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Density effects on electronic configurations in dense plasmas
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We present a quantum mechanical model to describe the density effects on electronic configurations inside
a plasma environment. Two different approaches are given by starting from a quantum average-atom model.
Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a
temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize
the effects of the ionization potential depression treatment. Our approach compares well with experiment and
is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression
rather than with the method of Ecker and Kröll.
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I. INTRODUCTION

Recently, experiments [1,2] were done to measure the
ionization potential depression (IPD) in dense plasmas. The
results were controversial since neither the method of Ecker
and Kröll [3] nor the approach of Stewart and Pyatt [4] can
reproduce the two experimental data sets. These experiments
appeal for a better understanding of the IPD phenomenon [5,6]
that plays a key role in equation of state or opacity calculations.

Due to IPD, the threshold energy to ionize a given ion by
exciting one of the bound electrons to the continuum is lowered
compared to the equivalent isolated ion. The bound state may
or may not exist, impacting the ionization balance and the
charge state distribution towards increasing ionization. The
IPD is difficult to describe since this phenomenon is basically
connected to the electrostatic potential distribution around an
atomic species due to free electrons and neighboring ions. In
this paper, we propose to describe the screening due to free
electrons on a given electronic configuration immersed in a
plasma, neglecting the influence of the neighboring ions on
this electronic configuration. The background ionic system
is described by a jellium that neutralizes the free electron
distribution.

The present paper is organized as follows. In the first part,
we present our approach to study the polarization around
an electronic configuration in a plasma environment in local
thermodynamic equilibrium (LTE) conditions. The basic tool is
the average-atom model in a muffin-tin approximation [7–12].
First, we solve the nonrelativistic average-atom equations at
given mass density ρ and electron temperature T . This gives
us the chemical potential μ. For each electronic configuration,
we then solve the average-atom equations under constraint
given by the occupation probabilities of the subshells of a given
electronic configuration in the nonrelativistic approximation.
The bound and free electron wave functions are calculated at
fixed chemical potential μ given by the average-atom model,
the neutrality radius Rn being tuned in order to have Z electrons
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in the neutrality cell. Z is the nuclear charge. The neutrality cell
generalizes the notion of the Wigner-Seitz cell. We propose two
approaches based on density functional theory (DFT) or ad hoc
potentials from Hartree-Fock calculations [13] (HF). We allow
the free electron density to polarize around the nucleus for each
electronic configuration. Consequently, we have one particular
neutrality radius Rn for each electronic configuration. We thus
go beyond the simple approximation of constant free electron
density inside the neutrality cell [14–17] as done also by
Massacrier and coworkers [18–20]. In the present approach,
we obtain naturally the shift in energy due to the electrostatic
potential of the free electrons inside the neutrality cell, the
effect of which should be added to the average configuration
energy as a correction energy [21]. In the second part of the
paper, we present applications of our approach to an aluminum
plasma in LTE at solid density and at T = 100 eV. We also
consider aluminum plasmas in thermodynamical conditions
corresponding to the the Hoarty et al. experiment [2]. In the
last part of the paper, we present concluding remarks.

II. METHOD

The present method is a multistep approach. First, we
perform calculations in the nonrelativistic approximation using
an LTE average-atom model in a muffin-tin approximation
[7–12] for a given element at constant mass density ρ and
electron temperature T . We assume that the ion and electron
temperatures are equal. The chemical potential μ is such that

∫ RWS

0
4πr2[nb(r) + nf (r)]dr = Z, (1)

where nb(r) and nf (r) are the bound and free electron densities
of the average atom. RWS is the Wigner-Seitz radius with
4πR3

WSNi/3 = 1 where Ni is the ion density. The average-
atom equations read
[

− h̄2

2me

∇2 − Z2e2

r
+ e2

∫
dr′ n(r ′)

| r − r′ | + Vxc(r)

]
ψa(r)

= εaψa(r) (2)
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where h̄ is the reduced Planck constant, e is the elementary
charge, and me is the electron mass. εa is the one-electron
energy. a = (n,�) for bound states and a = (ε,�) for continuum
states. In this case, the one-electron energy is simply ε. Vxc(r)
is the exchange-correlation potential [22]. The wave function
ψa(r) is decomposed in a spherical basis:

ψa(r) = 1

r
Pa(r)Yma

�a
(θ,φ)χσa

(3)

where Ym
� (θ,φ) is a spherical harmonic and χσ is a two-

component electron spinor. The bound and free radial wave
functions are normalized as∫ +∞

0
drPn�(r)Pn′�(r) = δnn′ (4)

and ∫ +∞

0
drPε�(r)Pε′�(r) = δ(ε − ε′). (5)

The total electron density of the average atom n(r) = nb(r) +
nf (r) where

4πr2nb(r) =
∑
n�

2(2� + 1)

1 + e(εn�−μ)/kBT
Pn�(r)2 (6)

and

4πr2nf (r) =
∑

�

∫ +∞

0
dε

2(2� + 1)

1 + e(ε−μ)/kBT
Pε�(r)2. (7)

kB is the Boltzmann constant.
Solving the average-atom equations is the first step. To go

beyond, we need to describe an electronic configuration of
interest including plasma effects. To achieve this task, one
can adapt the simple average-atom model in the muffin-tin
approximation. In short, we solve the average-atom equation
at fixed occupation probabilities fn� = qn�/Dn�, i.e., the ones
obtained from the subshell occupation numbers (qn�) of the
configuration. Dn� = 2(2� + 1) is the degeneracy of subshell
n�. The key problem concerns the electroneutrality condition
[14]. One can no longer use the Wigner-Seitz radius and the
chemical potential can no longer be adjusted because each
configuration must see the same electron density at large radius.
Keeping the chemical potential μ fixed, we propose to find the
neutrality radius Rn for which∫ Rn

0
4πr2n(r)dr = Z (8)

where n(r) is the sum of the bound and free electron densities
associated to the particular electronic configuration inside
the neutrality cell. We solve average-atom equations under
constraint with an electroneutrality radius Rn to be determined
during the self-consistent process of resolution of these ef-
fective average-atom equations. There is an electroneutrality
radius for each electronic configuration. We expect Rn to be
smaller (larger) than RWS for an electronic configuration with
a number of bound electrons larger (smaller) than the number
of bound electrons of the average-atom model. This is the
proposed DFT.

Another approach consists in using model or ad hoc poten-
tials. To do so, we use either the Thomas-Fermi-Dirac-Amaldi

potential VTF(r) [13] or the optimized potential method (OPM)
[23] and a plasma potential Vp(r) [14]. Instead of Eq. (2),
we solve[

− h̄2

2me

∇2 + VTF(r) + Vp(r)

]
ψa(r) = εaψa(r). (9)

There is a subtlety between Eqs. (2) and (9). In Eq. (2),
the plasma potential associated with nf (r) inside [0,Rn] and
determined by solving the related Poisson equation behaves
as (Z − N )e2/r when r → +∞ whereas VTF(r) ∼ −(Z −
N + 1)e2/r and Vp(r) ∼ (Z − N + 1)e2/r when r → +∞.
N = ∑

n� qn� is the number of bound electrons of the electronic
configuration. VTF(r) represents the average effect of the N − 1
other bound electrons and of the nuclear charge for a given
electron and Vp(r) is the plasma potential. A similar trend is
found for VOPM(r), which replaces VTF(r) in Eq. (9), in the
OPM approach. First, we define a radius R0 such that

∫ R0

0
4πr2nf (r)dr = Z − N + 1. (10)

Then, we can use the potential proposed by Massacrier and
Dubau [14], i.e.,

Vp(r) = (Z − N + 1)e2

2R0

[
3 −

(
r

R0

)2]
(11)

if r < R0 and

Vp(r) = (Z − N + 1)e2

r
(12)

if r > R0. This is the proposed HF. For OPM, R0 is such that
4πR3

0Ne/3 = Z − N + 1 where Ne is the electron density.
Note that in OPM one does not consider free electrons when
solving Eq. (9) with VOPM(r) instead of VTF(r). Moreover, one
treats the potential Vp(r) by perturbation.

Once one has solved the effective average-atom equations,
one can calculate the configuration average energy of the
given configuration [21] as well as the contribution of the free
electron electrostatic potential [14,15] to this energy. This kind
of approach does not rely on the ad hoc continuum lower-
ing model [3,4] since plasma effects are taken into account
in a self-consistent way once one knows the free electron
electrostatic potential, the bound electron wave functions,
and the occupation numbers of the electronic configuration
[14,15]. The self-consistency is obtained between the bound
and free one-electron wave functions and the neutrality radius.
The configuration average energy of a given configuration
reads [21]

Eav = Econf + �Er + �Ep (13)

where

Econf =
∑

a

{
q(a)I (a) + 1

2
q(a)[q(a) − 1]Av(a,a)

}

+ 1

2

∑
a �=b

[q(a)q(b)Av(a,b)], (14)

I (a) = εa −
∫ +∞

0
dr Pa(r)2

[
V (r) + Ze2

r

]
, (15)
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Av(a,a) = F 0(a,a) − 2�a + 1

4�a + 1

∑
k>0

(
�a �a k

0 0 0

)2

Fk(a,a),

(16)

Av(a,b) = F 0(a,b) − 1

2

∑
k

(
�a �b k

0 0 0

)2

Gk(a,b),

(17)

and

�Ep =
∑

a

∫ +∞

0
drVp(r)Pa(r)2. (18)

In DFT, V (r) = −Z2e2

r
+ e2

∫
dr′ n(r ′)

|r−r′ | + Vxc(r) whereas

V (r) = VTF(r) + Vp(r) in HF. Fk(a,b) = e2Rk(a,b,a,b) and
Gk(a,b) = e2Rk(a,b,b,a) where

Rk(a,b,c,d) =
∫ +∞

0
dr1

∫ +∞

0
dr2Pa(r1)Pb(r2)Pc(r1)

× Pd (r2)
rk
<

rk+1
>

. (19)

r< = min(r1,r2) and r> = max(r1,r2). Moreover, �Er is a
relativistic correction following Cowan [24].

When Av(a,a) and Av(a,b) are calculated using the
average-atom data, we can estimate the ionization variance
using the classical theory of fluctuations [25–27]. We consider
the matrix

ωi,j = δi,j

Difigi

+ Av(i,j )/kBT (20)

where Di is the degeneracy of subshell i. Here, fi is
defined as

fi = 1

1 + e(εi−μ)/kBT
, (21)

and

gi = 1 − fi = 1

1 + e−(εi−μ)/kBT
. (22)

The ionization variance σ 2
Z̄

is given by

σ 2
Z̄

≈
∑
i,j

(ω−1)i,j . (23)

Due to density effects, many interesting questions arise. The
selected configuration may be shown to not exist if one of
its bound shells goes into the continuum. Resonances can
be encountered in the continuum during the resolution of
the equations for each electronic configuration immersed in
a plasma [15]. Due to screening, orbitals that are not bound in
the average atom can be shown to be bound for some particular
configuration. So electronic configurations eliminated from
the knowledge of the average-atom configuration can indeed
exist due to plasma effects. This means that the configuration
sampling should be as efficient as possible. These questions
are not trivial. They can impact the calculation of emissivity
and opacity, for instance [1,2,5].

III. APPLICATIONS

We consider an aluminum plasma in LTE at solid density
and T = 100 eV. We give in Table I Econf, �Er , and �Ep

using the DFT, HF, and OPM approaches. The average-
atom configuration is 1s22s0.742p1.833s0.153p0.423d0.62 and so
nearly 1s22s2p2, which is the most probable electronic config-
uration. Concerning the relativistic correction, OPM and DFT
agree with each other. There are two groups. The relativistic
correction �Er is small and close to the reference energy of the
average-atom model, which is −0.4355 hartree. This reference
energy comes from the treatment of the exchange-correlation
phenomena. As for the three approaches, the Hartree-Fock
energies Econf are relatively close to each other, the difference
being the plasma correction �Ep. There is a noticeable fact to
remark. We can see that �Ep increases from configuration
1s2 up to configuration 1s22s22p4 for OPM and HF and
then decreases up to configuration 1s22s22p6. The change
in behavior occurs around configuration 1s22s22p3 for DFT.
This fact is the manifestation of the competition between Vp(r)
and the configuration population. When one adds an electron,
the potential Vp(r) decreases through the factor Z − N + 1
for OPM and HF, and Z − N for DFT, but the number of
electron increases by one unit. From Eq. (18), one can see
the competition. Here, the decrease of Vp(r) is not balanced

TABLE I. Atomic data using DFT, HF, and OPM approaches in an aluminum plasma in LTE at solid density and T = 100 eV (the hartree
energy unit is used).

DFT HF OPM

Configuration Econf �Er �Ep Econf �Er �Ep Econf �Er �Ep

1s2 −160.9826 −0.3490 11.0863 −160.9858 −0.3506 10.5798 −160.9861 −0.3515 10.1066
1s22s −177.1798 −0.3890 15.1227 −177.1711 −0.3816 14.8782 −177.1860 −0.3928 14.2670
1s22s2 −191.6368 −0.4245 18.3218 −191.5878 −0.4074 18.3490 −191.6432 −0.4288 17.8182
1s22s22p −203.7591 −0.4318 20.8196 −203.6367 −0.4081 21.0926 −203.7680 −0.4368 20.7362
1s22s22p2 −214.1073 −0.4365 23.8432 −213.9139 −0.4092 23.6689 −214.1230 −0.4423 22.9708
1s22s22p3 −222.7936 −0.4398 24.9291 −222.5686 −0.4109 25.0410 −222.8145 −0.4458 24.4723
1s22s22p4 −229.9252 −0.4418 24.5706 −229.7285 −0.4134 25.8157 −229.9506 −0.4476 25.1770
1s22s22p5 −235.6097 −0.4426 23.1004 −235.4950 −0.4168 25.5035 −235.6412 −0.4482 25.0001
1s22s22p6 −239.9561 −0.4425 20.6221 −239.9244 −0.4210 24.1339 −239.9985 −0.4478 23.8225
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TABLE II. Rn and R0 predicted by the HF approach in an
aluminum plasma in LTE at solid density and T = 100 eV. Rn and
R0 are in units of Bohr radius a0.

Configuration Rn R0

1s2 3.2831 3.4009
1s22s 3.1928 3.3154
1s22s2 3.1237 3.2515
1s22s22p 3.0428 3.1774
1s22s22p2 2.8625 3.0139
1s22s22p3 2.7361 2.9019
1s22s22p4 2.5651 2.7498
1s22s22p5 2.3938 2.6012
1s22s22p6 2.1932 2.4338

by the increase of the configuration population. This is a subtle
dense plasma effect predicted by the two models. One cannot
then speak always of continuum lowering. It is not clear if it is a
physical effect or a limitation of the models. For completeness,
we give in Table II Rn and R0 predicted by HF. As for the
average-atom model, Rn = 2.9905 a0 where a0 is the Bohr
radius. Note that the convergence of the scheme involving a
fixed electronic configuration in a dense plasma can be difficult
due to the presence of resonances in the continuum [18–20].
These resonances can be very sharp and so not easy to carefully
describe.

What should be seen is the existence of electronic con-
figurations forbidden by the average-atom model. In the case
we consider, in the average atom only orbitals 1s to 3d exist.
However, orbitals with principal quantum number 4 may exist
in some particular electronic configurations. To find them,
one should adjust screening. The idea is to reduce screening
in order to bound an orbital with principal quantum number
4. This is obtained by depopulating inner orbitals. The two
approaches agree to predict the nonexistence of configurations
1s24p, 1s24d, and 1s24f . Concerning 1s4s, all the approaches
predict its existence whereas 1s4p is predicted to exist only by
HF. Again, DFT and HF predict the nonexistence of 1s4d and
1s4f due to density effects. We summarize in Table III our
search.

In the case we consider, the aluminum plasma ionization
balance has been also calculated. Figure 1 shows the results.
For the ionic state between 4 and 11, the excited configuration

TABLE III. Configuration existence as a function of DFT and
HF approaches in an aluminum plasma in LTE at solid density and
T = 100 eV.

Configuration DFT HF

1s24s � �
1s24p � �
1s24d � �
1s24f � �
1s4s ∃ ∃
1s4p � ∃
1s4d � �
1s4f � �
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FIG. 1. Ionic fractions predicted by the average-atom model
(AA), DFT, and HF approaches in an aluminum plasma in LTE at
solid density and T = 100 eV.

sampling has been restricted to double excitations from any
subshell of each ground configuration. In the present case,
the orbitals we consider are up to 4f allowing us to gen-
erate 1337 nonrelativistic configurations. The average-atom
chemical potential is used for the overall configuration energy
calculations. VTF(r) is used as an ad hoc potential in the HF
model. Due to density effects, only 345 and 343 configurations
are retained by the DFT and HF models, respectively. For
both DFT and HF models, excited configurations involving 4s

and 4p orbitals are kept for the two-electron system. For the
three-electron system, the DFT model keeps singly and doubly
inner-shell excited configurations involving the 4s orbital. The
HF model does not retain such highly excited configurations.
For each configurations set, the Saha-Boltzmann equations
have been solved using the average-atom chemical potential.
The mean ionizations and the ionization variances, obtained
using the configuration occupation probabilities, are reported
in Table IV. They are compared to corresponding average-atom
values where the ionization variance has been deduced from
the classical theory of fluctuations. In the present case, the
DFT and HF mean ionizations are a little bit larger than the
average-atom value. The DFT and HF ionization variances
are noticeably reduced compared to the average-atom value.
The HF ionization skewness value is typically ten times lower
than the DFT value because the C-like and the N-like systems
do not involve the same configuration numbers for HF and
DFT calculations. For the C(N)-like system, 56(51) and 77(43)
configurations are retained for HF and DFT calculations,
respectively. For these two charge states, Fig. 2 shows the

TABLE IV. Average ionization and ionization variance for the
average atom model (AA), DFT, and HF approaches in an aluminum
plasma in LTE at solid density and T = 100 eV.

Model Average ionization Ionization variance Skewness

AA 7.2391 1.5788 0
DFT 7.5950 0.9241 −0.229923
HF 7.5819 1.1288 −0.0216070
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FIG. 2. DFT and HF cumulative configuration occupation prob-
abilities as a function of the ratio of the ground configuration energy
(Eground) on the excited configuration energy (Eexcited) in an aluminum
plasma in LTE at solid density and T = 100 eV.

cumulative configuration occupation probabilities as a function
of the ratio of the ground configuration energy (Eground) on the
excited configuration energy (Eexcited). The effects of excited
configurations are clearly visible for Eground/Eexcited values
around 1.03 and above 1.075 for N-like and C-like systems,
respectively.

We also consider aluminum plasmas in thermodynamical
conditions corresponding to the Hoarty et al. experiment [2].
Assuming LTE, ionization balances have been calculated using
the HF model [and VTF(r) as ad hoc potential] for the following
mass density and temperature conditions: 1.2 g/cc, 550 eV;
2.5 g/cc, 650 eV; 4 g/cc, 700 eV; 5.5 g/cc, 550 eV; and 9 g/cc,
700 eV. From the low to the high density cases, the mean ion-
ization values resulting from the Saha-Boltzmann equilibrium
are 12.3927(12.3574), 12.4743(12.4689), 12.3857(12.3749),
11.6922(11.6501), and 12.1187(12.0939) where average-atom
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FIG. 3. Ionic fractions predicted by the average-atom model (AA,
square symbol) and HF (circle symbol) approaches in an aluminum
plasma in LTE for the following mass density and temperature
conditions: (a) 1.2 g/cc, 550 eV; (b) 2.5 g/cc, 650 eV; (c) 5.5 g/cc,
550 eV; (d) 9 g/cc, 700 eV.
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FIG. 4. Synthetic spectra for aluminum plasmas in LTE. From
bottom to top, the thermodynamical conditions are 1.2 g/cc, 550 eV;
2.5 g/cc, 650 eV; 4 g/cc, 700 eV; 5.5 g/cc, 550 eV; and 9 g/cc, 700 eV.

values are given in parentheses. Figure 3 shows the ionic frac-
tion distributions. HF results are compared to corresponding
average-atom values where the ionization variance has been
deduced from the classical theory of fluctuations. The 4-g/cc,
700-eV case has been omitted because the corresponding HF
and average-atom model ionization balances are close to those
of the 1.2-g/cc, 550-eV case. For the lowest density case, ex-
cited configurations involving orbitals with principal quantum
number up to n = 4 are kept up to four-electron ions. For
the higher densities such excited configurations do not exist.
For the highest density case, excited configurations involving
orbitals up to 3d are kept only for the H-like and He-like ions.
These results confirm the predictions of simulations using the
Steward-Pyatt model of IPD [2]. Based on the configuration
occupation probabilities deduced from the Saha-Boltzmann
equilibrium, synthetic spectra have been computed for each
(ρ,T ) case in the 1.8–2.2-keV photon energy range. The
spectra have been convoluted with a Gaussian profile with a
full width at half maximum equal to 4 eV to take into account
the spectral resolution (E/δE = 500) [2]. Figure 4 shows the
spectra. The curves are normalized to unity in the considered
photon energy range and they have been shifted in intensity
for clarity. In all cases Stark broadened Lyβ and Heβ lines can
be observed. The Stark broadened n = 1–4 line transitions are
visible from the lowest density case only. Our results compare
well with experiment [2].

IV. CONCLUSION

We have proposed a consistent method to describe the
density effects on electronic configurations in dense plasmas.
This method does not rely on ad hoc ionization potential
lowering. Results show the difficulty to treat density effects on
electronic structure. Statistical methods based on the average-
atom model to select which electronic configuration exists or
not may fail due to dense plasmas effects. Once a selected set
of electronic configurations has been determined, the present
approach is well suited to describe LTE but also non-LTE
plasmas using high performance computing systems if the free
electrons are in LTE.
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