15],
capillary pressure [16,17], interfacial area [18], and relative
permeability for different rock types [19–21]. Another ap-
proach is to apply mesh-free methods such as smoothed particle
hydrodynamics that, in addition to the computation of miscible
flow and dissolution [22], have been employed to study two-
phase flow through porous media [23]. The advantage of direct
methods is that the solid and fluid interfacial boundaries can be
modeled accurately. Other features include the ability to study
the effect of viscous forces, including the impact of flow rate
and viscous coupling [21,24,25].

Direct simulations of two-phase flow, however, are compu-
tationally expensive. Capturing layer flow through pore-space
crevices, for instance, requires a high-resolution mesh. There-
fore, layer flow may not be captured accurately when using a
coarse mesh that is usually required to make the simulations
practical on larger images [13]. Direct simulations are more
expensive at lower capillary numbers, where the total duration
of the simulations is larger but small time steps should be taken
to resolve capillary waves and local instabilities (Haines jumps
and snap-off) [1]. For most subsurface processes, flow occurs
at very low capillary numbers and the flow domain can have
heterogeneity at different scales. Moreover, flow simulations
may need to be run many times over a representative elemen-
tary volume that is several orders of magnitude larger than the
grid resolution to study the effect of input parameters—such
as pore structure, contact angle, flow rates, fluid viscosities,
and initial conditions—on the macroscopic properties, and
to quantify the effect of uncertainties in these parameters. A
computationally efficient, and yet accurate, method to perform
sensitivity studies to quantify the effect of these parameters is
needed.
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One solution to this computational challenge is to use a
multi-stage upscaling approach. In the first stage, direct high-
resolution simulations on smaller system sizes can be used to
obtain the equations required to describe flow in individual
pores and throats. In a subsequent stage, these equations can
be used to simulate flow through a coarser-scale network
representation of the void space to obtain its macroscopic
properties.

Network modeling of two-phase flow

Pioneered by Fatt [26], pore-network models have evolved
as an important tool for studying flow through porous media.
They have been used to, for instance, investigate the effects of
viscous [24,27], wettability, and capillary forces, which control
pore-scale configurations of fluids [3,28], discussed in more
detail below.

1. Effect of wettability

Rock adhesion forces, which give rise to a contact angle
between a fluid-fluid interface and a solid wall, have a major
impact on pore-scale displacement mechanisms. Flow of the
wetting phase through crevices of the void space (wetting
layers), although slow, can lead to snap-off and hence trapping
of nonwetting phases residing in the centers of the void space.
This is in contrast to nanometer-thick wetting films that are
stabilized by molecular forces in strongly water-wet media,
which can have a significant impact on apparent contact angle
and capillary pressure [29,30] but their contribution to fluid
conductivity is negligible [31]. Wetting layers, on the other
hand, provide a connected conduit for the wetting-phase flow
down to low saturations [31,32].

Wetting layers can be modeled when using network ele-
ments with angular cross sections, including fractal rough-
ness models [33], grain boundary pore shapes [34,35],
squares [36,37], and triangles [31,38]. In most current network
models, a shape factor, G, defined as the ratio of the cross-
sectional area to the perimeter length squared, is used to
assign the shape of pores and throats. The shape of the cross
section—a circle, square, or scalene triangle—is chosen such
that it has the same shape factor as the 3D image of the porous
medium [38,39].

The wettability of rock surfaces can change due to the
adhesion of surface-active components of the oil to the solid
surface [40]. The degree of wettability alteration depends on
the composition of the oil and water, the mineralogy of the solid
surface, and the capillary pressure imposed during primary
drainage [40–42]. The average wettability of a fluid rock
system can be measured using core-flood experiments [43].
More recently, contact angles have been measured directly in
situ using micro-CT imaging [44–47]. Pore-network modeling
has been used to link the pore-scale description of wettability
to bulk measurements as well as to study the trend in recovery
with wettability [48,49]. Network models allow the incorpo-
ration of these in situ measurements of contact angle and its
history dependence on a pore-by-pore basis.

2. Effect of viscous forces

Most quasi-static network models impose a single capillary
pressure over the entire network. This is used to define the fluid

configuration in each element and the corresponding volumes
of each phase. Fluid interfaces, residing between pores and
throats or in their crevices, move and change their configuration
as the capillary pressure changes. Filling of individual elements
is assumed to take place over a much shorter time than the
duration of the displacement process: this occurs in the form
of Haines jumps, piston-like filling, layer collapse, or snap-off
events. This is a valid assumption in most cases since typical
macroscopic capillary numbers (CA = μUD

σ
, where μ is the

fluid viscosity, UD is the Darcy velocity, and σ is the interfacial
tension) in petroleum reservoirs are very low, in the range
of 10−6 to 10−10 [2]. This represents a significantly large
ratio of capillary pressure to viscous pressure drop across
a single pore, usually more than two orders of magnitude.
A single pore-filling event normally occurs in fractions of
a second, as observed using fast x-ray imaging or acoustic
measurements [50–52]. In contrast, it may take several days
to years for a displacement process to be completed at a given
location in a natural setting.

The viscous pressure drop (�Φ) can play a significant role
when the flow rate is high (for example, in near-well-bore flow
in hydrocarbon reservoirs), in near-miscible displacements
with a low interfacial tension, or when the length (�x) of the
representative elementary volume needed to obtain averaged
properties becomes large. The viscous pressure drop scales as
�Φ = UDμ�x/K , whereK is the effective rock permeability,
while the capillary pressure, Pc, is not related to flow rate,
UD , or system size, �x. Capillary pressure scales as Pc =
2σ/rc ∼ σ

√
φ/K , where σ is the interfacial tension, rc is the

mean radius of interfacial curvature, and φ is the porosity
of the rock [1]. When the ratio of viscous pressure drop to
capillary pressure is high, macroscopic flow properties, such
as relative permeability, can be functions of flow rate, leading
to a Darcy law where flow rate nonlinearly depends on the
pressure gradient [31].

To model two-phase flow when the viscous pressure cannot
be ignored, the quasi-static assumption can be relaxed to
consider the viscous pressure drop as a perturbation to the local
capillary pressure along the length of the system. A higher
level of sophistication can be achieved by using a dynamic
network model that also incorporates the effect of changes
in fluid volumes on the viscous pressure. In these dynamic
models, the volume of each phase in each element is updated
using the flow rates from the computed pressure field. Usually
a very small time step is required so that the configuration of
fluid interfaces does not change significantly [53–57]. On the
other hand, considering the viscous forces as a perturbation
to the local capillary pressure will not cause a significant
compromise in the computational efficiency. In this approach
the pressure fluctuations associated with rapid changes in
fluid configurations during filling events are ignored, but the
viscous pressure drop is used as a perturbation to assign a
nonuniform local capillary pressure across the system. We
adopt this perturbative approach in our model.

3. Predictive capabilities of network models

Pore-network models have reproduced particular experi-
mental results of interest [34,58–61]. There has been sig-
nificant progress in the predictability of network models by
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constructing the element connectivity and shapes from the
analysis of micro-CT images [38,62,63]. However, Bondino
et al. [64] showed that the algorithm used to generate the
network and assign its parameters using current network
extraction algorithms can have a significant impact on the
predicted macroscopic properties. In fact, improving the
predictability of pore-network extraction and flow modeling
remains an active research topic [65–68]. The problem is
that the algorithm used to assign the conventional network
model parameters—specifically pore and throat lengths, shape
factors, and volumes—cannot be independently verified and
hence the model primarily relies on calibration to predict
experimental measurements. Therefore, there is little confi-
dence that a network calibrated using a small set of benchmark
experiments can predict the properties of different rock types
or different displacement scenarios reliably. To avoid this
problem, the geometry of individual pores in the network
model should be as close as possible to the real system.

We have presented a generalized network representation
of the void space that eliminates the need for intermediate
parameters, specifically shape factors and pore and throat
lengths, used to describe the network elements [69]. Instead,
the parameters required for network modeling are extracted
using a medial-axis analysis of the void space and direct single-
phase flow simulation. Each pore is subdivided into half-throats
and further into corners. The parameters approximating each
corner—corner angle, volume, and conductivity—are directly
extracted from the underlying micro-CT image at different
discretization levels and exported as tabulated data to the
network flow simulator.

The emphasis of this paper is on the formulations used
to describe capillary-dominated two-phase flow through this
generalized network representation of the void space, and
on the prediction of multiphase flow properties—capillary
pressure and relative permeability. We present the algorithms
used to track the fluid-fluid interfaces and incorporate the
effect of contact angle that describes the wettability of the
fluid-rock system. Gravity and viscous forces are treated
as a perturbation to compute the local capillary pressures
throughout the network.

II. GENERALIZED NETWORK FLOW MODELING

The network model can be viewed as an upscaled alternative
to direct two-phase flow models. It is comprised of three
main components: (a) parametrization and tracking of fluid
interfaces in each element as the local capillary pressure (Pc)
changes during a displacement cycle, (b) tracking fluid phase
distribution and connectivity, and (c) computation of fluid-
phase saturations and conductivities for individual elements
and for the whole system.

The flow simulations are designed to represent typical core-
flood experiments. Initially, the whole void space is assumed
to be filled with water, and a second fluid, oil, is injected from
one side of the network to obtain the fluid configurations at the
end of this primary oil-invasion. The simulations are continued
for a second cycle, water flooding, in which the water pressure
is increased to replace the oil. The flow simulations can be
continued for a third cycle by injecting oil to obtain, among
other properties, wettability indices.

pore 2pore 1 half-throats

Throat’s
axial plane

    Corner’s sagittal plane

half-throat corners:

(a)

(b)

Corners’ 
coronal 
planes

FIG. 1. An illustration of two fluids (highlighted in red and light
blue) occupying a void space that is discretized into (a) pores and
half-throats and further into (b) corners. The thick solid black lines
show the boundaries between the pores (the throat surfaces). The solid
blue lines show the partitioning of the pore space into half-throats.
The dashed blue lines show the boundary between the corners of each
half-throat.

The following sections present the details of our network
flow model, which involves tracking the fluid configurations
within the void space (see Fig. 1) and upscaling their flow
properties. An overview of how the void space is represented
using half-throat corners is discussed in Sec. II A. Fluid
configurations in a corner are described using their interfaces
with other fluids in the corner and their connectivity to
fluids in the surrounding pores and throats; this is explained
in Sec. II B. Section II C presents the details of how fluid
interfaces are represented and tracked. In Sec. II F, we describe
the computation of entry pressures required for fluid interfaces
to change configuration. These include filling of centers of
pores and throats, and growth and collapse of water and oil
layers in edges of void space corners. In Sec. II G, we discuss
how displacement events (changes in fluid configurations)
affect fluid phase connectivity: forming disconnected phases
and newly connected phases (coalescence), and exposing new
invasion paths for subsequent displacement events. Finally,
in Sec. II H, we discuss the assignment of fluid volumes and
conductivities that are then used in the computation of the fluid
saturations and relative permeabilities of the network.

A. Description of the network elements

Figure 1 shows how the void space is divided into pores,
half-throats, and their corners. We use a watershed segmenta-
tion of the distance map (the distance of any point in the void
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Level 3

Level 2

Level 1

Cp

Rp

Rt

Ct x

e
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centreThroat 

surface

R3

FIG. 2. An illustration of different corner discretization levels,
i = −3, in the corner’s sagittal plane. Each level consists of the void
space outside maximal spheres with radius Ri = Rp , Rt , and 0.7Rt ,
respectively. x and y are the local coordinates of the corner and e is
the edge vector.

space to the nearest solid) of the underlying image to divide the
void into pore regions bounded by throat surfaces [69]. In this
algorithm, the voxels located at local maxima of the distance
map are assigned as the pore centers and the remaining voxels
are successively assigned to the pore to which one of their
adjacent voxels (the voxel with the largest distance map) is
assigned. We further divide these pore regions into half-throats
and their associated corners. Every point in the void space is
uniquely assigned to a pore, a throat, and a half-throat corner.
We refer to the half-throat corners simply as corners in what
follows.

The corners are parametrized at different discretization
levels, i = 1–3, which are obtained during network extraction.
Each discretization level contains the corner void space outside
maximal spheres (spheres inside the void space that are tangent
to the solid boundary at two or more points) with radius
larger than Ri (see Fig. 2). In this paper, we choose R1 = Rp,
R2 = Rt , and R3 = 0.7Rt .

We define a local coordinate, (x,y), for each corner: x

represents the distance from the throat surface, measured along
the throat line, and y represents the distance from the throat
line measured along the corner’s medial axis (Fig. 2). The term
sagittal plane is used to represent planes parallel to the corner
medial axis. The coronal plane is used to represent the planes
perpendicular to a corner side (boundary between the corner
and the solid walls; see Fig. 3) that passes through the pore or
throat center. The corner edge is defined as the line where the
two sides of the corner meet, and the vector along the corner
edge that connects the throat surface to the corner’s axial cross
section at the pore center is called the edge vector, e.

The maximal-sphere radii and cross-sectional areas are used
to compute discretization level depths (Hi) measured along the
corner sides, and half angles (γi), as illustrated in Fig. 3 and
discussed in Appendix A.

The extracted corner parameters for each discretization
level consist of the maximal-sphere radius (Ri), cross-sectional
area in the corner’s axial plane (Ai), volume (Vi), and flow (gq)
and electrical (ge) conductivities. These properties come from
the analysis of the underlying pore-space images [69].

Ri , Hi , and γi define the geometry of the corners and are
used to semianalytically track the location of fluid interfaces
through the pore space as the local capillary pressure changes.

γ2

A2 

A3

γ2

H3 H4

γ3

R2 =
 R t

0

Corner edge

Corner side
Ct

R3

γ2

Throat centre

γ3

0
H

H4H1

γ2γ1

R2

R3

Cp

R 1 
= R pPore centre

FIG. 3. Cross sections of a corner in its axial planes passing
through the throat surface (top), and through the pore center (bottom).
The dashed blue lines show the boundary between the corner and other
corners present in the half-throat that are not shown in this figure for
simplicity. The dotted circular arcs separate the corner discretization
levels. The thick dotted red line shows the corner center line (medial
axis) and the solid black lines show the two sides of the corner that
meet at the corner edge.

Vi and gi define the volumes and conductivities of the corners,
which are used to compute fluid saturations and relative
permeabilities of the network.

B. Connectivity and fluid configurations

How we define fluid configurations and assign their connec-
tivity is shown schematically in Fig. 4. The fluid configurations
during a flow simulation are modeled by considering four flow
paths for each corner: (1) in the throat center, (2) in the pore
center, (3) in the corner edge, and (4) sandwiched between the
corner edge and corner center. Different fluid configurations
are then constructed by marking each flow path as filled by
oil (α = o) or water (α = w), subject to the following rules:
(i) Corners share the same throat center, and the fluid occupying
a throat center occupies all its corner centers. Similarly,
(ii) the fluid in the pore center is shared between all of the pore
corners. (iii) Only oil layers are considered to be sandwiched
between water in the edge and in the center of a corner.
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FIG. 4. An illustration of fluid phase connectivity (top row), and
different fluid configurations and displacement events. Red areas
represent the oil phase and water is shown in light blue. Dark red
arrows show invasion by oil and blue arrows show invasion by water.
The fluid interfaces are classified into two groups: b, b′′, e, e′, and e′′

are called piston-like configurations while c, c′, f, and f ′ are called
layers.

If two adjacent flow paths are occupied by different fluids,
a fluid-fluid interface is allocated between them. A flow path
can grow or shrink in size if the interface separating it from
other fluids in adjacent paths moves between different corner
discretization levels, or along the same discretization level.

Corner edges and corner centers are considered adjacent
flow paths. However, if there is an oil layer sandwiched

between a water layer and water in the center, the two water
phases are considered disconnected from each other. The
interface between a pore center and a throat center is called a
piston-like interface. An interface separating two fluid layers,
or a fluid layer and a fluid in the center, is called a layer interface
or simply a layer. Sections II C and II E discuss how these two
interface configurations are represented.

Another factor controlling a fluid configuration is its con-
nectivity with fluids in the surrounding pores. At the throat
surface, the corners on either side, belonging to neighboring
pores, are connected by definition. At a pore center, each
corner does not necessarily connect to every other corner
associated with the pore’s half-throats, discussed next. This is
where our approach differs from conventional network models
(e.g., [39,49,70]), where it is assumed that at a pore all the
corners are connected to each other.

At a pore center, we only allow a corner to be connected to
one or two other corners belonging to different throats, based
on their proximity. We first find the adjacent throats, up to two
throats, whose throat lines have the smallest angle with the
corner’s y axis (see Fig. 2). Then, among corners of each of
these throats, we find the adjacent corner that has the smallest
angle between its y axis and the corner’s y axis. If the angle
is less than 60◦, the two corners are assumed to be connected
to each other and are called adjacent corners. We only allow
connections to corners in different throats: fluids in the corner
edges of a throat are not directly connected to each other.

The water layers residing in each corner are considered to be
connected to the water inside their adjacent corners. Similarly,
oil layers are considered to be connected to oil phases in their
adjacent corners. These adjacent fluids can themselves be in
layer, piston-like, or single-phase configurations.

During network extraction, throats that are connected to
the left and right sides of the image boundary are considered
boundary throats. In this paper, for the sake of simplicity,
we call the left side boundary the inlet and the right side
the outlet. The connectivity of each fluid to outlet and inlet
throats is obtained using a graph search through the adjacent
flow paths containing the fluid. Fluids that are not connected
to the outlet throats are considered trapped and do not change
configuration. Similarly, the invading fluid connectivity, which
is injected from the inlet throats, affects the order that the new
interface configurations are formed, as discussed in Sec. II G.
In addition, fluid connectivities affect the computation of their
conductivity (discussed in Sec. II H) and computation of inter-
face curvatures and entry pressures for different displacement
events, which are discussed next.

C. Layer configurations

The location of a layer interface (hl)—that can be oil or
water or a sandwiched oil layer—in a corner is defined as the
distance of its interface contact line from the center of the
pore or throat, which is computed along the side (solid wall)
of the corner as illustrated in Fig. 5. A sandwiched oil layer,
which has two interfaces (see Fig. 4), is described using its
interface with the water in the center. The location of the other
interface, between the oil layer and the water in the edge, is
referred to as the water layer interface. A layer, if present, is
tracked using its interface location, which at the throat surface

023308-5



ALI Q. RAEINI, BRANKO BIJELJIC, AND MARTIN J. BLUNT PHYSICAL REVIEW E 97, 023308 (2018)

γ2

rl

Al

rl  cos
  R3

hl
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lR2
γ2

γ2

γ3

Wl

Rh
*rl

− l  − 2−2

l   

FIG. 5. An illustration of the parameters used to describe the
location, hl [Eqs. (1)–(3)], of a layer (light blue) located at level 2
of a corner at the throat surface, and its relationship with contact
angle (θl), radius of interface curvature in the throat’s axial plane,
rl [Eq. (5)], and the interface distance, yl [Eq. (7)], from the corner
center along its medial axis.

can reside at discretization levels 2 and 3. Near the pore center,
however, layer interfaces can reside additionally at level 1;
this can happen in a piston-like configuration as discussed in
Sec. II E or due to the variations in a layer interface curvature
in its sagittal plane (Sec. II D).

To uniquely describe a layer configuration, in addition to
hl , we need to know the contact angle, θl , between its interface
and the solid wall. For simplicity, we define the layer contact
angle as the angle between the layer interface and solid wall
that is measured through the layer (l) that is closer to the corner
edge. This definition is not the same as the conventional contact
angle (θw) that is always measured through the denser (water)
phase (θw = θl for water layer interfaces and θw = π − θl for
oil layers). The contact angle is history dependent and can vary
between a receding and an advancing contact angle (θr and θa ,
respectively) that are input into the network flow model.

The location, hl , of a layer interface (Fig. 5), residing in a
corner discretization level i (Fig. 3) and for a given contact
angle, θl , is

hl = Hi + Ri cos γi − rl cos(θl + γi)

sin γi

, i = 1–3, (1)

where Hi [Eq. (A2)] is the corner level depth and γi [Eq. (A1)]
is its half angle. rl is the interface radius of curvature in the
corner’s axial plane. rl can be obtained from the local capillary
pressure Pc:

Pc =
{
σκl, αt = w

−σκl, αt = o,
(2)

κl = 1

rl

+ 1

rs

. (3)

 γ3
r

γ2 

 H3
 hl,2

  hl,3
 

γ2
r γ3+-

a
a

a r

FIG. 6. An illustration of contact angle hysteresis in a segment of
a corner cross section showing levels 2 and 3. The dotted red lines
show the interface at different locations (hl,2, H3, and hl,3) as it recedes
from discretization level 2 to level 3. The dashed green lines show the
interface advancing from level 3 to level 2. Yellow areas show where
the interface can swing while being pinned (i.e., its contact line with
solid remains fixed at hl).

Here κl is the interface total curvature and rs is its radius
of curvature in the sagittal plane of the corner, discussed in
Sec. II D in detail.

To allow a unique assignment of the contact angle and
interface location, we need to record the initial interface
location as the layer configuration forms and track it as the
simulation progresses. We initially set hl = H4 − ε (near the
corner edge; see Fig. 3) if the interface forms due to layer
growth, and hl = H1 + ε if the interface is left behind during
a piston-like invasion of the corner center (see Fig. 4). ε is a
small number, set to 10−9 m in this paper.

We then use a multistage computation to find a unique
solution for θl and hl from Eq. (1) for a given capillary pressure
or interface curvature. First we find the discretization level, i,
in which the interface has been previously residing (see Fig. 6):

i ∈ {1,2,3} : Hi < hl � Hi+1. (4)

At the throat surface, however, i can be 2 or 3 only.
If Eq. (1), with this i and hl fixed to its previous location,

gives a θl in the range [θr , θa], it is assumed that the location
of the interface remains pinned at its original position and
the computed θl is accepted as the so-called hinging contact
angle. Otherwise, the contact angle is fixed to θr when the layer
pressure decreases, or to θa when the layer pressure increases,
and Eq. (1) is used to compute the new interface location.

If the computed interface location using Eq. (1) does not
correspond to its previous level based on Eq. (4), the interface
will move to a new discretization level that satisfies Eq. (4), or
will be pinned at their boundary. If (a) γ2 < γ3, the interface is
assumed to jump to the new corner level and Eq. (1) is invoked
with the new discretization level corner angle to recompute the
new interface location. However, if (b) γ2 > γ3, the interface
gets pinned at hl = H3 before moving to the next discretization
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level. In this case, we first check if the interface has a stable
position at hl = H3 assuming γ = γ2 with a contact angle
between [θr − γ2 + γ3, θa]. If Eq. (4) has a solution in this
range, the interface will be pinned at hl = H3; otherwise it
will move to the new corner level and Eq. (1) is invoked with
the new level corner angle to recompute hl .

The same algorithm is used for a piston-like interface to find
the location of its tailing layers that reside at the pore center but
not at the throat surface (see Fig. 8), when they move between
different discretization levels i = 1–3.

hl and the contact angle, θl , can be used to obtain other
interface parameters (see Fig. 5), including the width of the
layer interface, Wl , and the distance of the interface center
from the throat center, yl :

rl = Ri cos γi − (hl − Hi) sin γi

cos(θl + γi)
, (5)

Wl = (π − 2γ − 2θl)rl, (6)

yl = Ri − rl cos(θl)

sin γi

+ rl. (7)

To obtain the layer cross-sectional area, Al , we first compute
the cross-sectional area for a hypothetical layer located at hl

but with a contact angle of zero, Ah, and then add the effect of
contact angle, Aθ :

Al = Ah + Aθ, (8)

Ah = Ai − (
R2

i − R2
h

)( 1

tan γi

− π

2
+ γi

)
, (9)

Aθ = r∗2
l

( π
2 − γi

cos2 γi

+ tan θ∗ − tan γi −
π
2 − θ∗

cos2 θ∗

)
, (10)

where θ∗ = θ + γi , r∗
l = rl cos θ∗, and Rh is the radius of

the maximal sphere tangent to the solid wall at the interface
location hl (see Fig. 5),

Rh = Ri − (hl − Hi) tan γi. (11)

Note that for the case of oil layers sandwiched between water in
the edge and in the center, Al , obtained using Eq. (8), includes
the cross-sectional area of the oil as well as the water in the
corner.

D. Layer description in a corner’s sagittal plane

The layer interface radius of curvature in a corner’s sagittal
plane (rs) is needed in Eq. (3) to relate the radius of curvature
in the corner’s axial plane (rl) to the local capillary pressure.
We estimate it from the tangent vectors, s1 [Eq. (B1)], to the
interface in the corner’s mid-sagittal plane at a distance x =
x1 = xp/2 from the throat surface (see Fig. 7).

At the throat center, rs is estimated from

1

rt
s

= −3
sp1

1 + sp2
1

|ep1 + ep2| · ŷc. (12)

Similarly, rs at the pore center is estimated from

1

r
p
s

= −3
s1 + sj

1

|e + ej | · ŷc + ŷj
c∣∣ŷc + ŷj
c

∣∣ . (13)

p2
yĉ

rst

s1
p2

e
p2

sp
s1l

j
x j^

e

e0
j

st
p1

x̂
rsp

FIG. 7. A schematic representation of the parameters used to
estimate a layer (blue areas) radius of curvature [rs , Eqs. (12) and (13)]
in the sagittal plane of a corner (highlighted using horizontal yellow
stripes). The sign of rt

s is negative while rp
s is positive in this case. j

is the adjacent corner in the same pore and p2 is the adjacent pore. e
is the tangent vector to the corner edge and s is the unit vector tangent
to the layer interface in the corner’s sagittal plane. x̂ and ŷ are the unit
vectors along the corner local coordinates, x and y.

E. Piston-like configuration

A piston-like configuration, Fig. 8, refers to a fluid-fluid
interface separating a pore center from a throat center; these
interfaces are often called terminal menisci, since they block
the center of the pore space [1].

The curvature of a piston-like interface, κpl , is controlled
by the interface contact angle with the solid walls and the
configuration of its tailing layers residing near the corner
edges. It is obtained by writing a force balance equation on
the interface:

κpl =
∑

2hl cos(θ + β) + Wlsl · x̂
At

x − ∑
Al

, (14)

Rt

Rp

CpCt xpl

Corner’s Coronal plane

dpl

Cp

piston-like interface
layer interface

Ct

yl

Corner’s Sagittal plane

xpl

ypl

FIG. 8. An illustration of a piston-like interface in a corner’s (top)
sagittal plane, and (bottom) coronal plane (see Fig. 1). The interface
curvature is obtained by writing a force balance on the interface to
the left side of the thick dotted blue line, in the x direction [Eq. (14)].
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where At
x is the throat total cross-sectional area at a distance

x from the throat surface, Eq. (A7). The summations (
∑

) are
performed over all the throat corners, c = 1–nc, where nc is
the total number of corners in the throat. l stands for the layer
in the corner, c, that is adjacent to the fluid in the center. If the
layer does not exist in the corner, its area (Al) and arclength Wl

are set to zero and hl = H4. Finally, β is the angle between the
corner side plane and the throat line—the line connecting the
throat center to the pore center (see Fig. 8), computed using
Eq. (A6).

We compute the piston-like curvature at three points along
the throat line, x, at the throat center (x0 = 0), at the pore
center (x2 = xp), and in between at x1 = xp/2. The interface
curvature is assumed to vary linearly from x = xt to x1, and
from x = x1 to xp:

κpl(x) = κi
pl + (

κi+1
pl − κi

pl

) x − xi

xi+1 − xi

, i = 0,1. (15)

The sign of κpl is considered positive when the interface is
curved toward the pore center, hence

Pe(x) =
{
σκpl, αp = αinv

−σκpl, αp �= αinv.
(16)

A location is assigned to each piston-like interface, defined
as the distance of the interface contact line from the throat
surface, xpl. Similar to the layer interface location hl , xpl is
assigned as soon as a pore or a throat center is filled by a
fluid, forming the piston-like configuration, and tracked as
the simulation progresses. The interface is assumed to remain
pinned (fixed xpl) as long as the invading phase pressure is
below Pe(xpl) [Eq. (16)]. Once the invading phase pressure
surpasses Pe(xpl), the interface location is updated by solving
Eqs. (15) and (16) for xpl (replacing x with xpl).

The computed interface curvature and location are used to
assign the pore and throat entry pressures and to compute the
fluid volumes and conductivities, which are described in the
following sections in more detail.

F. Computation of entry pressures

As discussed in Sec. II B, we consider four flow paths for
each corner: in the throat center, in the pore center, in the corner
edge, and sandwiched between the corner edge and its center.
A displacement is a change in the occupancy of a flow path
and involves a reconfiguration of fluid interfaces. The entry or
threshold pressure, Pe, is the pressure required to overcome
the interfacial force as the interface passes through the flow
path during this reconfiguration. Pe is defined as the maximum
relative pressure, the invading phase (subscript inv) pressure
minus the receding phase pressure, encountered during each
displacement:

Pe =
{

Pc, max, αinv = o

−Pc, min, αinv = w.
(17)

1. Throat center entry pressure

For throats there are (a) one entry path from each of the
two neighboring pores (piston-like displacement) and (b) one
from each corner (snap-off displacement), if they contain the
invading phase and are connected to the inlet.

a. Piston-like displacement. The throat entry pressure by
piston-like invasion is computed by solving Eqs. (14) and (16)
at the throat center, by iteratively changing the interface
curvature, κpl, using the Newton-Raphson method.

b. Snap-off entry pressure. The throat snap-off pressure
is approximated from the lowest interface curvature (mea-
sured toward the center or receding phase) that the interface
experiences as it moves from its initial location toward the
throat center meeting the interface of other throat corners. It is
approximated as the minimum of the kl , Eq. (3), obtained from
(a) solutions of Eq. (5) with hl varying from its initial location
to hl = 0 and (b) the solution of Eq. (7) for yl = 0.

Note that both hl and yl are history dependent due to
contact line pinning (see Fig. 6). The effect of contact line
pinning is considered in the calculation of hl and yl , in all the
equations that require the computation of interface location
using Eqs. (1)–(4).

2. Pore-filling pressure

A pore center can be invaded from any of its throats that
contain the invading phase. The pore center entry pressure,
P

p
e , is the smallest of all the threshold pressures (σκt

max) that
are obtained for the throats, t , from which the invading phase
can fill the pore. κt

max is the largest curvature (positive toward
the throat center) encountered by the interface in throat t , as it
moves toward the pore center.

To obtain κt
max, we compute the interface curvature using

Eq. (14) at two locations and choose the maximum: (a) when
the interface is midway between the throat and the pore and (b)
when it reaches the pore center. Note that, except in an unstable
configuration where the phase in the throat is the nonwetting
phase (see Fig. 4), the maximum curvature is expected to occur
at the pore center. However, the interface can also be pinned
between the throat and the pore center due to the expansion
of the throat, especially for contact angles close to 90◦ where
cos(θ + β) can have its minimum value between the pore and
throat centers [see Eq. (14) and Fig. 8].

The pore-filling pressures take into account the config-
uration of wetting fluid in adjacent throats and hence pro-
vide an accurate representation of pore filling for complex
geometries. The effect of the fluids in the adjacent throats
in Eq. (14) is accounted for through the incorporation of
layer interface tangent vectors, sl , which depend both on the
corner connectivity to corners of its adjacent throats, and on
their fluid occupancy (see Appendix B). This contrasts with
current network models that use empirical formulas to compute
pore-filling pressures [49,70], which may be inaccurate and
lead to, for instance, poor predictions of the amount of
trapping [71], although recently more accurate models have
been developed [68].

3. Oil layer collapse and growth pressures

When water invades a throat center, an oil layer can be
left behind in the corner if it has a stable configuration—its
collapse pressure is lower than the local capillary pressure.
The oil layer will collapse once the local capillary pressure
falls below its threshold collapse pressure. The threshold oil
layer collapse pressure is obtained using a geometric criterion
when it is continuous, connected to the oil phase from all its
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FIG. 9. An illustration of the parameters used to estimate oil layer
collapse and growth pressures. W is the interface length in the corner’s
axial plane. Ao and Aw are the oil and water layer areas.

adjacent corners. It is obtained by iteratively increasing the
invading phase (water) pressure until the interfaces on either
side of the oil layer join [36], either from the center,

yo
l + yw

l = 0, (18)

or from the sides,

ho
l + hw

l = 0, (19)

where ho
l is the location of the interface between the oil layer

and the water in the center of the throat and hw
l is the location

of the water-layer interface, both measured along the sides of
the corner; yo

l and yw
l are the locations of the oil and water

layer interfaces measured along the center line of the corner,
as shown in Fig. 9.

However, if an oil layer is not continuous from one side (i.e.,
it is adjacent to a corner that does not contain oil, either in its
center or in its crevice) it is expected to collapse more easily.
The entry pressure, P ol

e = σ max κol, for such scenarios is
estimated based on a thermodynamic criterion [72], by writing
a force balance on the interface in the normal direction to the
corner’s axial plane:

κol(Ao − Aw) = 2(hw − ho) cos θr
o − Ww − Wo. (20)

This equation is solved using the Newton-Raphson method to
obtain κol.

Oil layers can grow in oil-wet corners if the entry pressure
required for their growth is lower than the entry pressure for
the invasion of the throat center by oil. Equation (20) is used
to obtain the oil layer growth pressure, but with θr

o replaced
by θa

o . This thermodynamic criterion is expected to make the
layer growth more difficult compared to the geometric criteria
[Eqs. (18) and (19)].

4. Water layer collapse pressure

Water layers form if at the maximum depth of the corner
(hl, max) the condition for their formation is satisfied (γ3 + θ <

π/2) and the center of the throats is filled by the oil phase, but
they are assumed not to collapse.

G. Displacement sequence

During each flooding cycle, the invading phase pressure
at the inlet, P inlet

a , is increased relative to the receding phase
pressure, P inlet

r . The local invading phase pressure relative
to the receding phase pressures, Pa-r , throughout the flow
domain is assumed to change proportional to the difference
in advancing and receding phase viscous pressures, Φa − Φr :

Pa-r = P inlet
a − P inlet

r + Φa − Φr, (21)

where Φ is the viscous pressure obtained by solving the mass
conservation equation for each phase, discussed in Sec. II H. A
displacement happens when Pa-r surpasses the entry pressure,
Pe, for a receding fluid that is adjacent to an invading fluid
connected to the inlet.

Once a fluid is displaced, all the adjacent flow paths that
contain the receding phase and are not trapped (i.e., are part
of a cluster that is connected to the outlet) are considered
for subsequent displacement events and their threshold entry
pressures are (re)computed.

Any receding fluid that is part of a cluster not connected to
the outlet is considered trapped. The curvature of trapped fluid
interfaces are assumed to be preserved. This implies that the
capillary pressures of trapped ganglia remain independent of
the imposed capillary pressure at the inlet boundary.

Furthermore, if an adjacent flow path contains the invading
phase and has been previously marked as part of a trapped
ganglion, the ganglion is removed from the trapping list and
is brought into capillary equilibrium with the invaded flow
path (coalescence event). Coalescence events may require
running a mini-imbibition cycle if the ganglion’s local capillary
pressure is higher than the system capillary pressure, or a
mini-drainage cycle if the ganglion has a lower capillary
pressure than the capillary pressure of the invaded flow path.
First, the entry pressures for all the formerly trapped fluids,
for filling by the mini-cycle’s invading phase, are computed.
In a mini-imbibition cycle, if the entry pressure is higher than
the system capillary pressure, the flow paths are filled with the
mini-cycle’s invading phase. Once a flow path is invaded, the
connectivity of the adjacent receding fluids in the mini-cycle is
checked; if they are not connected to the inlet (invasion front),
they are marked as trapped, forming smaller trapped ganglia.

The main displacement cycle is continued by successively
increasing Pa-r and displacing the receding fluids that are not
trapped and are adjacent to the invading fluids, if their entry
pressure is less than Pa-r . This process is continued until the
network saturation or capillary pressure reaches a desired user-
defined limit.

H. Computation of relative permeability

To compute fluid saturations, permeabilities, and electrical
resistivity of the network, we first need to calculate the volume
and conductivities of fluids residing in the corners constituting
the network.

The layer volumes and conductivities are computed by
interpolating the tabulated corner volume and conductivities
that are obtained during network extraction. The interpolations
are done both at the pore and at the throat centers and then
their average (harmonic for conductivities and arithmetic for
volume) is taken.
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The layer volume (Vl) and electrical conductivity (ge
l ) in

each corner are assumed to scale linearly with the corner cross-
section area:

ϕl = ϕi + δϕi

Al − Ai

δAi

, ϕ = V,ge, (22)

where Al is given by Eqs. (8), (9), and (10).
To compute the layer flow conductivity in each corner, g

q

i ,
we assume that it scales with cross-sectional area squared:

g
q

l = g
q

i − δg
q

i

A2
l − A2

i

δA2
i

, (23)

where δgi = gi − gi+1 and δA2
i = A2

i − A2
i+1.

When there is a piston-like interface separating the fluids in
the pore and throat centers, the volume and conductivity of the
fluid in the throat are obtained by linear interpolation between
the fluid volumes and conductivities of the levels 1 and 2, using
the distance of the interface from the throat center, xpl, as the
interpolation parameter:

ϕpl = ϕ2 + (ϕ1 − ϕ2) xpl/Lht, ϕ = V,gq,ge. (24)

The equations above [Eqs. (22)–(24)] lead to cumulative fluid
volume and conductivities, the volume and conductivity of all
the fluids below the interface—toward the throat surface for
piston-like configurations and toward the corner edge in layer
configurations. To compute the area, volume, and conductivity
of the fluids above the interface—toward the pore center for
piston-like configurations and toward the throat center line
in layer configurations—we simply subtract these volumes
and conductivities from the single-phase corner volumes and
conductivities. The flow conductivities are further scaled by
the new fluid area relative to the area before this subtraction:

g
q
center = (

g
q

SP − g
q

l

)(ASP − Al

ASP

)CA

, (25)

where g
q

SP and ASP are the level 1 (single-phase) flow conduc-
tivity and cross-sectional areas. The exponent CA is set to 0.4,
which is chosen such that the center-phase conductivity closely
matches the direct simulation results presented in Sec. III A.

We compute a single flow rate for each throat and a single
pressure for each pore. The conductivities of the fluids in the
corners of each pair of half-throats are averaged to assign a
conductivity to each throat. The averaging is performed by
grouping the fluids in the corners into two categories, (a) those
that are connected together through the fluid occupying the
throat center, and (b) those that are not. For group (a), we
first use an arithmetic sum of the conductivities of fluids in
each half-throat, and then take the harmonic average of the
two half-throat conductivities. For group (b), we first compute
the harmonic average conductivity for each corner pair on
opposite sides of the throat surface, to obtain the full-corner
conductivity, and then add them together. Finally the two
group conductivities are added together to compute the throat
conductivities, gα

t , for each phase (α = o,w) and for electrical
current, e.

In addition to the rules above, for adding the corner con-
ductivities to obtain a single value for the throat conductivity,
we assume that layers that are not continuous from both sides
do not contribute to the conductivity of the throat. In other

words, if a layer is not continuous, including the tailing layers
of piston-like configurations, from one side or from either side,
its conductivity is not added to the throat conductivity. Our
results, presented in Sec. III B, show that this exclusion of
discontinuous layer conductivities is essential to predict the
correct behavior of the relative permeability.

Once the individual throat conductivities are computed, the
relative permeabilities of each phase,α, are obtained by solving
for mass conservation in each pore, p, in the network:∑

t∈p

qα
t =

∑
t∈p

gα
t

(
Φα

p − Φα
nei

) = 0, (26)

where t counts over all the throats connected to the pore p and
gα

t is the conductivity of the throat connecting the pore to its
neighboring pore (subscript nei).

These equations are solved assuming a dimensionless pres-
sure of 1 at the inlet and zero at the outlet nodes. The flow rate
is then obtained by summing the flow rates entering the flow
domain, which is the same as the sum of flow rates in the throats
adjacent to the outlet. The relative permeability of each phase
is obtained by dividing its flow rate by the single-phase flow
rate, which is computed before starting the first cycle using the
same boundary conditions for pressure. Finally, the computed
pressures are scaled to correspond to the flow rate or capillary
number assigned for each phase. In the results presented in this
paper, for the sake of simplicity, we assume a low capillary
number such that the effect of flow rate on the displacement
sequence can be ignored.

The electrical resistivity of the network can be obtained
using Eq. (26), but with gα replaced by ge and Φα replaced by
the electrical potential, Φe.

III. VERIFICATION AND VALIDATION

In the following, we first use analytical approximations and
direct simulation of two-phase flow through simple pore ge-
ometries to validate the network model on a pore-by-pore basis.
Then, we compare the generalized network model predictions
with a conventional network and core-flood experiments on
sandstones. The aim of this comparison is to demonstrate the
improvements achieved by the generalized network model in
predicting relative permeabilities from micro-CT images of
porous rocks.

A. Pore-by-pore validation

This section evaluates the accuracy of the network model
in calculating the capillary entry pressures, fluid volumes, and
conductivities on a pore-by-pore basis. Figure 10 shows the
synthetic geometries used for this purpose, which include star-
and triangular-shaped geometries with different corner angles
(described by Raeini et al. [69]), and different pore-throat
contraction (Rp/Rt ) and aspect (Lt/Rt ) ratios, where Lt is
the distance between the two pore centers. The images are
converted to 3D images similar to micro-CT scans with a voxel
size of 1.6 μm, corresponding to a resolution of Rp/δx =
18.75, where δx is the voxel size, which is also equal to
the average grid-block size used in the direct two-phase flow
simulations, described below.
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FIG. 10. Synthetic geometries used to validate the network
model: star-shaped geometries with corner angles, 2γ , of (a) 60◦

and (b) 45◦ and triangular geometries with corner angles of (c)
40◦-60◦-80◦ and (d)–(h) 60◦-60◦-60◦. The aspect ratio (Lt/Rt ) is 8.33
for all geometries except (e) and (f), for which Lt/Rt = 12.5 and 6.25,
respectively. The pore-to-throat contraction ratio (Rp/Rt ) is 2.5 for
all geometries except for (g) and (h), for which Rp/Rt = 1.5 and 3.5,
respectively. Water is shown in light blue and red represents the oil
phase. The interface is in a piston-like configuration in (a) and (b) and
in a layer configuration in the rest.

The threshold capillary entry pressures for filling the middle
throat by piston-like and snap-off events, and for the pore in
the right side of the middle throat, are shown in Fig. 11. The
generalized network model (GNM) results are compared to a
conventional network model [62,70] and analytical approxi-
mations.

The analytical approximations (Anl) are obtained using
the same equations presented in this paper but using the
corner angles of the original geometry. However, the effects
of interface curvatures in the corner sagittal planes are ignored
in their calculation.

The conventional network model (CNM) uses, in essence,
the same equations as the GNM and analytical approximations.
However, the number of corners in the CNM and the corner
angles is not the same as in the original geometry [69]. The
interface curvatures in the corner sagittal planes are also
ignored in the CNM.

The GNM matches the analytical approximations for the
entry pressures closely. The CNM underpredicts the pore entry
pressures and overpredicts the snap-off entry pressures. This
is because corner angles in the CNM, estimated using shape
factors, differ from the original geometry [69]. Consequently,
in the CNM, when the contact angle is 30◦ the interface in the
middle throat at the second cycle snaps off before forming
a piston-like configuration and the throat piston-like entry
pressures are not computed in the second cycle; the throat
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FIG. 11. Entry pressures for filling the middle throat center by
piston-like (top) and snap-off (middle) invasion, and for pore center
filling (bottom). The generalized network model (GNM) is compared
to analytical approximations (Anl) and a conventional network model
(CNM).

piston-like entry pressures for the CNM shown in Fig. 11 are
taken from the first cycle entry pressures, with the receding
contact angles set equal to the advancing contact angles.
The GNM predicts a lower snap-off pressure compared to
the analytical approximation, which is partly because the
sagittal curvature is included in the GNM but not in the
analytical approximations. To predict relative permeabilities
accurately, in addition to entry pressures, the computations of
fluid volumes and conductivities should be accurate too. We
validate our computation of fluid volumes and conductivities
by comparing the network model predictions with direct two-
phase flow simulations on these synthetic geometries, using
the same contact angles as the network model.

The direct numerical simulation (DNS) is a volume-of-
fluid-based finite-volume method. It uses the improved surface
tension algorithm described in [73], and the pressure-velocity
coupling and filtering algorithms described in [74]. An unstruc-
tured mesh, with grid blocks roughly the same size as the voxels
used in the network extractions (1.6 um), is used to discretize
the flow domain. The grid blocks away from the solid walls
are cubic. However, near the solid walls they are deformed
to align with the solid boundary, using the snappyHexMesh
meshing tool from OPENFOAM [75]. An additional cell layer
is added adjacent to the solid walls, inside the flow domain,
so that wetting layers can be captured more accurately. The
fluid densities and viscosities chosen for both fluids are the
same, 1000 kg/m3 and 0.001 Pa s, respectively. The interfa-
cial tension is 0.03 N/m. The simulations are performed by
first initializing the water layers from the images of corner
discretization levels obtained during network extraction. In
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addition to the three discretization levels discussed in this
paper, we run the simulations for a level halfway between
discretization levels 1 and 2, called level 1.5, resembling a
piston-like configuration (see Fig. 10).

A no-slip boundary condition is used on the solid walls of
the direct simulations. The outlet boundary condition is zero
gradient for velocity and indicator function, and a constant
value for the dynamic pressure [74]. At the inlet, we have
used a zero-gradient boundary condition for all the variables
except velocity, for which a constant flow rate for each phase
is assigned. The inlet boundary velocities are initially set equal
to their adjacent internal cell velocities and then corrected so
that the flow rate of each phase converges toward a desired
value [13]. The chosen apparent velocities (flow rate divided
by image cross-sectional area), for the simulations initialized
with images of corner discretization levels 1, 1.5, 2, and 3, are
qw = 0.6, 0.06, 0.06, and 0.03 mm/s for the water phase, and
qo = 0, 0, 0.6, and 0.6 mm/s for the oil phase, respectively.
Note that oil is not present in the system at level 0, and at
level 1.5 it only occupies the pore centers. For the system sizes
studied here, these velocities are sufficiently small that the flow
can be considered capillary dominated. The capillary numbers
based on the average pore-scale velocity (μuα/σ , where uα is
the average velocity of each phase α = o,w), obtained from
the simulation results, are all less than 9 × 10−5 and 5 × 10−5

for the oil and water phases, respectively (see Appendix D).
In summary, four steady-state direct two-phase flow sim-

ulations are run for each case, corresponding to four fluid
saturations. Visualizations of the fluid configurations for a set
of these simulations, when the flow is steady state, are shown
in Fig. 10. In the following, we upscale the direct simulation
results to compute the saturation and conductivities, for the
voxels comprising the middle throat [13], and compare them
with the GNM and the CNM saturation and conductivities.

A sensitivity study on the effects of mesh resolution,
viscosity ratio, and flow rates—compared to the base case
parameters discussed here—is presented in Appendix E, for the
star-shaped geometry with the corner angle of 45◦ and a contact
angle of 30◦. Furthermore, Appendix F presents a visualization
of the predicted interface location in DNS and the GNM for this
geometry. The interface location is an intermediate parameter
that relates the assigned capillary pressure at each stage of
simulations to the computed saturation and conductivities that
are the subject of the validation study that follows.

Figure 12 shows a comparison between the GNM, CNM,
and DNS results for the volume fraction of water in the middle
throat as a function of curvature radius (rc), as the system
capillary pressure decreases during the second (water flooding)
cycle.

The GNM results show a good match with the direct
simulations for the computed water saturations. In the CNM
simulations, with contact angles of 0◦ and 30◦, all the throats
are filled by snap-off, trapping the oil and leading to a
fixed saturation as the imposed capillary pressure varies. This
saturation is lower than the DNS results when the water phase
is initialized from the level 2 corner images (the middle point
in the DNS results in Fig. 12), which predict a stable layer
configuration for these contact angles. This implies that the
CNM underpredicts the water saturation of the wetting layers
at a given capillary pressure or curvature radius.
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FIG. 12. Middle throat saturations presented as a function of
interface radius of curvature, rc = σ/Pc, comparing GNM, CNM,
and direct two-phase flow simulations (DNS).

Note that the DNS results are only presented for contact
angles less than 60◦. To keep the water layer stable for higher
contact angles in the DNS, contact angle hysteresis similar to
network models, should be implemented; this is considered a
subject for future work.

Comparisons between the GNM, CNM, and DNS con-
ductivities for oil and water in the middle throat are given
in Figs. 13 and 14, respectively. The results, presented for
the second (water flooding) cycle, are normalized by single-
phase flow conductivities and plotted as a function of water
saturation.

We have also compared our results with a generalized net-
work model but with conductivities obtained using correlations
presented in Appendix C; this method is called GNMCrl.

The GNM results originally underpredicted the water phase
conductivities by a factor of 2. In all the results presented
in this paper, we have multiplied the GNM conductivities
at levels 2 and 3 by a factor of 2 to resolve this difference.
Although the GNM conductivities are computed using direct
single-phase flow simulations on corner images, the corner
images are obtained ignoring the effect of sagittal interface
curvature of the wetting layers. In addition, this difference
can be explained, partly, by the differences in the boundary
conditions used in DNS and the single-phase flow simulations
used to compute the GNM conductivities. In the single-phase
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FIG. 13. Water conductivities normalized by the single-phase
flow conductivity, grw, for the middle throat of the synthetic
geometries.

simulations, we have used a slip boundary condition—no mass
and no momentum transfer between the corner voxels and the
voxels in the center of throats. The DNS, however, incorporates
a continuous velocity across the interface of the two fluids,
which implies that there is a drag force between the two
fluids that can increase the apparent conductivity of the water
layer [25]. Further work is needed to incorporate the effect
of viscous coupling in the network model [76,77]. The CNM
water conductivities follow the trends of the DNS results, but
they underpredict the water saturation at their end points, as
discussed above.

B. Micro-CT image of porous rocks

In this section we present a set of flow simulations on micro-
CT images of porous rocks to demonstrate the improvements
achieved by the incorporation of the generalized network
model parameters and to show that we can have a reasonable
estimation of macroscopic properties of relatively simple rocks
with straightforward choices of input parameters.

We simulate capillary-dominated two-phase flow through
networks of a Berea and a Bentheimer sandstone, based on
10003 images with voxel sizes of 2.7 and 3.0 μm, respectively.
The Berea network contains 16 595 pores and 36 023 throats,
while the Bentheimer network contains 8222 pores and 19 105
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FIG. 14. Oil phase conductivities normalized by the single-
phase flow conductivity, gro, for the middle throat of the synthetic
geometries.

throats. Other network properties are given in [69]. During
network extraction, the corner images obtained for discretiza-
tion level 3 were not connected from the inlet boundary to the
outlet, so their conductivity could not be obtained using direct
simulations. Higher resolution images are needed to obtain the
level 3 conductivities using direct simulation. To overcome
this problem, we have extrapolated the discretization level 2
conductivities to obtain the conductivities at level 3: g

q

3 =
(R3/R2)4g

q

2 , and ϕ3 = (R3/R2)2ϕ2, where R3/2 = R3/R2 and
ϕ = A,V,ge. This implies that we effectively use two levels to
discretize the corners of the micro-CT images.

A uniform intrinsic contact angle of 45◦ is used in all
simulations and Morrow’s hysteresis model III [78] is used
to compute the receding (oil-injection) and advancing (water-
injection) contact angles: 3◦ and 46◦, respectively.

Berea sandstone is known to contain 7–8% clay miner-
als [79–81]. Bentheimer sandstone is reported to have 1–3%
clay minerals by weight [82–84]. In this paper we add clay
porosities of 6.4% and 1.5% of the total image volume to each
network, respectively. Note that there is uncertainty involved
with these values, but these can be considered reasonable
choices based on the available data from the literature.

The Berea simulation results are presented in Fig. 15 and are
compared to the CNM [62,70] predictions and to experimental
measurements of relative permeability for oil-water flow by
Fulcher et al. [85] and Oak and Baker [86] and for CO2-water
flow by Akbarabadi and Piri [87].
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FIG. 15. Drainage (top) and imbibition (bottom) relative perme-
abilities for Berea sandstone, obtained using different network mod-
eling approaches and compared with the experimental measurements
indicated [85–87]. A uniform intrinsic contact angle of 45◦ is used in
the simulations.

The Bentheimer results (Fig. 16) are compared to exper-
imental oil-water relative permeabilities from Alizadeh and
Piri [88] and Øren et al. [38], and to CO2-brine measure-
ments by Krevor et al. [89], Reynolds and Krevor [90], and
Reynolds [91].

The GNM relative permeabilities show a reasonable match
with the experimental data for both rocks. The oil relative
permeability, however, is slightly overpredicted by the GNM.
Although the quality of the match for the oil relative perme-
abilities can be improved, for instance, by adjusting the area
exponent used to compute oil conductivities in Eq. (25), a more
rigorous investigation of the effect of various parameters—
such as viscous coupling, assignment of contact angles, and un-
certainties in experimental measurements—is needed to fully
resolve this anomaly. The CNM clearly underpredicts the water
saturation, which is also the case for the synthetic geometries
presented in the previous section. Further adjustments to con-
tact angles are needed to obtain a better match for the water rel-
ative permeability in the imbibition cycle of the CNM. More-
over, these results show that the GNMCrl, which uses conduc-
tivities based on correlations obtained from direct two-phase
flow simulations, produces a similar behavior as the GNM
formulation. Further work is needed for a rigorous validation of
the generalized network model, with contact angles measured
from the micro-CT imaging of two-phase flow [45,53] and an

FIG. 16. Drainage (top) and imbibition (bottom) relative perme-
abilities for Bentheimer sandstone computed using GNM, GNMCrl,
and CNM, and compared to experimental measurements [38,88,90].

assessment of the effect of uncertainties, for instance, in image
segmentation and unresolved and clay porosity.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a generalized network model for simulat-
ing two-phase flow through micro-CT images of porous media.
The network represents a coarse discretization of the pore space
with properties obtained from upscaling of direct simulation of
single-phase flow through the corners of the underlying image
and correlations based on direct two-phase flow simulations.

This workflow allowed us to model pore-scale events
considering the complexity of the pore geometries encountered
in natural porous media and to validate our computations
using direct simulation of two-phase flow and experimental
measurements of relative permeability. The results show that
accurate computations of corner volumes, conductivities, and
assignment of corner connectivity is critical in the prediction
of relative permeabilities from micro-CT images of porous
media.

However, there are other sources of uncertainty in the
predictions of pore-scale models, related to image resolution,
clay volume, and corner connectivity, for instance. To fully
resolve these sources of uncertainty, the network model can
be extended by incorporating viscous coupling and dynamic
effects. Its validation can be extended by considering more
complex geometries and different wettability distributions.
The validation can include, in addition to fluid saturation
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and flow conductivity, interface location, wetting layer area,
and electrical conductivity, for instance. Overall, the results
presented in this paper show that accurate network modeling,
informed by direct two-phase flow simulations and potentially
by multiphase pore-scale imaging [50,51,92] and core-scale
measurements of flow and electrical properties, offer a predic-
tive framework for linking the pore-scale processes and fluid
and rock properties to their macroscopic counterparts, helping
to answer open questions that cannot be addressed by these
methods individually.

ACKNOWLEDGMENTS

The authors are grateful to TOTAL for the financial support,
fruitful exchanges, and permission to publish this work.

APPENDIX A: CORNER SHAPES
AND LOCAL COORDINATES

The void space in the generalized network model is re-
constructed from the parameters extracted during network
extraction for each discretization level, i = 1–3, as shown in
Figs. 3 and 17.

First, the maximal-sphere radius and cross-sectional areas
are used to compute discretization level depths (Hi), measured
along corner sides and half angles (γi) [69]:

γi = sin−1

(
cos γi + γi sin γi

δAi/δR
2
i + π

2

)
, i = 1–3, (A1)

Hi+1 = Hi + δAi

Ri + Ri+1
−

(π

2
− γi

)
δRi, i = 1–3, (A2)

where δ is the difference operator: δA = Ai − Ai+1 and δR =
Ri − Ri+1. A1 and A2 are defined at the throat surface and are
assumed not to change between pore and throat centers. A1 is
defined at the pore center.

FIG. 17. An illustration of the parameters used to reconstruct the
shape of half-throat corners. Note that the cross-sectional areas at
levels 2 and 3 are assumed constant along the lengths of the corner.

The discretization level lengths, Li (see Fig. 17), are
estimated as follows:

Li =
⎧⎨
⎩

|Ct − Cp|, i = 1√
L2

1 + (Rp−Rt

sin γ1

)2
, i = 2,3.

(A3)

The line connecting the throat center to the pore center is
called the throat axis and is considered the x axis of the corner.
Therefore, the local x coordinate of the pore center is

xp = |Ct − Cp|. (A4)

We also compute the vector along the edge of the corner, ei

(see Fig. 7):

ei = xpx̂ + δH1 cos γ1ŷc. (A5)

The pore distance, xp, and pore and throat radii, Ri , are used
to compute the angle, β, between the throat axis and the corner
sides (Fig. 8). β is computed at the throat center (xt = 0), at
the pore center (xp), and at distance x = x1 = xp/2 from the
throat surface:

β =

⎧⎪⎪⎨
⎪⎪⎩

0, x = xt

tan−1 Rp−Rt

|Cp−Ct | , x = x1

cos−1
(
− x̂j −(x̂j ·ŷ)ŷ

|x̂j −(x̂j ·ŷ)ŷ| · x̂
)
, x = xp.

(A6)

The total throat cross-sectional area at any point along the
throat line is computed as

At
x =

∑
Ac

x, (A7)

where the summation is performed over all the throat corners
and Ac

x is the corner cross-sectional area at a distance x from
the throat surface,

Ac
x = Ah + (π/2 − γi)R

2
h, (A8)

where Ah is obtained using Eqs. (9) at h = xp−x

xp
H1 + x

xp
H2,

located in the discretization level i = 1.

APPENDIX B: INTERFACE TANGENT VECTORS

The interface tangent vector, s1, at x = x1, between the pore
and throat centers, is assumed to be parallel to the corner edge
vector:

s1 = e
|e| . (B1)

The interface tangent vectors at the pore and throat centers
are also needed to compute the interface curvature in the piston-
like configuration. The interface tangent vector at the throat
center, st , is obtained by averaging the unit edge vectors, e
[Eq. (A5)], at either side of the throat surface:

st = ep1 − ep2

|ep1 − ep2| . (B2)

For a case that the adjacent corner interface is in a layer
configuration, the interface tangent vector at the pore center, sp ,
is obtained by averaging the unit edge vector with the adjacent
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corner’s unit edge vector:

sp = e − ej + (ej · ẑ)ẑ
|e − ej + (ej · ẑ)ẑ| , (B3)

where ẑ is the unit vector normal to the throat center line (x)
and ŷ. However, if the adjacent corner’s interface is in a piston-
like configuration, the interface is expected to bend toward the
throat center line. When the piston-like interface is at the pore
center, we assume sp is parallel to the throat center line (x):

sp = x̂. (B4)

Equations (B3) and (B4) account for cooperative pore body
filling [32,68], which implies that the curvature of the terminal
menisci, positive toward the throat center, decreases as more
of its surrounding throats are filled with the invading phase,
making filling more favorable.

APPENDIX C: CORRELATIONS FOR COMPUTING
CORNER CONDUCTIVITIES

In this section we present a set of correlations that we
have used to estimate the corner conductivities in the GNMCrl
formulation. These correlations are considered a faster but ap-
proximate alternative to direct single-phase flow simulations.
The effect of viscous coupling is ignored in these equations.

The corner electrical and flow conductivities (ge
i and g

q

i ,
respectively), at discretization levels i = 2 and 3, are obtained
using the following equations, which are approximations to
the correlations used by Valvatne and Blunt [70] for corners of
throats with triangular cross-sections:

ge
i = Ai

Li

, i = 2,3, (C1)

g
q

i = (0.168 − 0.036γi)R
2
i g

e
i , i = 2,3. (C2)

To estimate the conductivity of corner centers, we first
estimate them using the corner parameters at the throat surface:

g∗e
1 = A1 − A2

L1
, (C3)

g
∗q

1 = R2
2g

∗e
1

8 − 4A2/A1
. (C4)

Then, these are corrected for the effect of the expansion of the
half-throat cross-sectional area between the throat surface and
the adjacent pore centers, assuming that the maximal-sphere
radius changes linearly:

g∗∗e
1 = g∗e

1 Rp/t , (C5)

g
∗∗q

1 = g
∗q

1 R3
p/t

/(
1 + δRp/t + δR2

p/t

/
3
)
, (C6)

where Rp/t = Rp

Rt
and δRp/t = Rp−Rt

Rt
are the expansion ratio

and the relative expansion of the maximal-sphere radius from
the throat center to the pore center. Finally, the corner conduc-
tivities at level i = 2 are added to these conductivities to obtain
the level 1 (single-phase flow) conductivities:

ge
1 = g∗∗e

1 + ge
2, (C7)

g
q

1 = g
∗∗q

1 + g
q

2 . (C8)

10−7

10−6

10−5

10−4

N c

Geometry: S45 S60 T40

10−7

10−6

10−5

10−4

N c

Rp/ Rt: 1.5 2.5 3.5

10−7

10−6

10−5

10−4

N c

Lt/ Rt: 12.5 8.33 6.25

0.01 0.1 1
Sw

10−7

10−6

10−5

10−4
N c

θ (degrees): 0

0.01 0.1 1
Sw

60

0.01 0.1 1
Sw

120

DNS, Nc = μwuw/ σ DNS, Nc = μouo/ σ

FIG. 18. Capillary numbers corresponding to the flow rates of
individual phases in the direct simulations presented in Sec. III A.

APPENDIX D: CAPILLARY NUMBERS USED
IN DIRECT SIMULATIONS

Figure 18 presents the capillary numbers (Nc) obtained from
direct simulations for the flow rates discussed in Sec. III A. The
definition of capillary number based on the Darcy velocity,
UD = Q/A, is not applicable here since the cross-sectional
area, A, is not constant along the system. Therefore, the
capillary numbers are presented in terms of the average pore
velocity, uα , of each phase, α = o,w, in the middle throat:
Nc = μuα/σ .

These capillary numbers are sufficiently low that viscous
effects do not affect the shape of the interface (see Appendix F).

APPENDIX E: SENSITIVITY OF DIRECT SIMULATIONS
AND THE GENERALIZED NETWORK MODEL

In this section, we evaluate the effect of fluid properties, flow
rates, and the convergence of DNS and the GNM with mesh
resolution. The simulations are performed on the star-shaped
geometry with a corner angle of 45◦ and for a contact angle
of 30◦. The results are presented for a base case with the same
resolution (Rt/δx = 18.75) and same fluid and rock properties
as discussed in Sec. III A. Two other mesh resolutions Rt/δx

of 12.5 and 25 are considered, using both the GNM and DNS
(Fig. 19). To obtain an estimation of the dependence of the flow
conductivities on the flow rate, the DNS results are additionally
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FIG. 19. Convergence of the middle throat radius of curvature,
rc = σ/Pc, and water and oil conductivities normalized by single-
phase flow conductivity, grw and gro, respectively. The suffixes 12, 18,
and 25 represent the simulations with mesh resolutions of Rt/δx =
12.5, 18.75, and 25. The suffix 2qw shows the simulation whose water
flow rate is twice the base case value. The suffixes μw/2 and 2μ show
the simulations with water viscosities twice and half the base case,
respectively.

presented for a case with a water flow rate twice the base
case. Finally we investigate the effect of viscosity ratio, by
presenting one simulation in which the water phase viscosity
is twice the base case, and one with a water viscosity that is
half the base case value.

The difference between the results for the three mesh
resolutions is less than 5%. These results together with
the validations of the direct simulation presented by Shams
et al. [73] and Raeini et al. [74] show that DNS captures the
flow conductivities and the interfacial curvature accurately.
Although the GNM results provide an acceptable match with
the DNS, they show slightly larger variations with image
resolution.

Increasing the water flow rate by a factor of 2, in DNS,
increases the oil conductivity by less than 5%. The water-oil

viscosity ratio has a larger effect on the oil conductivity:
halving the water phase viscosity increases the oil conductivity
by roughly 5% for this case. The effect of the flow rate and
viscosity is less significant for the water phase saturation
and conductivity. Larger corner angles or higher relative flow
rates and viscosity ratios are expected to change the fluid
conductivities more significantly [76,77]. A more rigorous
quantification of the effect of these parameters is a subject
for future work. Nevertheless, these results show that when
the fluid viscosities and the driving force are in the same range
for both fluids, the assumption of a single fluid conductivity for
each phase (hence ignoring the viscous coupling effect) does
not introduce a significant error in the calculations.

APPENDIX F: VISUALIZATION OF INTERFACE
LOCATION

Figure 20 presents a visualization of the interface location
obtained from the GNM and compares it with the fluid phase
locations obtained using DNS for the star-shaped geometry
with a corner angle of 45◦, contact angle of 30◦, and a
mesh resolution of Rt/δx = 18.75. The direct simulation is
initialized with the level 3 corner image that corresponds to
the results with Sw = 0.11 in Fig. 19. The GNM results are
obtained by assigning a final capillary pressure of Pc = 2450
Pa for the second cycle, chosen to be equal to the DNS capillary
pressure. The predicted water saturation in the GNM is 0.097,
a discrepancy of 12%.

The interface location [Eq. (1)] in the GNM, for a given
contact angle, is computed analytically from the corner angle
and axial interface curvature [Eq. (3)]. This implies that if

FIG. 20. A visualization of the interface location, the transition
between water (blue) and oil (red), in DNS (top) and axial slices
through the pore throat centers in DNS (middle) and GNM (bottom).
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the axial curvature and corner angle are accurate the interface
location will be accurate too. The accuracy of assigned corner
angles is studied in Raeini et al. [69]. The accuracy of the
interface curvatures are presented in this paper in the plots of
radius of curvature as a function of wetting phase saturation
(Figs. 12 and 19).

Figure 20 shows that the water layer area is smaller at the
throat surface compared to the pore centers, in both DNS and
the GNM, which is due to the variations in the sagittal interface
curvature. This quality check is not possible for the CNM since
there is no one-to-one correspondence between corners of the
CNM and the underlying geometry.
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