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Accurate modeling and evaluation of microstructures in complex materials
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Accurate characterization of heterogeneous materials is of great importance for different fields of science and
engineering. Such a goal can be achieved through imaging. Acquiring three- or two-dimensional images under
different conditions is not, however, always plausible. On the other hand, accurate characterization of complex
and multiphase materials requires various digital images (I) under different conditions. An ensemble method is
presented that can take one single (or a set of) I(s) and stochastically produce several similar models of the given
disordered material. The method is based on a successive calculating of a conditional probability by which the
initial stochastic models are produced. Then, a graph formulation is utilized for removing unrealistic structures. A
distance transform function for the Is with highly connected microstructure and long-range features is considered
which results in a new I that is more informative. Reproduction of the I is also considered through a histogram
matching approach in an iterative framework. Such an iterative algorithm avoids reproduction of unrealistic
structures. Furthermore, a multiscale approach, based on pyramid representation of the large Is, is presented that
can produce materials with millions of pixels in a matter of seconds. Finally, the nonstationary systems—those
for which the distribution of data varies spatially—are studied using two different methods. The method is tested
on several complex and large examples of microstructures. The produced results are all in excellent agreement
with the utilized Is and the similarities are quantified using various correlation functions.
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I. INTRODUCTION

Accurate knowledge of microstructure and heterogeneous
materials is crucial for different aims such as performance
evaluation, prognosis, and optimization of structures [1,2]. Fur-
thermore, discovering new materials requires tremendous re-
search on materials with complex structures and distributions.
Mathematical modeling can help to characterize and evaluate
microstructures with different properties. Such methods should
also deal with a wide range of heterogeneous materials. For
example, designing new materials with optimal structures
requires considering several possibilities of morphologies.
Thus, any new method in this field requires accurately quanti-
fying the inherent complexities and heterogeneities. Then, the
extracted properties are used to generate (i.e., reconstruct) new
microstructures with the hope of statistically and physically
representing the properties of the original samples.

Recent progress in nondestructive two- and three-
dimensional (2D and 3D) imaging has enabled us to extract
more information about the complexity and heterogeneity of
materials through digital images (I) [3–6]. X-ray imaging
[7,8] can eliminate destructive sectioning and provide high-
resolution 3D images for various applications such as Sn-rich
alloys [9], powder metallurgy steels [10], metamatrix compos-
ites [11–14], and light-weight alloys [15–19]. High-resolution
focus ion-beam scanning electron microscopy (FIB-SEM)
methods are an essential part of materials characterization as
they reveal vital information regarding the spatial or morpho-
logical properties and connectivities between different phases.
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Providing 3D images, however, is costly and time consuming.
Further, acquiring high-resolution images can cause one to
miss different pore spaces and structures. Four-dimensional
(4D; the fourth dimension being time) imaging has also
provided the ability to investigate the structural evaluation
over time under different stimuli (e.g., stress, temperature, and
environmental conditions). 4D images can also help to better
understand time-dependent processes such as deformation,
phase transformations, magnetic domains, and compositional
evaluation.

Improving our understanding of the existing nonlinear and
complex deformational behaviors in materials science requires
extensive research and characterization of such materials under
different morphological and structural conditions. Besides,
relying on a limited number of 3D images can put significant
uncertainty in the characterization and evaluation of physical
behaviors such as mechanical properties, structural deforma-
tion, fracture, and fatigue as well as contact and friction.
Due to the aforementioned requirements and the existing
limitations, namely, cost and time, providing several 2D or
3D images of materials is not feasible. Thus, estimating the
range of variability and possible behaviors of the above crucial
properties will not be likely. For instance, such a realistic
evaluation can be very critical when the designed material is
used in aircraft or biological devices.

Using a limited number of complex and heterogeneous
images and producing a set of similar instances, but with
different structural and morphological properties, has been
recognized as a promising solution that can fill the exist-
ing gap. Therefore, producing comparable and, at the same
time, accurate models of heterogeneous samples can quan-
tify the discussed uncertainties. The provided variability and
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uncertainty can, indeed, help to revise the compositions and
avoid over- or underestimation. To this end, several methods
are available that can be used to describe and, consequently,
produce various models. In one group, producing different
models is achieved using an iterative process (e.g., genetic
algorithm or simulated annealing) by which the difference
between the generated model and the input image is decreased
gradually [20]. Producing high-quality models using these
methods requires considering various statistical quantifiers
(e.g., lineal path, two-point cluster, and autocorrelation) in
the objective function. In another group, called process-based
methods, the medium is generated based on some physical
rules such as sedimentation, erosion, and interaction between
the phases [21]. These methods have been used for natural
porous media (e.g., rocks) in which such physical rules can be
defined.

Characterization of the multiphase random system requires
extracting the correlation between several points, i.e., n-point
correlation [2,22,23]. In practice, however, evaluation such a
large number of points, usually n � 5, is impractical [24,25].
Several noncanonical, topological descriptors and interface
information have also been developed for a wide spectrum of
materials [26]. Although the low-order statistics, namely, when
n � 2, do not provide accurate results, increasing the statistics
to higher orders, such as four and five, even cannot be very use-
ful for the constructing of complex materials [27]. Thus, one of
the long-standing problems in the characterization of complex
materials is the development of correlation functions that can
accurately describe the complexity, only if such correlations
can be measured. For this aim, several reconstruction methods
have been developed in the past two decades. The Gaussian
random field method was originally developed for modeling
homogeneous materials using two-point correlation functions
[28]. An example of such correlation functions is the field-field
correlation function, which the result is used with level cut
to produce a binary model of the target microstructure. This
method has also been used for a variety of simple and isotropic
microstructures, but its application is limited because it uses
only the correlation between two points. Later, phase recovery
was used to fully take into account the directional information
extracted from two-point correlation functions, which can re-
sult in generating more heterogeneous microstructures [29,30].
This method is applied on an iterative framework in which the
difference between the target and simulated model is reduced
repeatedly. This method is, however, limited in the number of
the used correlation functions that one can incorporate. Thus,
process-based stochastic modeling [31] was later developed to
address this shortcoming. In this method, an objective function,
representing a set of correlation functions, is considered and
the error level of the generated realization is decreased using
the given objective function. This method, because it deals
with many terms in the objective functions, is computationally
expensive. Several implementations of this method have been
developed so far that aim to address its inefficiencies [32–36].
Higher-order statistical methods, on the other hand, have also
been proposed that can address the aforementioned issues via
the direct use of the given complex microstructure in the initial
image [37].

Aside from the considerable progress in the reconstruction
of microstructures, the available methods still cannot provide

an accurate representation of the disordered material. For ex-
ample, the iterative methods are limited in terms of the number
of utilized similarity quantifiers in the objective function. In
other words, evaluating an extensive list of statistical terms in
the objective function is computationally expensive. Similarly,
process-based methods, because there are a lot of rules to
consider, are extremely CPU demanding. All such methods
are unable to translate the existing physics and complexity
provided in the 2D or 3D images. As a result, they cannot
reproduce the long-range and complex phases in the materials.
Finally, these methods result in generating unrealistic and
noisy or smooth models. It should be noted that such issues
are more perceptible in 3D modeling as the current methods
usually cannot handle very large and multiscale structures in
a reasonable time. The importance of multiscale modeling in
inhomogeneous microstructures has been discussed by Chen
et al. [38] and the authors have used a single 2D image and
successfully reconstructed polycrystalline microstructures.

In this paper, a method based on a direct use of 2D or
3D images of microstructure materials is proposed that can
accurately model the complex materials. The complexity and,
consequently, physics of such materials are transferred directly.
The proposed method is then used in a multiscale framework by
which very large, realistic, and exhaustive images can be mod-
eled efficiently. Furthermore, various correction algorithms are
also proposed by which one can remove unrealistic structures
and artifacts.

II. METHODOLOGY

In this paper, an alternative concept of direct use of the
available images of complex materials is proposed, in which
not only are none of the current statistical descriptors are
needed, but also different phases are used directly [37,39].
Thus, the first step in this algorithm is obtaining 2D or 3D
images of the disordered material (i.e., I). It is worth noting that
the I should be a representative volume element (RVE) of the
microstructure. Thus, the Is must be checked in terms of being
RVEs prior to this study and it will not be investigated in this
paper [30]. Then, similar 2D or 3D images are generated using
a conditional probability formulation. The proposed method
is composed of several stages. First, the general framework
is described and then the other components are discussed
accordingly.

A. General framework

The algorithm uses the previously simulated regions to
decide on the probability of the next cell in a modeling grid
G = {Z1,Z2, . . . ,ZN }, in which N indicates the number of
points in the computational grid G on which the stochastic
model is generated, and each point takes a single value Zi .
The probability of having the Nth phase, given the previous
(N − 1) phases, is given by

p(G) = p(Z1)p(Z2|Z1) · · · p(ZN |ZN−1,ZN−2, . . . ,Z2,Z1)︸ ︷︷ ︸
p(Zi |G�i

)

,

(1)
where G�i

indicates the conditional probability of Zi . Here,
G�i

represents the configuration of the points in �i . The
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set �i implies the sequential neighborhood of point N , i.e.,
{�i}i=1,2,...,N . One also may write the joint probability of
Eq. (1) as

p(G) =
N∏

i=1

p
(
Zi

∣∣G�i

)
. (2)

The given probability in Eq. (2) should be calculated for
each modeling point in G. Nevertheless, the method would be
computationally expensive. Thus, additional complementary
strategies are introduced to alleviate the computational burden.

Based on the above conditional probability, instead of using
all the previous points, one can consider only a small neigh-
borhood around the visiting point. Thus, a small region around
the visiting point can be used for the probability calculations.
Such a region can be selected based the directional covariances
in different x, y, and z directions. Furthermore, the conditional
probability can be estimated using a product kernel such as a
Gaussian radial based kernel, which is a measure of similarity.
In other words, the conditional probability in Eq. (2) can be
written as

p
(
Zi

∣∣G�i

) = exp
(−d

〈
Zi ,G�i

〉) = exp

(
−

n∑
i=1

∣∣Zi − N
G�i

i

∣∣),

(3)

where Ni represents the neighborhood data in G�i
and d〈〉

indicates Euclidean distance.
The above-discussed conditional probability allows one

to consider a relatively small window around the visiting
point. Thus, the Euclidean distance can be decomposed into
three terms, among which only one of them requires being
calculated for each visiting point. Such calculations can be
performed using convolution that has been shown to be fast.
First, the proposed algorithm selects a pattern (i.e., a set of
points or a subset of I) randomly from the I and inserts in a
corner on G. Afterwards, the next pattern is selected based
on the similarity between the neighborhood points and the I.
Therefore, instead of considering all the previously simulated
points, only the points in the current locations are used for
convolution calculations [40]. The data event (the current
points) at location (x,y) is denoted by DT(x,y), where T
represents the size of grid blocks or data event. Note that
“data event” refers to data located around the visiting point
and it changes for each point. Then, the similarity between the
neighboring points and I is quantified based on the convolution:

�(i,j ; x,y) =
�x−1∑
x=0

�y−1∑
y=0

I(x + i,y + j )DT(x,y), (4)

where 0 � i < Lx + �x − 1 and 0 � j < Ly + �y − 1. I(x,y)
represents the location at point (x,y) of I of size Lx × Ly,

with x ∈ {0, . . . ,Lx − 1} and y ∈ {0, . . . ,Ly − 1}. An overlap
region of size �x × �y and a data event DT are used to
match the patterns in the I. Note that the overlap region is
the voxels we pick from the previously simulated points to
be included in the similarity calculation for identifying the
next pattern.

After calculating the similarity between the I and DT,
one of the similar patterns—those for which the similarity

is larger than a preset threshold—is selected and inserted in
G. The process is repeated until G is filled. As a rule of
thumb, the neighboring regions might have an overlap of 1/5
to 1/6 of the size of the data event T. Clearly, using large
grid blocks will increase the computations, as the similarity
function requires considering many points, while small regions
may cause discontinuity. Thus, using the above-mentioned size
can keep both the computation time and artifacts low.

B. The graph approach

For some complex and structural Is, simple attaching of the
heterogeneous patterns may create many discontinuities. This
issue can be addressed by implementing the graph theory to
remove the discontinuities optimally. Indeed, the graph theory
can be used to identify the minimum error boundary by which
two patterns are interlocked.

The differences between the pixel (or voxel in three dimen-
sions) values in the neighboring regions are first calculated
and represented by a graph Gp, where the value attributed
to each node of the graph is the difference between the
pixel values in the overlap regions. The nodes of Gp are
divided into two groups of terminals: (i) sources s from
which “flow” begins and sinks t where the flow ends, and
(ii) nonterminal nodes P that are located between the sinks
and sources. The graph is given by the set Gp = {V,E},
where V = PU{s,t} the edges. Similarly, the edges are also
divided into two groups, namely, (i) the t edges {(s,t),(u,t)}
that connect a nonterminal node in P with a terminal node,
and (ii) the n edges that connect two nonterminal nodes and
are denoted by N. Two constraints are imposed on the path
f (u, v) between u and v: (i) mass conservation should be
satisfied by f (u, v), i.e., ∀v ∈ V \{s,t} :

∑
{u:(u,v)∈E} f (u,v) =∑

{u:(v,u)∈E} f (v,u), and (ii) the antisymmetry relation, i.e.,
∀(u,v) ∈ V : f (u,v) = −f (v,u), must also be followed. The
difference between the overlaps is expressed by two subsets S
and T, derived from a source s and a target sink t , respectively.
Thus, the optimal path C is one that minimizes the overall
cost function of flow, i.e., C(S,T) = ∑

u∈S
∑

v∈T C(u,v). This
minimization problem is solved as a “fluid-flow” model [41]
in which the optimal path is identified as one that allows
minimum “fluid” passing from s to t with |f | = ∑

v∈V f (s,v)
and f (S,T) = ∑

u∈S
∑

v∈T f (u,v). Finally, one can use the
graph method when the given I is too complex and represents
very diverse patterns. The graph approach helps to remove the
artifact due to interlocking the uncorrelated patterns.

C. Distance transform

Most of the available images for complex materials are
mixed with unwanted noises that make their processing a
challenging problem. Usually, one prefers to perform a series
of postprocessing to remove the noises and artifacts and
eventually summarize the pore and solid phase as a binary or
categorical image [42]. The binary image does not, however,
contain very rich information about the spatial distribution of
the pores or target phase. One can acquire such information
around each pixel using a distance transform D. In other
words, a more informative image can be constructed wherein
each of its pixels represents extra information about the
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surrounding phases [43,44]. This method, using a Euclidean or
quasi-Euclidean distance, calculates the distance of each pixel
from its closest objects (e.g., a solid phase). Mathematically
speaking, given the closest set � for any node n in a binary
image within the I, D is defined by

D(n,�) = min
q∈�

{d(n,t)}, (5)

where d(n,q) is the Euclidean distance between nodes n

and t .
The output of D represents an informative image that con-

tains zero for the location of pores and nonzero, depending on
the distance to the nearest solid phase. The distance transform
is useful when the given I does represent a categorical and
multiphase material. The binary or categorical images are not
very informative and the distance transform can help producing
new images by adding information about the surrounding
pixels at each cell.

D. Complex distribution matching

Aside from the possible excessive smoothness and artifacts,
complex structures and multimodal distributions make the
modeling of the available Is difficult. In some Is, very high
and low values are adjacent, in which the convolution ignores
the low values. However, a meaningful structure is generated
when all the existing phases are reproduced side by side.
Thus, histogram matching is utilized for these circumstances
to select the candidate patterns more precisely. For this aim,
the histogram of the 2D or 3D model M is constructed per each
candidate pattern (dx,dy,dz) and the distance between the I and
each model is quantified using the Jenson-Shannon divergence,
djs(I,M). The distance is the average of two Kullback-Leibler
divergences [45,46]:

dJS(I||M) = 1

2

∑
k

Ik log10

(
Ik

Mk

)
+ 1

2

∑
k

Mk log10

(
Mk

Ik

)
.

(6)

Then, the pattern with the minimum value of djs is selected.
In other words, instead of selecting the final pattern at random,
the pattern that helps the current model to be closer to I is
selected eventually. Therefore, the histogram matching indem-
nifies that the final realization represents a similar distribution
as one observes in the initial I. This approach is recommended
to be used when one is interested to exactly reproduce the
initial distribution given in I. Although the proposed method
can reproduce similar statistical distribution in I, such a goal
can be achieved in a more rigorous way through histogram
matching.

E. Iterative rectification

For actual complex and multiphase materials, even the
above methods might not result in a successful modeling.
In this case, one may apply an iterative method to gradually
improve pattern reproduction and remove the possible artifacts
[47]. To this end, an objective function, containing important
properties, can be constituted to generate models with closer
statistical properties and texture to the original I. One, however,
should keep in mind that using several terms in the objective

function may significantly increase the computational time.
Therefore, there would be always a trade-off between the CPU
time and accuracy. Therefore, Eq. (6) can be rewritten as

E(M) =
∑

z

∑
p∈{x,y,z}

∑
u∈Tp(z)

‖Mz,p,u − dz,p,u‖2 + 1

2

∑
k

Ik

× log10

(
Ik

Mk

)
+ 1

2

∑
k

Mk log10

(
Mk

Ik

)
+ · · · .

(9)

It should be noted that the I must be representative of the
complexity and heterogeneity of the material. Thus, one can
utilize extra images if a set of Is can be provided. In that case,
the presented algorithm in this paper remains the same, while
the candidate patterns can be selected from images that are
more diverse. Accordingly, the computational time increases
since the similarity function is required to be calculated for
several images. This approach can be used when the final
realization, aside from using the above methods, still show
an artifact. The iterative method, indeed, can remove the
discontinuities iteratively and produce realizations that better
match with the patterns shown in I.

F. Multiscale algorithm

Although the above computational and rectification meth-
ods can produce high-quality models of complex materials,
the proposed method up to this point can only be applied to
small 2D and 3D images. In reality, with the recent progress in
the field of imagining, current images of materials are mostly
high-resolution 3D data sets. Thus, it is important to handle
such complex and large images in a reasonable time. In this
section, a multiscale method is proposed by which very large
images can be modeled effectively.

The idea of the multiscale method is based on a pyramid
representation of the images. In other words, resizing the large
images, in most of the complex materials, does not impair the
primary details. For instance, one can resize a large 1000×1000
image into two smaller images, namely, 500 × 500 and 250 ×
250, all of which represent the same structures of the original
large image. Thus, the initial large image of the complex
material I1 is resized into two levels, I2 and I3. Then, one
can start with the smallest image I3 and perform the described
steps (i.e., calculating convolution) on this small image. After
finding the location of the candidate pattern, its location is
projected on the next finer image I2. The location of the selected
candidate has already been recognized and, thus, its position
can be projected on the next finer image I2. Clearly, one does
not need to search the finer image thoroughly since the location
of the matching pattern is roughly available from the previous
coarse image. Nevertheless, only a small neighbor around the
projected location is sufficient for finding the matching pattern.
This searching window can save a considerable amount of time
for large images. After finding the matching pattern on I2, its
location is projected on the finest image I1 and only a small
neighbor around the projected point is searched. Finally, the
identified pattern is selected and inserted in the G.

Using the multiscale method, one can reduce the computa-
tional time by identifying the location of the matching pattern
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FIG. 1. SEM image of Ti alloy, which represents a nonstationary
system [49].

rapidly. It should be noted that the high-resolution image does
not require being always resized into three levels of images,
but, depending on the initial resolution, one can perform the
scaling in two or even four stages. The resizing should be
continued until the initial structures of the I are preserved in
the subsequent resized images. Clearly, this method can be
used when the initial I is too large as it reduces the CPU time
significantly. Thus, this method does not have any effect on the
quality.

G. Nonstationary modeling

The described algorithm so far can only model those types
of materials that are called stationary. In other words, in
stationary systems, the statistical properties in various regions
are practically similar. For this reason, the candidate patterns
can be selected from any region in I. In nonstationary systems,
however, the statistical properties in different regions are not
necessarily similar [48]. An example is shown in Fig. 1. As
can be seen, the phases in the Ti alloy are different in the
lower right and left sides. Thus, patterns from any regions
in I cannot be selected and interlocked with the previous
ones in G. For instance, the patterns on the left side are not
orientationally consistent with those on the right side. Here,

two complementary algorithms are presented, by which the
nonstationary systems can be modeled efficiently.

1. Using auxiliary data

In this method, the nonstationary factor is first recognized in
the material. Nonstationarity can occur for various reasons. For
example, it can be due to the rotation, thickness, proportion,
size, and so on. Then, auxiliary data (AUX) for describing the
nonstationarity is generated, by which the identified behavior
is described. In this study, the nonstationarity is extracted
manually, meaning that the user can decide on the nonstation-
ary trend and behavior and produce a related descriptor. An
example is shown in Fig. 2. The presented image in Fig. 2(a)
represents a nonstationary system as the target material is
distributed systematically (i.e., gradually) on the background
phase. Proportion is an appropriate indicator that can describe
the nonstationarity in this system. Since the target phase
represents a gradually increase from left to right, similar AUX
data, as shown in Fig. 2(b), can be considered for this image.
The AUX implicitly quantifies the observed proportion in the I
shown in Fig. 2(a). One can consider two or more AUX data for
more complex nonstationary materials. An example is shown
in Fig. 2(c) in which the orientation and thickness are both
nonstationary. Thus, the thickness can be introduced using the
AUX data in Fig. 2(d), while the orientation is shown using
other AUX data in Fig. 2(e).

After generating the AUX data, the proposed algorithm
should take the new information into account. In these systms,
the selected patterns will not be only conditioned to the
previously simulated points, but the AUX should also be
considered. To this end, a similar AUX is generated for the
I. Next, at each visiting point, a new data-even DAUX from the
AUX data is extracted. Then, the similarity of these extracted
data is calculated against the AUX data of I, which yield
another similarity map. Afterward, the similarity maps derived
from the neighboring points and AUX are added together,
which results in a single similarity map. Finally, the patterns
in I are sorted based on this map.

(a) (b)

(c) (d) (e)

FIG. 2. (a), (c) Two examples of nonstationary systems and their corresponding AUX data in (b) and (d), (e), respectively.
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(a)

(b)

FIG. 3. SEM image of a porous Ni-YSZ sample [54]. Backscattered electron detector is used for this image (a). Yellow, red, and blue
represent YSZ, Ni, and pore space, respectively. (b) Three realizations.

As mentioned, one can consider various (s) AUX data,
depending on the number of nonstationary behaviors in the
system. Thus, the final equation can be written as

�overall =
n∑

s=1

|I − DI| + βs

n∑
s=1

|I − DAUX|, (10)

where βs is a coefficient for each AUX data set. Intuitively, the
nonstationary behaviors with higher impact will receive higher
weight or coefficient.

2. Partitioning

In some Is, however, defining the AUX data is not straight-
forward. For example, the image shown in Fig. 1 is one such
example. Partitioning the I into some stationary regions is
another strategy that can be used for these complex materials.
Each segment, in this case, will represent a stationary region
that can be handled using the algorithm presented in this paper.
However, the data in the comparted regions can only be used
for simulating those specific parts and the patterns from other
regions not allowed to be used elsewhere. This method is
further discussed in Sec. III C.

III. RESULTS AND DISCUSSION

Several complex and heterogeneous examples of mi-
crostructure materials are selected for testing the accuracy of
the proposed method. The samples are provided in both 2D
and 3D images in the stationary and nonstationary distribu-
tion of different phases. Then, the generated realizations are
compared visually and quantitatively based on the original Is.
Furthermore, three statistical functions, namely, the two-point
cluster correlation function (C2), the autocorrelation function
(ACF), and multiple-point connectivity (MPC), are used in
this study to quantify the similarity between the initial I
and produced realizations [2]. For example, C2 calculates the
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FIG. 4. Comparison between (a) ACF, (b) C2, and (C) MPC
between I (black curve) and generated realizations (gray curves) for
the yellow phase.
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(a)

(b)

(c) (d)

FIG. 5. (b) Generated realizations using (a) the stroboscopic optical reflectance image recorded during spin coating. (c) A raw realization
without any correction and (d) the corrected realization in (c).

probability of finding both points r1 and r2 in the same cluster
of phase i. In this function, the histogram of the distances
between any two points in the same phase is calculated. This
calculation is repeated for the other target phase in the I and
their corresponding histograms are built. Finally, the C2 is
calculated based on the ratio of the histograms.

The MPC, as another accurate similarity function, rep-
resents the probability p(r; m) of having a sequence of m

points in a phase in a direction r. Then, an indicator function
I (i)(u) is defined by I (i)(u) = 1; if u ∈ phase i, and I (i)(u) = 0
otherwise, then

p(r; m) = Prob{I (i)(u) = 1,I (i)(u + r)

= 1, . . . ,I (i)(u + mr) = 1}. (11)

The MPC function extracts the multiple-point probability
and represents a better tool for dissimilarity quantification.

A. Porous Ni-YSZ sample

Fuel cells are one of the resources that recently has emerged
as a promising and efficient source of energy [50]. They,
indeed, are in accordance with the recent policy for energy

resources such as efficiency, cleanliness, and being economic.
These materials convert chemical energy to electricity. A 2D
microstructure of a porous Ni-YSZ (nickel yttria-stabilized zir-
conia) composite, as one of the recent fuel cells, is considered
in this example, which provides excellent conductivity, high-
temperature elastic properties, and high thermal conductivity
[51–53]. Various factors in these samples, including volume
fraction, average aggregate size, and the texture of phases, can
significantly change their properties. One such sample using an
image with the size of 425 × 686 pixels is shown in Fig. 3(b).

Fifty realizations are generated using the proposed method
in this paper. Three of them are shown in Fig. 3(b). The CPU
time for this modeling was 2 s. Visual inspection shows that
the generated realizations represent an excellent agreement, in
terms of structures and morphologies, with the provided I in
Fig. 3(a). The discussed statistical tests are used to quantify
such a similarity and the results of each of those functions
are presented in Fig. 4. All the calculated similarity functions
represent an excellent agreement with the original I. As men-
tioned earlier, the MPC demonstrates a better representation of
the existing variability between the generated models. Thus,
one can ensure that the produced realizations have enough
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diversity and they can be used to cover the uncertainty and
possible structures.

B. Multiphase polymetric materials

Understanding of spin coating of multiphase polymeric
materials is one of the long-standing problems in materials
science. Such materials commonly contain various morpholog-
ical patterns that represent self-organized subsets and regular
micrometer features. Spin coating polymer of thin films,
indeed, can produce multiphase layers of high uniformity on
large surface areas. These materials can be used in a variety
of fields such as photovoltaics and light-emitting diodes. A
stroboscopically illuminated image during spin-coating of a
PS:PI blend onto a silicon substrate at 1500 rpm is shown
in Fig. 5(a) [55]. This image contains 466 × 642 pixels.
This image is a challenging I for the reconstruction methods
as it contains various curvilinear, complex, and continuous
structures.

For the sake of comparison and demonstrating the abil-
ity of the proposed method for removing the artifacts and
discontinuities, one realization with and without considering
the discussed steps (Secs. II B to II F) is shown in Figs. 5(c)
and 5(d). Those steps are inherently part of the proposed
method. As can be seen, the main difference here is the
removal of some small artifacts and decreasing the CPU time,
while the realization largely remains unchanged. The artifacts
are identified through the utilized similarity function in the
algorithm. This function, indeed, can give the differences
between each of the two patterns. Therefore, the artifacts can be
found by their higher differences. Besides, the realization has
not changed considerably, whereas the artifacts are not visible
in the new realization shown in Fig. 5(d). The CPU time for
the original realization is 60 s, while the computation time for
the right one is around 3 s.

Several realizations are generated using the proposed
method in this paper and three of them are shown in Fig. 5(b).
The computational time for this modeling was 3 s. As can be
seen, the generated realizations contain the same heterogeneity
and complex structures as in the I. The variability between
the realizations and I can be further verified using the results
of similarity functions in Fig. 6. Once again, the generated
realizations manifest an excellent agreement in accordance
with the original I.

C. Nonstationary oxygen-free copper

Electron backscatter diffraction (EBSD) is one of the
methods being used for identifying the deformation caused
by corrosion in copper canisters. Such canisters contain dif-
ferent inhomogeneous structures and discontinuous welds that
can define the places with a higher concentration of stress.
These regions can significantly change the deformation and
damage tolerance. In this section, a horizontal cross section
of an electron beam weld is used [56], which demonstrates a
nonstationary system [see Fig. 7(a)]. This image is composed
of a grid with 312 × 437 pixels.

As discussed earlier, modeling of nonstationary systems
requires a different strategy. In this example, the partitioning
method is applied. Thus, the I is divided into three stationary
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FIG. 6. Same as in Fig. 4, but for the multiphase polymetric
material.

(a) (b)

(c) (d)

FIG. 7. (a) Modeling of the nonstationary oxygen-free copper
sample. The original I in (a) is partitioned into three distinct regions
(b) based on the orientations of phases. (c), (d) Two of the generated
realizations are shown.
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(a) (b)

(c)

FIG. 8. (a) Modeling of nonstationary ferritic steel sample using the provided AUX data in (b). (c) Three of the generated realizations.

parts as shown in Fig. 7(b), which is only based on user
interpretation of the observed structures in I. For example, one
can notice that the structures represent three distinct regions;
thus, assigning three polygons to separate such a behavior can
help identify such regions. The modeling of each realization
took 3 s. For each of these regions, their corresponding areas
in I are used. For example, the structures in the right part
not allowed to be used for the left side. Furthermore, as can
be seen from I in Fig. 7(a), the orientations in each of these
regions are different. Several realizations are generated based
on this partitioning and two of them are shown in Figs. 7(c)
and 7(d).

D. Nonstationary ferritic steel

This example represents another nonstationary system de-
rived from the EBSD for ferritic steel [57]. This image reveals
information about the crystallographic orientation and phase
characteristics of the illuminated crystals [see Fig. 8(a)]. The
EBSD manifests a clear nonstationary distribution of the
middle phase around the sample, while the concentration in the
central part is significant. This region contains more parallel
layers, while the upper and lower margins represent a random
distribution of other phases. Thus, AUX data, for representing
such a behavior, as shown in Fig. 8(b), is utilized. The AUX
data represent the vertical distribution of different phases. In
this example, the best way to represent the nonstationarity is
to use a vertical trend map, shown in Fig. 8(b), which can be

created manually as the three main regions, depicted in the
AUX data, are perceptible.

Various conditional realizations using the provided I and
AUX data are generated and three of them are shown in
Fig. 8(c). These realizations represent structure and texture
similar to that of the I, while, for example, the parallel struc-
tures are only laid in the central part. The similarity between
the realizations and original I, for the central structures, is
quantified and shown in Fig. 9. It should be noted that the
size of this modeling is 306 × 288 and the computations
took 2 s.

E. Open-cell copper foam (3D)

Metallic foams manifest a high strength-to-density ratio
and excellent properties of thermal and sound absorption.
Such materials have wide applications in heat and mass
transfer [58,59] and filtering for separation [60]. One way of
producing efficient foam materials is through the methods in
powder metallurgical processes in which space holder mate-
rials are generated by synthesizing open-cell metallic foams
[61]. This process allows control of structures and physical
properties.

Using different shapes of pores and repeating the time-
demanding experiments for evaluating the mechanical proper-
ties is not, indeed, plausible. Thus, imaging techniques provide
an alternative by which the costly step of physical experiments
can be avoided. Providing various 3D images with different
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FIG. 9. Same as in Fig. 4, but for the nonstationary ferritic steel.
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FIG. 10. (a), (b) Stochastic modeling of complex micro-CT image
of copper foam sample. (c), (d) One of the generated realizations.
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FIG. 11. Same as in Fig. 4, but for the open-cell copper foam.

possible pore-size distribution and required spatial variability
is, however, very costly and tedious. Thus, an initial copper
foam image produced by x-ray microtomography is considered
as I [62,63] and several realizations, which result in different
pore sizes, are generated using the proposed method in this
paper [see Figs. 10(a) and 10(b)]. The size of this image is
350×350×225 voxels. Accordingly, one does not need to take
various 3D images under different conditions as the proposed
method can produce most of such variabilities using a single
image.

Several stochastic foam models are generated. One such
realization is shown in Figs. 10(c) and 10(d) and took 500 s.
Visually speaking, the produced realization exhibits the same
pore structures as the I and the pore geometries are well
reproduced. Then, the similarity functions are applied on
I and the generated realizations to quantify the successful
reproduction of topological features. The results are shown
in Fig. 11 and they all are in excellent agreement with the
original I. Thus, the generated 3D structure of foams can be
used directly in computational mechanical methods such as
the finite element method (FEM). The results of this example
can provide an exhaustive understanding of the mechanical
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(a) (b)

(d)(c)

FIG. 12. Stochastic modeling of fiber concrete material. (a), (b)
The original I, which contains long-range and connected fibers. (c),
(d) One stochastic model is also provided.

properties of these complex samples when the size and shape
of pore spaces vary.

F. Ultrahigh-performance fiber-reinforced materials

The structure of concrete is one of the most impor-
tant factors that define its mechanical and physical prop-
erties, as well as transport phenomena, which all control
the durability of these important materials. Thus, investigat-
ing such important structures using x-ray microtomography
can provide invaluable insight into the measurable proper-
ties of different structures [64,65]. These images are pro-
vided using nondestructive synchrotron-based x-ray computed
microtomography.

A sample with highly connected structures is selected in
this section that can be thought of as a complicated fiber
material [see Figs. 12(a) and 12(b)]. The size of this sample
is 100×100×100 voxels. Reproducing of long fibers for these
materials is very important. Thus, the DT method, discussed
in Sec. II C, was utilized extensively in this sample and
the target fibers are stressed out, assisting the algorithm to
reproduce them better. Various realizations for this 3D sample
are generated and one of them is shown in Figs. 12(c) and
12(d). The computational time for this sample was 70 s.
The produced realization represents very similar fibers in
the concrete sample. The similarity is further quantified
in Fig. 13.

Due to dealing with a very complex and relatively large
sample size in this example, a sensitivity analysis is carried
out for various I sizes. The results are shown in Fig. 14.
As can be seen, the proposed method provides tremendous
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FIG. 13. Same as in Fig. 4, but for the fiber concrete material.

acceleration even when the initial input is very large. The
reduction is, indeed, the result of the implemented multiscale
method.
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FIG. 14. CPU-time comparison for different I sizes.
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IV. SUMMARY

A stochastic method based on a successive calculation of
conditional probability was devised in this paper. For produc-
ing high-quality and realistic models of complex microstruc-
tures, several algorithms were integrated and employed. The
method takes into account the complexity, histogram repro-
duction, and continuity among the structures, as well as the
multiscale structures that exist in the microstructure materials.
The algorithm is capable of producing models that represent
both large- and small-scale features. The method was tested on
several complicated systems of materials with the stationary
and nonstationary distribution of phases. Two methods for
dealing with nonstationary materials were also discussed. In
summary, the aspects of the proposed method in this paper are
listed as follows:

(1) The proposed method represents a multicomponent
algorithm that can simulate materials with any level of com-
plexity. Through using different strategies, such as graph
theory, histogram matching, the iterative algorithm, and dis-
tance transform, one can produce high-quality realizations.

(2) Two alternative methods for dealing with nonstationary
systems were presented in the paper that can handle most

of the complex and nonstationary materials. None of the
previous methods can simulate such complex nonstationary
microstructures.

(3) The proposed multiscale method provides a very ef-
ficient framework for modeling large images of complex and
multiphase materials. The method can produce microstructures
with millions of pixels in a matter of seconds.

Thus, by producing various realistic realizations, the pro-
posed method can be used readily for composites and alloys
with complex structures. In other words, one is not requires
to spend a significant amount of money and time to take 2D
or 3D images under diverse situations as the proposed method
can computationally produce such models.
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