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Fast Laplace solver approach to pore-scale permeability
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We introduce a powerful and easily implemented method to calculate the permeability of porous media at
the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow
with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to
assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with
analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for
Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less
memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.
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I. INTRODUCTION

Calculating the permeability of a porous medium following
the Stokes equation for laminar flow is a frequent problem
in various applications from geophysics to material science
[1,2]. However, the direct calculation of permeability from
discrete presentations of microstructure as, e.g., acquired
through x-ray-CT imaging is a computationally challenging
task. The calculations are often carried out using finite volume
(on structured or unstructured meshes), finite difference, or
lattice Boltzmann techniques under high computational cost.
Furthermore, for the stable solution of the Stokes equation with
lattice Boltzmann techniques a critical radius of 4–5 voxels is
required to avoid negative permeabilities [3], which may incur
additional computational costs due to resampling requirements
or prevent numerical solution of the problem requiring a large
field of view, e.g., due to structural heterogeneity. Methods
to reduce the computational cost include abstractions of the
underlying pore space into simply connected elements con-
stituting network models. In those models, the conductance
of the individual connections between nodes are estimated
using, e.g., a hydraulic radius approximation [4]. The level
of abstraction required by these techniques often leads to
reduced accuracy in the prediction of transport properties,
in particular if the shape of the pores is complex and/or the
actual definition of pores is difficult. It would be desirable
to have a method which uses the complex structure provided
by image-based three-dimensional (3D) representations of
the microstructure that preserves the geometrical details, while
allowing significantly faster and/or more numerically stable
solutions. One method in use for more than a decade in the
digital core analysis area is based on the excellent correlation of
permeability with formation factor and critical radius, utilizing
the Katz-Thompson correlation [3,5,6]. This method requires
the solution of a Laplace equation and Stokes equation for
the establishment of a correlation coefficient, followed by
an up-scaling step where the same correlation coefficient is
applied regardless of the scale change.

This paper presents a Laplace approximation for the so-
lution of the Stokes equation on the basis of an extension of
Poiseuille’s law to complex microstructures using Euclidean
distance maps to approximate local voxelwise conductances.
Contrary to an approximation given in Ref. [7], which involves
distances with reference to the center of a flow path (medial
axis), we directly use the Euclidean distance map and show
that due to discretization effects the approximation is accurate
despite being based on surface distances, which makes the
approximation easy to implement.

The paper is organized as follows. Section II recalls
the Stokes equation and details the Laplace approximation.
For parallel flows, the solution of the Laplace equation is
given by the classical parallel formula [1]. This solution is
applied to elementary configurations such as circular pipes
and rectangular channels. The numerical codes used to solve
the Stokes and Laplace equations are briefly described. Sec-
tion III compares the Laplace approximation to some existing
analytical solutions such as circular pipes and rectangular
channels, but also two-dimensional (2D) and 3D sinusoidal
channels and simple cubic arrays of spheres. In Sec. IV the
Laplace approximation is applied to a real fracture and to real
Fontainebleau sandstones. The results are compared with the
numerical calculations obtained with the lattice Boltzmann
method. Finally, concluding remarks are made in Sec. V.

II. GENERAL

A. The Stokes equations

The low Reynolds number flow of an incompressible
Newtonian fluid is governed by the usual Stokes equations

∇p = μf ∇2v, ∇ · v = 0, (1a)

where v, p, and μf are the local velocity, local pressure, and
viscosity of the fluid, respectively. In general, v satisfies the
no-slip condition at the wall Sp:

v = 0 on Sp. (1b)
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Moreover, the fluid moves under the action of a macroscopic
pressure gradient ∇p.

Analytical solutions of this problem are known for a range
of structures, and we will use these to test the numerical method
in Sec. III. Most solutions are obtained numerically.

When a solution v is derived, the seepage velocity v is
obtained by averaging over the pore volume Vp contained in
the volume V . Because of the linearity of the Stokes equations,
v is proportional to the macroscopic pressure gradient,

vS = 1

V

∫
Vp

v d3r = − 1

μf

K · ∇p, (2)

where the tensor K denotes the permeability.

B. The Laplace approximation

The main objective of this paper is to propose and to assess
an approximate solution to the Stokes equation based on the
following assumption. The space is divided into elementary
cubes (or voxels) of size a which are either filled with fluid or
solid. The Euclidean distance r(x,y,z) of each pore voxel to
the solid interface is calculated. Each voxel in the pore space is
assigned the smallest center to center distance on the lattice to
the closest voxel not member of the pore space. The distance is
calculated using an message passing interface (MPI) parallel
implementation of algorithm four of Ref. [8]. This algorithm
calculates the exact Euclidean distance map by executing
successive forward and backward scans of the structure in the
x, y, and z directions and has excellent scaling behavior.

For laminar flow through infinite cylindrical pipes with
no-slip boundary condition on the wall the axially symmetric
velocity profile is described by Hagen-Poiseuille’s law [9]:

u(r) = − 1

4μf

dP

dx
(R2 − r2). (3)

Comparison of this exact relation with the Darcy law (2)
suggests giving each voxel a permeability k(x,y,z) expressed
by (3)

k(x,y,z) = [r(x,y,z) − αa]2, (4a)

where α is an arbitrary constant ranging from 0 to 1. Most
likely, α is taken equal to 0.5 since it corresponds to the voxel
centers. In this formula, r(x,y,z) denotes the distance between
the center of the voxel to the closest wall augmented by 0.5 a.
The local seepage velocity vL(x,y,z) can be expressed as

vL(x,y,z) = − k

μf

∇p. (4b)

The approximate macroscopic permeability KL of the
porous medium can be obtained by solving the elliptical
equation

∇ · (k∇p) = 0. (5a)

Since the solid phase is impervious, the boundary condition at
the solid interface with unit normal n is

n · ∇p = 0. (5b)

Again a macroscopic pressure gradient ∇p is applied
on the unit cell along the three axes successively, and the
corresponding pressure fields are calculated. The approximate

2 a

2 a

S(m, )

n
T(M,n=2,

U(M N

maMa

Step 1

Step 2

Step 3

FIG. 1. Analytical solution of the Laplace equation for parallel
flows and illustration of the three steps. Step 1: S(m,α) is drawn for
m = 5. Step 2: T (M,n,α) is illustrated three times for M = 6 and
n = 1, 2, 3. Step 3: U (M,N,α) is illustrated for M = 6 and N = 3.

seepage velocity vL is obtained by averaging the local seepage
velocity vL(x,y,z) over the unit cell. The approximate perme-
ability tensor KL is derived from a Darcy equation similar to (2)

vL = − 1

μf

KL · ∇p. (6)

C. Analytical solutions of the Laplace approximation for
parallel flows

In several elementary configurations for which analytical
solutions of the Stokes equation exist, flow occurs along
parallel streamlines. As a general rule, when two independent
porous blocks are located one beside the other with the same
area perpendicular to the overall pressure drop, the effective
permeability is equal to the arithmetic average. This is easily
extended to N blocks of permeabilities Kn (n = 1,2, . . . ,N)
located one beside the other:

K = 1

N

N∑
n=1

Kn. (7)

The evaluation of this sum necessitates several steps which are
illustrated in Fig. 1 for a rectangular channel of size (2νa, 2μa)
with ν � μ. The sum should be evaluated over all the voxels
which pave the channel.

First, consider a strip of length m perpendicular to a wall,
starting from a wall, but without any interaction with another
wall. The sum S(m,α) of the individual permeabilities is (cf.
step 1 in Fig. 1)

S(m,α) =
m∑

k=1

(k − α)2. (8)

In order to evaluate this sum and some others, it is useful to
recall the following relations [10]:

m∑
k=1

k = m(m + 1)

2
,

m∑
k=1

k2 = m(m + 1)(2m + 1)

6
,

m∑
k=1

k3 =
[
m(m + 1)

2

]2

. (9)
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Straightforward calculations yield

S(m,α) = mα2 − m(m + 1)α + m(m + 1)(2m + 1)

6
. (10)

Consider now strips of length M close to a solid wall and denote
by n the distance of the line to the wall (cf. step 2 in Fig. 1).
When the line actually touches the wall, its distance is equal
to 1, and the sum of the local permeabilities is simply

T (M,n = 1,α) = M(1 − α)2. (11a)

The sums for the next lines at distances n = 2 and 3 are equal
to

T (M,n = 2,α) = (1 − α)2 + (M − 1)(2 − α)2,

T (M,n = 3,α) = (1 − α)2 + (2 − α)2 + (M − 2)(3 − α)2.

(11b)

More generally, for n � 2,

T (M,n,α) =
k=n−1∑
k=1

(k − α)2 + (M + 1 − n)(n − α)2. (11c)

This sum can be evaluated by using (10) again:

T (M,n,α) = Mα2 + n
(

1
6 − α − 2αM

)
+n2

(
M + α + 1

2

) − 2
3n3 for n � 2. (12)

The last evaluation that is needed is the sum U (M,N,α) of N
lines of length M close to a wall (cf. step 3 in Fig. 1):

U (M,N,α) = T1 +
N∑

n=2

T (M,n,α). (13a)

Introduction of (12) into (13a) and use of (10) yields

U (M,N,α) = M(1 − α)2 − 2

3

{[
N (N + 1)

2

]2

− 1

}

+
(

M + α + 1

2

)[
N (N + 1)(2N + 1)

6
− 1

]

+
(

1

6
− α − 2αM

)[
N (N + 1)

2
− 1

]

+M(N − 1)α2. (13b)

Then useless complications are avoided by considering
squares and rectangles with an even number of voxels along
each direction, i.e., squares of side � = 2μa and rectangles
of sides � = 2μa,L = 2νa where μ and ν verify ν � μ � 2.
Since the sum should cover the whole channel, the Laplace
approximations KLsq and KLrec can be expressed as

KLsq = a2 U (μ,μ,α)

μ2
,

KLrec = a2 U (μ,μ,α) + (ν − μ)S(μ,α)

μν
. (14a)

These quantities are made dimensionless by the square of the
smaller side 2μa:

K ′
Lsq = U (μ,μ,α)

4μ4
,

K ′
Lrec = U (μ,μ,α) + (ν − μ)S(μ,α)

4μ3ν
. (14b)

Let r be the aspect ratio of the rectangular channel:

r = L

�
= ν

μ
. (15)

It is interesting to derive the continuous limit of the expressions
(14) when μ and ν tend towards infinity. For rectangles, μ and
ν keep a constant aspect ratio r:

K ′
Lsq,∞ = 1

24
, K ′

Lrec,∞ = 2r − 1

24r
. (16)

D. Numerical solutions

1. Lattice Boltzmann approach

For complex geometries such as fractures and 3D real porous
media, there is no analytical solution to the Stokes equations
which can be numerically solved by a variety of methods such
as the lattice Boltzmann method (LBM). Originally devised
as a generalization of lattice gas automata [11], it can be
also derived by an adequate discretization of the continuous
Boltzmann equation [12]. In this work we utilize the D3Q19
model for three space dimensions with 19 microscopic veloci-
ties [13]; for a better precision, the model is TRT, i.e., with two
relaxation times [14,15], for the comparisons to the analytical
models. We use a fluid viscosity of ν = 1

6 corresponding to a
single relaxation time of τ = 1 or s2 = 1/τ and s2 = 8 2τ−1

8τ−1 for
the even and odd order relaxation rates of the TRT approach.
Periodic boundary domain conditions are applied and the
midway bounce back rule on the fluid-solid boundary. The
implementation of the solver is similar to that of Ref. [16].
The pressure gradient on the fluid is realized by application
of a body force [17]. For the application to real porous media
we utilize an MPI parallel version of the single relaxation time
(SRT) solver used in Refs. [3,18]. The MPI implementation
uses a Cartesian decomposition technique and assigns storage
only to fluid and fluid-solid boundary nodes while at the
same time minimizing message sizes between processors. A
15-voxel-thick free fluid layer [19] is applied to realize the
periodic boundary conditions.

2. The Laplace equation

First, the Euclidean distance map should be determined by
using the algorithm summarized in Sec. II B; the computational
time necessary for this step is negligible. Then the permeability
field is derived.

Second, the solution of the Laplace equation is obtained by
the following numerical techniques. The medium is discretized
in elementary cubes of a given permeability. The unknown
pressures are located at the corners of these cubes. The Laplace
equation is discretized by the so-called box integration method
[20]. Spatially periodic boundary conditions are applied along
the three directions of space. The resulting linear system
is solved by a classical conjugate gradient algorithm. An
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application to a real set of permeability field is provided by
Ref. [21].

III. COMPARISON WITH EXACT SOLUTIONS

A. Elementary shapes

The permeabilities of a circular pipe, a square, and a plane
channel have been known for a long time, and their derivation
can be found in Ref. [9]. The simplest ones are for a plane
channel of width � and a circular channel of radius R:

K ′
plane = Kplane

�2
= 1

12
, K ′

cir = Kcir

R2
= 1

8
. (17)

The analytical solution for square and rectangular channels
with sides L and � is again given by Ref. [9]. Let �be the smaller
side of the channel. The permeability K is made dimensionless
by �2. Therefore,

K ′
S = KS

�2
= 1 + r2

24
− 8

π5
S, (18a)

where

S =
∞∑

n=1

1

(2n + 1)5

×
[
r3 tanh

(
2n − 1

2

π

r

)
+ 1

r
tanh

(
2n − 1

2
πr

)]
(18b)
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FIG. 2. Comparison between the analytical solution (17) (thick
solid lines) and the analytical solution (14) for the Laplace equation
for various values of the parameter α (thin solid lines). Data are
for α = 0.1, 0.2, ..., 0.9. The broken lines correspond to α = 0.5.
(a) Plane channel, (b) circular channel; the dotted line corresponds to
the numerical solution by a classical code.

and r is the aspect ratio (15). The permeability of a square
channel can be derived as a direct consequence:

K ′
S,sq = 0.035144 . . . . (18c)

In these cases, the flow occurs along parallel streamlines,
and the analytical solutions proposed in Sec. II C can be used
for a direct comparison, except for the circular pipe where the
pore space cannot be described simply.

This relation is displayed in Fig. 2 for the two simplest
configurations which are the circular and the plane channels.
The influence of the discretization of the channel and of α is
studied. A first general remark can be made; the permeability is
a decreasing function of α. There is a strong contrast between
these two cases.

The agreement for a plane channel is almost perfect what-
ever the width of the channel for α = 0.5. For large values
of the discretization, it tends towards the exact limit 1/12 as
indicated by (16).

The comparison is less good for circular pipes. It is inter-
esting to note that the comparison is relatively better for a
poor discretization. This is expected since for low resolution
the cross section of a pipe is not circular (in voxels). In that
case the theoretical formula is not working so well (since it
is not strictly circular) and at the same time LBM struggles at
low resolution more than a Laplace solver. The influence of
α is large for small values of the radius. For large values of
the radius, the results tend towards 1/6 as it can be shown by
considering the integral:

KLcir,∞ = 1

πR4

∫ R

0
2πρ d(R − ρ)2 = 1

6
. (19)

A slightly more complex configuration is the rectangular
channel which has been studied by different means. The
Laplace approximation is compared to the Stokes equation in
Figs. 3 and 4. The first set of figures shows the influence of the
aspect ratio, the parameter α, and the discretization; the data
are compared to the analytical solution (18). The dimensionless
permeability is seen to be again a decreasing function of α;
it is an increasing function of the aspect ratio as it should.
Finally, the discretization �/a has a strong influence on the
data; all the curves gather around the theoretical values when
�/a increases.

The second figure compares the permeability for an infinite
discretization as a function of the aspect ratio. As indicated by
(16), α does not play any role in this limit. The agreement
between the exact analytical solution (18) and the Laplace
approximation (16) is excellent; there is only a slight discrep-
ancy for square channels where these two solutions correspond
to 0.0351 and 0.0417, respectively. This agreement and (16)
suggest a simple interpolation:

K ′
Lsq,∞ = 2r − 2 + 24 × 0.0351

24r
= 2r − 1.1576

24r
. (20)

This elementary interpolation is seen to be very good in Fig. 4.
A check of the numerical solution of the Laplace equation

was made for flows in square and rectangular channels. These
solutions were found in perfect agreement with the predictions
of the parallel formulas (14); it was not found useful to report
them here.
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FIG. 3. Rectangular channels. Comparison between the analyt-
ical solution (18) (thick solid line) and the analytical solution (14)
for the Laplace equation for various values of the parameter α (thin
solid lines). Data are for α = 0.1, 0.2, ..., 0.9. The thick broken
lines correspond to α = 0.5. The various subfigures are for various
discretizations: �/a = 6 (a, d), 10 (b, e), 40 (c, f); the right column
depicts small L behavior.

As a conclusion of this first set of comparisons, it can be said
that the value 0.5 for the parameter α is the most logical and the
one which provides the best comparison with the theoretical
predictions at least for rectangular channels. Therefore, the
calculations are limited to the case α = 0.5 in the rest of this
paper.

B. Sinusoidal channels

1. 2D sinusoidal channels

Formal expansions for the permeability of channels with
wavy walls were devised in Ref. [22]. Detailed results are given
for the following channel:

z = b(1 + η cos x), z = b(1 − ε cos x). (21)

The permeability is compared to the permeability for a channel
with parallel walls and of width 2b which is equal to b2/3. Note

0 1 2 3 4 5 6 7 8 9 10
L/l

0

0.02

0.04

0.06

0.08

0.1

K
/l2

approximation (16)
interpolation (20)
analytical (18)

FIG. 4. The dimensionless permeability K ′ = K/�2 for square
and rectangular channels as a function of the aspect ratio r = L/�.
Data are for analytical solution (18) (solid line), Laplace approxima-
tion (16) (broken line), interpolation between the square and the plane
channel (20) (dotted line).

that b is dimensionless in this subsection. The corresponding
dimensionless value K ′

xx,an along the x axis for b = 0.5 is
given by the expansion [their relation (58)]

K ′
xx,an = 1. − 3.14963η2 + 4.08109η4 − 3.48479η6

+2.93797η8 − 2.56771η10 + 2.21983η12

−1.93018η14 + 1.67294η16 − 1.45302η18

+1.26017η20 − 1.09411η22 + 0.949113η24

−0.823912η26 + 0.714804η280.620463η30

+O(η32).

The calculations were performed in the following way. First,
the number of voxels along the z axis is chosen. The channel
lies in the first Ncz − 1 voxels since the last horizontal layer
remains solid to ensure no flow along this direction. Therefore,
the size a of the voxel is

a = 2b(1 + η)

Ncz − 1
. (22a)

Since the length of one period is 2π , the number of voxels
along the x axis is

Ncx = 2π

a
. (22b)

TABLE I. Symmetric sinusoidal 2D channel. The diagonal components K ′
Lxx , K ′

Lyy of the permeability tensor calculated by the Laplace
equation, the y component K ′

par calculated by the parallel formula, the analytical expansion K ′
xx,an (22) of Ref. [22], and the diagonal components

K ′
xx,LBM, K ′

yy,LBM calculated by a lattice Boltzmann algorithm; α = 0.5.

Dimensions K ′
Lxx K ′

Lyy K ′
par K ′

xx,an K ′
xx,LBM K ′

yy,LBM

η = 0.2, 26 × 3 × 6 0.6132 0.9396 0.9396 0.880 0.468 0.7326
η = 0.2, 52 × 3 × 11 0.6144 0.8413 0.8413 0.880 0.596 0.7958
η = 0.2, 105 × 3 × 21 0.7308 0.87 0.87 0.880 0.718 0.8509
η = 0.2, 262 × 3 × 51 0.7224 0.8636 0.8636 0.880 0.728 0.8659
η = 0.4, 22 × 3 × 6 0.7159 1.0538 1.0538 0.4226 0.5434 0.8121
η = 0.4, 45 × 3 × 11 0.3078 0.8100 0.8100 0.4226 0.3149 0.7673
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FIG. 5. Comparison between the Laplace and the lattice Boltz-
mann dimensionless permeabilities for 2D and 3D sinusoidal chan-
nels. α = 0.5. (a) 2D channels; data are for K ′

xx (◦), K ′
yy (�); η = 0.2

(filled dots), 0.4 (filled squares). (b) 3D channels; data are for η = 0.2
(empty dots), 0.4 (filled dots).

The average width 2b of the channel in lattice units is

2b

a
= Ncz − 1

1 + η
. (22c)

The channel is assumed to be infinite along the y axis.
Spatially periodic boundary conditions are applied along this
axis, and a value of 3 was chosen for Ncy − 1.

The various results are gathered in Table I, which is
illustrated by Fig. 5(a).

When the discretization of the sinusoidal wall is poor,
the numerically solved geometry is very different from the
theoretical one. Therefore, any numerical estimation of the
permeability is expected to be far from the analytical predic-
tions. Because of this unavoidable discrepancy between the
numerical estimation K ′

xx,LBM and the analytical prediction
K ′

xx,an for poor discretizations, it is better to compare the
Laplace approximation K ′

Lxx to K ′
xx,LBM. This comparison

becomes better for fine discretizations, whatever the value
of η. The quality of the comparison does not depend on the
component of the permeability tensor.

2. 3D sinusoidal channels

Detailed results are given for the following channel by [22]

z = ±b
[
1 + 1

2η{cos(x + y) + cos(x − y)}]. (23)

The permeability is again compared to the permeability of a
channel with parallel walls and of width 2b, which is equal
to b2/3. The corresponding dimensionless value K ′

xx,an along
the x axis for b = 0.3 is given by the expansion [their relation
(68)]

K ′
xx,an = 1. − 0.465674η2 + 0.329218η4 − 0.261666η6

+0.004467η8 − 0.0386987η10 − 0.0177808η12

−0.0239319η14 + O(η16).

Again the number of voxels along the z axis is chosen first.
Then the relations (22) are still valid, and they are applied
for b = 0.3. Now Ncx and Ncy are equal. The permeability
components along the x and y axes are also equal.

The various results are gathered in Table II, which is
illustrated by Fig. 5(b). Qualitatively, the conclusions are the
same as for the 2D channel.

TABLE II. Symmetric sinusoidal 3D channel. The diagonal com-
ponent K ′

Lxx of the permeability tensor calculated by the Laplace
equation, the analytical expansion K ′

xx,an (24) of Ref. [22], and
the diagonal component K ′

xx,LBM calculated by a lattice Boltzmann
algorithm; α = 0.5.

Dimensions K ′
Lxx K ′

xx,an K ′
xx,LBM

η = 0.2, 44 × 44 × 6 0.5123 0.9819 0.7424
η = 0.2, 87 × 87 × 11 0.7715 0.9819 0.7335
η = 0.2, 175 × 175 × 21 0.7920 0.9819 0.7757
η = 0.2, 436 × 436 × 51 0.8056 0.9819 0.8089
η = 0.4, 37 × 37 × 6 0.6973 0.9328 0.5241
η = 0.4, 75 × 75 × 11 0.6228 0.9328 0.6014

C. Simple cubic arrays of spheres

Another geometry which can be analytically addressed is
the cubic packings of spheres [23,24] which are spatially
periodic. These packings are also of historical importance since
they were for a long time considered as model porous media;
moreover, they represented nonconsolidated media such as
sands and particle packings. The results were represented in
terms of the dimensionless drag coefficient kZH, which can be
related to the theoretical permeability Kth by

Kth = 2R2

9ckZH
, (24)

where R is the sphere radius and c the solid concentration.
Such configurations can be studied by four different means,

namely, by an application of the Laplace equation in which
case KL is derived or by resolution of the Stokes equation (1).
This latter resolution can be obtained theoretically according to
(24); it can also be numerically derived by LBM as summarized
in Sec. II D 1, and by a classical method [25] which uses
an artificial compressibility with a staggered marker-and-cell
(MAC) mesh and which yields a permeability denoted by
KMAC.

Two values of c were numerically addressed. A solid
particle of radius R/a = 18 is located in a cubic unit cell of
size 49a. The corresponding solid concentration c when the
sphere is discretized in elementary voxels of size a is 0.207. In
Table 2 of Ref. [23], kZH is given and equal to 7.44. Therefore,
the resulting permeability Kth according to (24) can be readily

FIG. 6. Subsample of a tight sandstone measured by Focussed Ion
Beam/Scanning Electron Microscope (FIB/SEM). It was displayed in
Fig. 8(a) of Ref. [26] under the name sech1.
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FIG. 7. Comparison of numerically derived and experimentally
measured permeability for Fontainebleau sandstone. The accuracy
of the numerical calculations (in particular kLB) breaks down at
permeabilities below k ≈ a2, where a = 5.68 μm is the resolution of
the image. (a) kEDT and kLB as function of porosity against experiment,
a = 5.68 μm; (b) distribution of critical diameters for a = 5.68 μm;
(c) kEDT vs kLB at a = 5.68 μm; (d) kEDT vs kLB at a = 2.84 μm.

compared to the values obtained by other means:

Kth

a2
= 46.6,

KL

a2
= 43.3,

KLBM

a2
= 48.1,

KMAC

a2
= 46.3. (25)

FIG. 8. Cross sections through cubic subdomains of segmented
tomograms of four outcrop sandstone samples: (a) Berea sandstone
(7503 voxels,a = 2.33 μm); (b) Bentheimer sandstone (12003 voxels,
a = 5.39 μm); (c) Castlegate sandstone (9003 voxels, a = 3.36 μm);
(d) Leopard sandstone (9003 voxels, a = 2.15 μm). White and light
gray indicate denser phases (resolved pore space is black).

FIG. 9. Comparison of permeability convergence behavior be-
tween Laplace approximation and LBM approach for the four outcrop
sandstone samples: (a) Berea sandstone, (b) Bentheimer sandstone,
(c) Castlegate sandstone, (d) Leopard sandstone, (e–h) Fontainebleau
sandstone (4803, a = 5.68 μm; FB08, FB13, FB15, FB22).

The discrepancy between Kth and the other estimations is
smaller than 7%.

The close packing of spheres arranged in a simple cubic
array is of particular interest. Calculations are performed for
a solid particle of radius R/a = 12.5 located in a cubic unit
cell of size 51a. After discretization, the numerical value of the
concentration is equal to 0.458, which is significantly different
of the theoretical value equal to π/6. Figure 1 of Ref. [23]
provides kZH as a function of c; a graphical interpolation yields
kZH = 30. Numerical calculations were performed as before,
and we obtain

Kth

a2
= 2.21,

KL

a2
= 2.31,

KLBM

a2
= 2.31,

KMAC

a2
= 2.13. (26)

The discrepancy between Kth and the other estimations is
smaller than 5%.

It can be concluded that the Laplace solver provides satis-
factory results for cubic arrays of spheres as well.
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TABLE III. Comparison of Laplace solver approximation and SRT lattice Boltzmann method for five outcrop sandstones (BE = Berea,
BH = Bentheimer, CG = Castlegate, LP = Leopard, FB = Fontainebleau). RAM use (in GB), number of cores (No. cores), and total CPU
time tCPU are given for algorithms given in Refs. [3,18,28]; here we report resources and timings for 25 000 iterations of the more recent
block-parallel MPI implementation; simulations for FB08 did not converge and were discontinued after 1.5 h and 5000 iterations with negative
permeabilities. φ includes 50% of the volume fraction of clay regions visible in the segmentation and refers to total porosity. lci , i = x,y,z

refers to the critical diameter (e.g., Ref. [3]) of the resolved pore space in the respective direction using an 18-neighborhood. All permeabilities
are given in μm2; α = 0.5.

BE BH CG LP FB08 FB13 FB15 FB22

a [μm] 2.334 5.387 3.363 2.151 5.68 5.68 5.68 5.68
Domain 7503 12003 9003 9003 4803 4803 4803 4803

φ 0.219 0.245 0.237 0.223 0.083 0.129 0.177 0.210
lcx [μm] 26.0 35.7 22.3 14.3 16.1 25.4 34.1 32.1
lcy [μm] 25.6 35.7 22.3 17.2 19.7 25.4 32.1 32.1
lcz [μm] 26.4 35.7 21.3 12.9 16.1 25.4 32.1 32.1
K ′

Lxx 1.35 4.94 1.66 0.448 0.086 0.683 2.59 3.14
K ′

Lyy 1.31 4.34 1.39 0.430 0.068 0.714 2.63 3.13
K ′

Lzz 1.38 4.30 1.45 0.359 0.064 0.704 2.58 3.30
RAM 83 675 97 97 41 41 41 41
No. cores 64 512 64 64 32 32 32 32
tCPU [h] 288 1280 480 512 2.2 2.2 2.2 3.2
K ′

xx,LBM 1.45 4.61 1.56 0.427 – 0.356 2.27 2.78
K ′

yy,LBM 1.36 4.00 1.27 0.393 – 0.407 2.34 2.78
K ′

zz,LBM 1.46 3.93 1.36 0.307 – 0.400 2.31 2.91
RAM 192 1080 326 327 60 64 63 68
No. cores 80 512 128 128 32 32 32 32
tCPU [h] 818 4352 1132 1680 - 6.6 7.8 8.2

IV. COMPARISON WITH NUMERICAL RESULTS ON
REAL SAMPLES

A. Fracture network

The fracture network displayed in Fig. 6 was measured by
FIB/SEM with a voxel size of 48.8 nm. The dimensions of
the sample are 511 × 412 × 206. It is made spatially periodic
along the y axis by replicating its mirror image. Its dimension-
less permeability was calculated by LBM, and it was found
equal to 9.29 × 10−3.The solution of the Laplace equation
yields a permeability of 8.46 × 10−3 in good agreement with
the exact one.

B. Porous media

Consider now the case of Fontainebleau sandstone for the
data given in Ref. [18]. Four Fontainebleau sandstone samples
of 4803 voxels each at resolution of ε = 5.68 μm are divided
into 64 disjoint nonoverlapping blocks of 1203 voxels each,
resulting in 256 data points. We present in Fig. 7 subplots
for the comparison of the Laplace solver (kEDT) against LBM
(kLB) and experiment as function of porosity, a point-by-
point comparison of the Laplace solver against LBM for two
discretizations, and the distribution of critical diameter (lc) at
original voxel size (5.68 μm) for the considered subsections.
The discretisation at ε = 2.84 μm is obtained by straight re-
sampling, resulting in 256 blocks of 2403 voxels. The Laplace
solver agrees with experiment for the full range of porosity
and performs slightly better at the low-porosity end. The latter
is due to discretization effects, which are known to impact
LBM solutions when the critical diameter of percolation falls
below 4–5 voxels [3]. Figure 7(b) illustrates the critical radius

distribution for the case of original image resolution of ε =
5.68 μm. Most data exhibit a critical diameter of �4 voxels.
Comparing the two solvers at the finer discretization level with
ε = 2.84 μm shows excellent agreement between the solvers
and the tendency for LBM to overpredict at low porosity due
to the decreasing critical diameter is removed.

In addition to Fontainebleau sandstone we report results for
four outcrop sandstone samples: Berea, Bentheimer, Castle-
gate, and Leopard sandstone (see Fig. 8). The samples were
imaged at the UNSW Tyree helical micro-CT facility and seg-
mented into phases using a converging active contour method
[27]. Subdomains for computations are chosen using practical
considerations rather than representative volume elements
(RVEs), and for the comparison of the two solvers the exact
segmentation details or RVE domain choices are not important.
The samples cover a range of resolutions and in terms of critical
diameter test the higher end of the proposed Laplace solver
approach. Comparisons of the two solvers are given in Table III
and the convergence behavior depicted in Fig. 9 including
for the four 4803 Fontainebleau sandstone samples. Both
solvers give similar results for realistic microstructure based
computations even for the case of large critical radius in units
of voxels; e.g., for Berea the critical radius l � 10 voxels, yet
the relative difference between solvers is below 5%. In all cases
considered the relative difference is below 11%, with a typical
range of 4%–8% difference and both underprediction by the
Laplace approximation (Berea) or overprediction (Bentheimer,
Castlegate, Leopard). We further note that for FB08, the
low-porosity Fontainebleau sample, no stable solution using
the LBM technique was achieved, while for FB13 a still low
value for permeability is calculated with LBM. Resource usage
is significantly higher for the LBM approach (see Table III)
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without using preconditioners in the Laplace solver or making
specific optimizations for nonconducting elements. While we
report here a speed-up factor of 3–4, significantly better speed-
up factors should be achievable by considering preconditioners
and implementing sparse implementations applicable in par-
ticular for the case of low-porosity samples with insulating
matrix.

V. CONCLUDING REMARKS

We presented a robust method to approximately solve for
the permeability of a porous medium based on estimating the
actual local fluid conductance through a distance map. In par-
ticular, we utilize directly the Euclidean distance map resulting
in a method which is very easy to implement. The superiority
of the method for tomographic images with limited resolution,
where the direct application of LBM may fail due to channel
width of critical diameter below 4 voxels, is demonstrated. This
is a significant development, since for many heterogeneous

samples grid refinement comes at a huge cost of not covering
larger length scales, e.g., reducing the domain size or covered
field of view directly at the imaging stage. The prediction of
permeability for low-resolution acquisitions where the pore
space stays connected, but below a critical diameter of 4 voxels,
can thus be achieved either by applying correlations utilizing
critical diameter and effective conductivity ([3]) or by applying
the Laplace technique introduced here.
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