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to ideal magnetohydrodynamics

Giovanni Montani,1,2 Mariachiara Rizzo,2 and Nakia Carlevaro1,3

1ENEA, Fusion and Nuclear Safety Department, C.R. Frascati, Via E. Fermi 45 (00044) Frascati, Roma, Italy
2Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy

3L.T. Calcoli, Via Bergamo 60, 23807 Merate, Lecco, Italy

(Received 26 June 2017; revised manuscript received 21 December 2017; published 23 February 2018)

We analyze an axisymmetric magnetohydrodynamics configuration, describing the morphology of a purely
differentially rotating thin plasma disk, in which linear and nonlinear perturbations are triggered associated with
microscopic magnetic structures. We study the evolution of the nonstationary correction in the limit in which the
corotation condition (i.e., the dependence of the disk angular velocity on the magnetic flux function) is preserved
and the poloidal velocity components are neglected. The main feature we address here is the influence of ideal
(finite electron inertia) and collisional (resistivity, viscosity, and thermal conductivity) effects on the behavior
of the flux function perturbation and of the associated small-scale modifications in the disk. We analyze two
different regimes in which resistivity or viscosity dominates and study the corresponding linear and nonlinear
behaviors of the perturbation evolution, i.e., when the backreaction magnetic field is negligible or comparable to
the background one, respectively. We demonstrate that when resistivity dominates, a radial oscillating morphology
(crystalline structure) emerges and it turns out to be damped in time, in both the linear and nonlinear regimes, but in
such a way that the resulting transient can be implemented in the description of relevant astrophysical processes,
for instance, associated with jet formation or cataclysmic variables. When the viscosity effect dominates the
dynamics, only the nonlinear regime is available and a very fast instability is triggered.
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I. INTRODUCTION

One of the most intriguing open questions in theoretical
astrophysics is the mechanism underlying the transport pro-
cesses of accretion plasma disks around a compact object
[1,2]. The most commonly accepted idea essentially relies
on the original Shakura proposal [3] (see also Ref. [4]),
which consists of postulating an effective plasma viscosity,
able to account for the angular momentum transport. Clearly,
such a dissipation effect cannot originate from the kinetic
properties of the plasma, which is essentially ideal for most
of the plasmas in accreting astrophysical systems. Instead, the
required viscosity arises from the turbulent plasma behavior. In
fact, it is well known that convection disk instability saturates
into a turbulent regime able to enhance the plasma’s effective
shear viscosity [2,5,6]. As a consequence, under a suitable
averaging procedure (mainly based on a full azimuthal average
and local radial and vertical ones), the dynamics resembles a
laminar flow in the presence of effective viscosity; the nonideal
terms come from the correlation function of the turbulent
velocity field components. Actually, the standard model of
accretion disks (i.e., the α disk model) relies on the idea that
all the supersonic fluctuations are suppressed as time goes by
and the correlation function of radial and azimuthal velocity
components is, on average, estimated by αv2

s (where α is a
parameter less than unity and vs denotes the sound velocity of
the plasma disk).

The basic plasma instability able to generate, via its satura-
tion, the requested turbulence can be identified in the so-called
magnetorotational instability (MRI) [7–9] (see also Ref. [10]

and, for a global approach, Ref. [11]). Magnetorotational
instability is due to the coupling of the Alfvén modes to the
differential rotation of the disk. This instability exists only
in weakly magnetized plasmas, as many disk regions turn
out to be far enough from the central object and therefore
it is a reliable scenario for the implementation of MRI as
the trigger for the turbulent regimes, able to account for the
angular momentum transport across the disk via an effective
shear viscosity coefficient.

However, introducing a magnetic field in the problem
requires that also the generalized Ohm law must be satisfied
in the plasma and since the currents induced in the disk are
in general very small, this implies an effective large value of
the resistivity coefficient. This is also known as anomalous
resistivity and it calls for a convincing explanation, especially
in those astrophysical systems, like x-ray binaries, for which
the mass accretion rate is particularly large (see the discussion
presented in Ref. [12]).

An alternative perspective has been traced in Refs. [13,14]
(see also Ref. [15]), where the possibility of an oscillating
radial behavior of the backreaction (crystalline magnetic mi-
crostructure) was investigated, and then extended from a local
to a global picture in Ref. [16]. Despite such a reformulation of
the local plasma equilibrium still being far from an alternative
reliable accretion model, it nonetheless appears as a valuable
crossover from laboratory plasma physics and it has two
main advantages: (i) The short characteristic spatial scale of
the magnetic field structures allows one to deal with larger
values of the current densities so that the anomalous values of
resistivity can be avoided and (ii) the magnetic field, having
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no diffusive profiles as in the standard resistive picture, can
increase its values in some regions of the disk, thus offering
a possible paradigm for the generation of collimated jets
[17,18]. However, in Ref. [19] it was shown how the magnetic
microstructures can be damped by viscous-resistive effects,
acquiring the morphology of short transients in many contexts
of astrophysical interest.

The present study generalizes the analysis in Ref. [19] by
including, in addition to viscosity and resistivity, the effect of
a finite electron inertia (an ideal contribution expected to be
important for low values of the plasma parameter β). Here
we analyze the evolution of magnetic microstructures in both
the linear and nonlinear regimes, i.e., when the backreaction
magnetic field is small or comparable to the background
one, respectively. We consider, as in Ref. [19], a purely
differentially rotating background, embedded in a poloidal
magnetic field and we assume the validity of a corotation
condition, i.e., the disk angular velocity is, at any order of
approximation, expressed via the magnetic flux function. The
plasma disk configuration is considered thin, according to the
most common disk morphology [1], and due to the small spatial
perturbation scale, we deal with a local model for which a
fiducial value of the distance from the central compact object
is considered.

The present analysis has two main merits. (i) We demon-
strate that, in the presence of finite electron inertia, the
damped crystalline profile outlined in Ref. [19] still survives,
but now the magnetic Prandtl number (MPN) is no longer
strictly constrained to be equal to one. The model is now
applicable, in principle, for any value of such a parameter
between 0 and 1. Actually, as discussed in Refs. [2,20], the
α disk model is associated with very small values of the
MPN except for black-hole and neutron-star accretion disks for
which it can be larger, with nontrivial implications concerning
the turbulence features of MRI saturation. Furthermore, this
range of the MPN has the important consequence that the
lifetime of the microstructures is significantly enhanced. (ii)
Furthermore, we show that for a MPN greater than one, a
nonlinear instability exists, able to enhance the radial profile
of the perturbations, so triggering the onset of a new physical
regime of the disk. In other words, we find a bifurcation in
the perturbation behavior: As far as they remain sufficiently
small in amplitude, the disk is characterized by a damped radial
corrugation, but if the plasma backreaction is strong, depending
on whether the viscous or resistive effects dominate, the profile
can acquire a new growing behavior (nonlinear instability) or
still follow the damped regime, respectively. According to the
paradigm inferred in Refs. [17,18] for the jet generation from
the crystalline profile of the perturbed accreting plasma, we are
led to consider the present nonlinear growing behavior of the
disk corrugation (in the presence of finite electron inertia) as an
interesting mechanism to trigger the formation of collimated
energetic structures in the disk morphology.

II. FUNDAMENTAL EQUATIONS

The analyzed system is a geometrically thin, non-self-
gravitating disk of plasma in differential rotation around a cen-
tral stellar object. We adopt cylindrical coordinates (r, φ, z),
where z is the axis of symmetry. The electric and magnetic

fields E and B, respectively, and the current density field J
can be expressed via the magnetic flux function ψ , defined as

ψ =
∫ r

0
2πr ′B(r ′,z)dr ′, (1)

in the form

B = −1

r
∂zψêr + 1

r
∂rψêz, (2)

E = ∇� − 1

c
∂t A, (3)

A = ψ

r
êφ, (4)

J = − c

4π
∇ × B, (5)

where A is the vector potential (such that B = ∇ × A), while
� denotes the electric scalar potential. We adopt a perturbation
scheme, in which we split all the physical quantities into two
parts: a background contribution (denoted by the subscript
0) and a perturbative term (denoted by the subscript 1). In
particular, we write

ψ = ψ0(R0) + ψ1(R0,r − R0,z), (6)

where |ψ1| � |ψ0|. Here we face a local analysis by setting
R0 as the fiducial distance from the center of the stellar object,
around which the problem is developed. While |ψ1| � |ψ0|,
the correction ψ1 is assumed to be a small-scale varying
function, i.e., its derivatives can be of the same order as or
greater than the background one, and thus its contribution to
the magnetic field can be relevant.

The main point of this study is to consider the electron iner-
tia in the MHD dynamical equation. Furthermore, we include
collisional effects, such as viscosity, and finite resistivity of the
plasma (in the behavior of the temperature, we will include the
thermal conductivity too). Thus, we deal with the following
system of dynamical equations. The first is the generalized
Ohm law, obtained from the balance of the forces acting on the
electrons, i.e.,

∂t J + ∇( J · v + v · J) = nee
2

me

(E + v × B) + ηB J, (7)

ηB = 1

σB

≡ meνie

nee2
, (8)

where ne is the electron number density, νie denotes the ion-
electron collision frequency, ηB is the resistivity coefficient
(e and me being the electron charge and mass, respectively),
and v is the velocity field. In what follows, it will be taken
to be purely azimuthal, i.e., v = ωrêφ , where ω denotes the
differential angular velocity of the disk.

Then we have the basic law for mass conservation, i.e., the
continuity equation

∂tρ + ρ(∇ · v) = 0, (9)

where ρ is the mass density. It is worth noting that, for a
purely azimuthal velocity field, from Eq. (9) we immediately
get ∂tρ ≡ 0 and ∇ · v ≡ 0.

The third dynamical equation is the momentum balance in
a compressible plasma (de facto the MHD extension of the
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Navier-Stokes equation, including the Lorentz force), i.e.,

ρ[∂tv + (v · ∇)v] = −∇p + 1

c
J × B + ηV ∇2v

+ (ηV /3 + ιV )∇(∇ · v), (10)

where ηV denotes the shear viscosity coefficient, ιV is the
second viscosity coefficient, and p is the thermostatic pressure.
We stress that the last term of this equation identically vanishes
for the purely azimuthal velocity field at the ground of our
analysis, as mentioned above.

It is easy to recognize that Eqs. (7) and (10) have the
following nonzero azimuthal components:

∂tψ = c2

4π

( me

ne2
∂t∇2ψ + ηB∇2ψ

)
, (11)

∂tψ − ηV

ρ
(∇2ψ) = 0, (12)

where we consider the disk sufficiently thin to neglect the
generation of a toroidal magnetic field component. Expression
(12) holds when the corotation condition ω = ω(ψ) is assumed
[21]. Indeed, when the magnetic field is purely toroidal, we
can always require that the azimuthal component ∇ × E = 0,
i.e., ω = ω(ψ) even in the nonstationary case. Otherwise,
for a generic ω, a nonstationary azimuthal component of the
magnetic field could be generated: The corotation condition
is no longer ensured by a theorem, but it still survives as
a particular solution of the nonstationary induction equa-
tion. In the vertical and radial directions, Eqs. (7) and (10)
result in

0 = ∂zp + ρωk
2z − 1

4πr
∂zψ�̃ψ, (13)

−ρω2r = −∂rp − ρω2
kr

− 1

4πr
∂rψ

[
∂r

(
1

r
∂rψ

)
+ 1

r
∂z

2ψ

]
, (14)

respectively, where �̃ = ∂r (r−1∂r ) + r−1∂2
z .

As previously stressed, the investigation of the evolution
of the magnetic flux surface is performed by means of a
perturbative approach. Thus, the density and pressure func-
tions are split into two terms around the fiducial radius R0,
namely, ρ = ρ0 + ρ1 and p = p0 + p1. Accounting for the
local character of our analysis and the small-scale structure of
the perturbation ψ1, the approximation[

∂r

(
1

r
∂rψ1

)
+ 1

r
∂z

2ψ1

]
� 1

R0
�ψ1 (15)

holds, where �ψ1 ≡ ∂2
r ψ1 + ∂2

z ψ1.
Finally, we observe that the background we are perturbing

corresponds to a purely differentially rotating disk (i.e., ω =
ω0(ψ0(R0))) which is embedded in the steady vacuum mag-
netic field of the central object described by ψ0 = ψ0(R0) (we
are neglecting the plasma backreaction on the background).
The perturbation quantities are regarded as varying on small
spatial scales. Thus, their gradients can be relevant, especially
those of second order which dominate and provide the current
density flowing in the disk (which is regarded as negligible on
the background). Concerning Eqs. (11) and (12), they hold for

the perturbed function ψ1, as well as for ψ . This is due to the
stationarity of ψ0 and the small scale of variation of ψ1, such
that ∇2ψ1 � ∇2ψ0. Therefore, we can rewrite Eqs. (11) and
(12) as

∂tψ1 − c2

4π

( me

ne2
∂t�ψ1 + ηB�ψ1

)
= 0, (16)

∂tψ1 − ηV

ρ
(�ψ1) = 0. (17)

Below we analyze the obtained dynamical system in two
different regimes: linear (when the backreaction magnetic field
is small) and nonlinear (when the backreaction magnetic field
is comparable to the background one). Since Eqs. (16) and
(17) are intrinsically linear, the crucial difference between the
linear and nonlinear regimes will consist in the specific form
acquired by the perturbed form of Eqs. (13) and (14).

III. LINEAR REGIME

In the present scheme, the mass density remains a stationary
variable because its behavior is governed by the continuity
law (9), which provides ∂tρ1 = 0 [i.e., ρ = ρ0(R0,z)]. Thus,
Eqs. (11) and (12) can be split to describe the spatial and the
temporal behavior of the magnetic flux surface,

�ψ = νieρ

ηV

(Pm − 1)ψ, (18)

∂tψ = νie(Pm − 1)ψ, (19)

where the MPN has been introduced as follows:

Pm ≡ 4πηV

c2ρηB

. (20)

Clearly, the value of Pm influences critically the form of ψ and
the solution of Eq. (19) is

ψ(r,z2,R0,t) = ψ̄(r,z2,R0)eνie(Pm−1)t . (21)
If Pm > 1 or Pm < 1, we clearly deal with two different
regimes corresponding to a growth or a damping of the flux
function.

Meanwhile, Eq. (18) does not admit an analytical general
solution. Let us now assume a separable form for the function
ψ̄ , i.e.,

ψ̄(r,z2,R0) = N (r,R0)F (z2).
Restricting our analysis to close to the equatorial plane, so that
z/H � 1 (H being half the depth of the disk), and defining
the normalized density D as

ρ(z)

ρ(z = 0)
= D(z2) = e−z2/H 2 �

(
1 − z2

H 2

)
, (22)

we finally get the following solution, strictly valid for the case
Pm < 1:

ψ̄(r,z2,R0) = ψ̄0
0 sin[k2(r − R0)]e−z2/�2

. (23)

Here we have introduced the parameters

�2 = 2H√−k1
, (24)

k1 = νie

2αvsH/3
(Pm − 1), (25)

k2 =
√

−k1

(
1 − 1√−k1H

)
. (26)
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We stress how we have adopted the standard Shakura expres-
sion for the viscosity coefficient, i.e.,

ηV ≡ 2
3αHvsρ0(z = 0),

where vs is the background plasma sound velocity and α is a
dimensionless parameter.

Thus, in this specific case, a magnetic structure has been
found which is periodic in the radial direction, with a temporal
damping like in Ref. [19]. In fact, as shown in Refs. [13,14],
under the hypotheses considered, the radial and vertical Navier-
Stokes equation components (13) and (14) reduce, in the linear
regime |∂rψ0| � |∂rψ1|, to the single (radial) one:

�ψ1 = −k2
0ψ1, k2

0 ≡ ω2
K

vA

, (27)

where v2
A = ∂rψ

2
0 /4πR2

0ρ0 is the background Alfvén velocity
and ωK ≡ ω0(ψ0) denotes the Keplerian angular velocity.

It is possible to find a relation between the MPN and the
typical β parameter of the plasma. By comparing Eq. (27) with
Eq. (18), we arrive at the following identification:

k2
0 = νieρ0

ηV

(1 − Pm). (28)

Adopting again the Shakura prescription for the ηV coefficient
and recalling the definition of the classic plasma parameter β,

β = 4πp

B2
= 1

3
H 2k2

0 ≡ 1/3ε2
z , (29)

we can easily obtain

2αωKβ = νie(1 − Pm). (30)

Now, using the condition of reality of the root in Eq. (26), we
obtain

β > 0.25, (31)

which is a restrictive condition for the existence of this periodic
structure for the magnetic flux surface.

We now stress how, in the case Pm > 1, the expression
(21) is associated with an exponential growth of the magnetic
flux function. Thus, this regime corresponds to an unstable
behavior of the system. However, it is important to stress
that Eq. (18) would provide an intrinsic linear differential
problem for the function ψ1. It easy to realize how such an
equation would be incompatible with the linear limit (27) of
the radial configurational equation (since there the sign in
the coefficient of the right-hand side is necessarily negative).
As a consequence, the unstable behavior, associated with the
range of values Pm > 1, can only survive in the fully nonlinear
regime, i.e.,

|∂rψ1| ∼ |∂rψ0|, (32)

when Eq. (27) does not hold and it is replaced by a nonlinear
problem. In this limit, we also observe that the radial depen-
dence of ψ1 changes with respect to the crystalline structure,
although remaining a small-scale configuration.

IV. NONLINEAR REGIME

We now address the analysis of the full set of dynamical
equations in the nonlinear regime where the backreaction

magnetic field is comparable to or greater than the background
one |∂rψ1| � |∂rψ0|. The dimensionless first-order perturbed
system reads

∂u2 P̂ + εzD̂ + 2�εz
Y ∂u2Y = 0, (33a)

∂xP̂ /2 + (D̄ + D̂/β)Y + �εz
Y (1 + ∂xY ) = 0, (33b)

∂t̄Y = γ Y, (33c)

�εz
Y = γ D̄(u2)Y,

(33d)

where we have introduced the notation

Y = k0ψ1

∂R0ψ0
, x = k0r, u = z√

H/k0
,

t̄ = 2αk0vs

3εz

t, γ = 3νieεz(Pm − 1)

2αk0vs

,

D = D̄ + D̂, P = P̄ + P̂ , �εz
≡ ∂2

x + εz∂
2
u,

where D is defined in Eq. (22), while P = p/p(z = 0).
Expressions marked with an overbar and a circumflex denote
background and perturbation quantities, respectively.

We now observe that Eq. (33c) admits the solution

Y (t̄ ,x,u2) = Y0(x,u2)eγ t̄ , (34)

which, substituted in Eq. (33d), provides the fundamental
configurational equation

�εz
Y0 = γ (1 − εzu

2)Y0. (35)

It is easy to check that this equation admits the solution

Y0 = A Re[exp(x
√

γ + εz

√−γ − u2√−γ /2)], (36)

where the constant amplitude A must be fixed by the initial
condition on the real plasma disk.

As it is clearly illustrated by the limit εz → 0 (i.e., the limit
of large-β values, typical of astrophysical regimes), when γ

(i.e., Pm − 1) is negative, the profile is damped in time and
with the vertical height while it radially oscillates (damped
crystalline structure). Otherwise, when γ (i.e., Pm − 1) is
greater than zero, the configuration takes the morphology
of an instability (it growths in time), oscillates in the verti-
cal coordinate, and growths radially too (nonlinear unstable
regime). In the case of a non-negligible value of εz, but still
small, the situation remains the same, but for Pm > 1, the
radial dependence acquires a small oscillating component in
addition to the exponential growth. Finally, we note that when
γ passes from negative to positive values, we go from from
trigonometric functions (intrinsically bounded) to hyperbolic
trigonometric functions (in principle divergent). However,
their behavior remains valid only near the fiducial radius and
therefore they never really diverge.

Let us now look for a general solution of the nonlinear
system above. For the stationary form of the density previously
discussed, we examine the regime where |Y | � 1 and both D̂

and the linear terms in the first two equations of the system
(33) are negligible. In this way, only the two equations

∂u2 P̂ + 2γ D̄Y∂u2Y = 0, (37)

∂xP̂ + 2γ D̄Y∂xY = 0 (38)
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FIG. 1. Plot of the dimensionless pressure of Eq. (39) for t̄ =
0, � = 1, εz = 0.001, A = 1, and γ = −0.5 (top) and γ = 0.01
(bottom).

survive and we get the solution

P̂ = [
�(R0,z0) − γ D̄Y 2

0

]
e2γ t̄ . (39)

In this expression, � is an integration constant and we stress
how the perturbed pressure depends quadratically on the
function Y . Thus, for Pm < 1, it exhibits a periodic structure
just like the magnetic flux function, as sketched in Fig. 1.

It is worth noting that such behavior of the pressure holds
for both Pm < 1 and Pm > 1, although the latter exists only
in this nonlinear regime and it is not associated with a
crystalline structure, while the former is present, as shown in
the preceding section, even for a weak backreaction of the
plasma (and it always corresponds to a radial oscillation).
Actually, Eqs. (33c) and (33d) are intrinsically linear and
therefore hold for any intensity of the backreaction. The present
analysis demonstrates that, for Pm > 1, a nonlinear instability
exists and it is described by an exponential growth of the
perturbed magnetic flux function and of the corresponding
thermodynamic pressure contribution. Indeed, in the nonlinear
limit, a bifurcation takes place: If the resistivity dominates over
the viscosity contribution (Pm < 1) the crystalline structure
is damped, while in the opposite regime (Pm > 1) a new
nonlinear regime is present.

Regarding the regime in which the crystalline structure is
damped, we stress that the present analysis extends the study in

Ref. [19], valid for Pm = 1, to the whole region 0 < Pm < 1.
This allows a much longer duration of such transient processes.
This is an interesting issue because it permits one to apply the
present mechanism to a wider class of astrophysical process,
like the cataclysmic variables.

Role of temperature

We now briefly investigate the behavior of the disk plasma
temperature, during the evolution of the structures outlined
above, both in the presence of damping and when the nonlinear
instability is triggered. First of all, it is worth expressing
the dependence of the model parameters on the temperature,
namely, we have

νie = 4

3
e4ne

√
2π√
me

1

T 3/2
ln(�e), (40)

ηB = meνie

ne2
∼ T −3/2, (41)

ηV = minv2
s

νie

∼ T 5/2, (42)

Pm = 4πηV

c2ρηB

∼ T 4

ne ln(�e)
, (43)

where ln(�e) denotes the Coulomb logarithm. In particular, we
stress how our critical parameters νie and Pm have the opposite
behavior in terms of the temperature: The former decreases
with T while the latter increases.

It is well known that Coulombian collisions in a plasma
weakly affect its internal energy with respect to the ideal gas
expression (this can be assumed true also in the presence of
effective dissipation due to turbulence). Thus, we are led to
infer that the perfect gas equation of state, here postulated
for the adiabatic background, remains valid at the first order
of perturbation. However, we have to emphasize that, in the
present case, both the divergence of the velocity field and the
advective operator identically vanish. As a consequence, the
evolution of pressure and temperature (here the mass density
is necessarily constant in time) must nonetheless be governed
by the same dissipation contribution.

Regarding the nonlinear case above, we can obtain, using
the ideal gas equation of state p = kBTρ/mi (where mi is the
ion mass and kB the Boltzmann constant), a relation betweenP1

and T1. In fact, if we split the temperature into the background
contribution T0 and the perturbed term T1, we obtain

p = kBT

mi

ρ ⇒ P1 = kBρ0

mi

T1,

where ρ0 is constant in time. Therefore, the perturbed tem-
perature acquires the same behavior of the pressure, namely,

T1 ∼ (Pm − 1)ψ2
1 . (44)

Thus, requiring a quasi-ideal behavior of the disk plasma, we
realize that the temperature must evolve both with time and
with the function ψ1 itself (at least in the perturbed scheme).

In general, the equation governing the temperature evo-
lution contains all Joule, viscous, and finite electron inertia
contributions. However, when viscosity is present in the
system, also thermal conductivity must be accounted for and
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it provides the typical diffusion term of the thermal energy.
If we postulate that such a term dominates the temperature
dynamical equation, we get

3

2

ρ0

mi

kB∂tT = κT �T, (45)

where κT is the thermal conductivity coefficient. Immediately,
Eq. (45) reverts to Eq. (12) and leads to a relation between
the temperature and magnetic flux surface, i.e., T = T (ψ).
Considering Eq. (44), it is possible to rewrite Eq. (45) as a
function of ψ1. According to the gradient hierarchy already
introduced in the perturbation scheme above, we can neglect
the quadratic gradient of ψ1, i.e., the following condition holds:

|(∇ψ1)2| � |�ψ1|.
Thus, we easily obtain Eq. (12) if the following constraint for
the thermal conductivity is valid:

κT = 3

2
kB

ηV

mi

.

Furthermore, considering T = T (ψ) and splitting the different
orders, we then get

T (ψ) = T0(ψ0) + ∂T

∂ψ
ψ1 + 1

2

∂2T

∂ψ2
ψ1

2

� T0(ψ0) + 1

2

∂2T

∂ψ2
ψ1

2, (46)

where we accounted for Eq. (44), which implies that

∂T

∂ψ
= 0.

This means that ψ0 is a stationary point for the temperature
evolution. In particular, it corresponds to a maximum value
in the damped case Pm < 1 and to a minimum where the
nonlinear instability takes place for Pm > 1.

Thus, starting from our guess about the evolution of the
temperature as guided by the thermal diffusion only (which
appears certainly well posed for large values of T0 and ρ0 in
the kinetic limit or for large value of the viscosity coefficient),
we arrive at the construction of a consistent behavior for all the
system variables, able to preserve the quasi-ideal feature of the
plasma disk. This is in agreement with a physical prediction
of the behavior of the temperature in the two regimes Pm > 1
and Pm < 1: In the former case, the plasma temperature starts
to increase from a minimum value as an effect of the nonlinear
instability, while in the latter it is damped by the dissipation.
Clearly, the scenario traced above is not unique, due to the
large number of different regimes able to take place in different
domains of the model parameters.

V. ESTIMATE OF DAMPING TIME

Let us now investigate the temporal duration of the struc-
tures described above. In order to be observed, the microstruc-
tures must exist beyond the dynamical time scale 1/ωK , which
is the time needed for the vertical hydrostatic equilibrium to
be established, and we assume that it is preserved. Thus, the
condition

τωK � 1

FIG. 2. Plot of τωK (Pm) in Eq. (48). To illustrate the behavior
of such a quantity, we set H 2νieρ0/3ηV = 1. The dashed red line
represents the asymptote for Pm = 1.

must hold, where τ denotes the lifetime of the microstructures,
in order for the model to be consistent and predictive for
astrophysical processes.

This ratio can be explicitly found in terms of the three
variables (T0, ρ0, and R0)

τωK ∼ T
3/2

0 R
−3/2
0

ρ0
(
miT

4
0 /ρ0 − 1

) , (47)

where all the parameters depend on the physical features of the
stellar object. In order to estimate τωK , we observe that it can
be written, by means of Eq. (30), as

τωK = 1/|2αβ|. (48)

In the case Pm > 1, by estimating Eq. (47) for quasi-ideal
kinetic values of the parameters we get τωK � 1. However,
Pm can receive contributions by effective dissipation due to
turbulence. In this case, for Pm slightly greater than one, the
time scale of the nonlinear instability can be very large, as
depicted in Fig. 2. Meanwhile, when Pm < 1, accounting for
the convention of 0.01 < α < 0.1 and β > 0.25 [see Eq. (31)],
we can conclude that, in this case, τωK is always greater
than one and therefore the perturbed plasma configurations
discussed above survive for a sufficient long time to get
astrophysical meaning since they could be involved in the
mechanism of angular momentum transport.

This constitutes a significant upgrading of the analysis
in Ref. [19], since the duration of the transient process is
enhanced. Indeed, in the present model, for Pm slightly greater
or less than one (Pm = 1 is the case studied in Ref. [19]), the
time scale of the microstructures can be much greater (see
Fig. 2) than 1/ωK and they becomes of interest for a wider
class of astrophysical phenomena.

Instead, in the case of Pm > 1, the increase of Pm decreases
the time scale and so does the possibility for the structures to
exist. The very small value of the characteristic time in the
case Pm > 1 for kinetic values of the parameters is clearly
consistent with the emergence of an instability which is just the
trigger of an incoming process. We conclude by emphasizing
how the growth rate of such nonlinear instability can be much
greater than all other linear instabilities present in the disk (for
instance, the fundamental MRI one) whose characteristic time
is of order 1/ωK .
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VI. CONCLUSION

In this work we analyzed the linear and nonlinear behavior
of a thin disk configuration, whose background profile is a
purely differentially rotating plasma, embedded in the gravi-
tational field of the central object. The triggered perturbations
preserve both the corotation condition and the negligibility of
poloidal velocity components.

In the present model we included both ideal effects (like
the finite electron inertia) and collisional corrections to MHD,
in particular finite plasma electric conductivity, viscosity,
and thermal conductivity. In this respect, two main different
regimes have been identified: (i) the limit in which the resistiv-
ity of the plasma dominates the viscosity (MPN number less
than one), where both the linear and the nonlinear perturbation
evolution can be addressed, and (ii) the opposite case of
dominating viscosity (MPN greater than one), where the
nonlinear perturbation dynamics is only available.

With respect to the first regime, when the crystalline profile
of the disk is damped by the collisional effects, the main
merit of the present analysis has been to extend the results
obtained in Ref. [19] (valid only for MPN exactly equal to one)
toward a wider class of behaviors. As discussed in Ref. [2], the
standard model for accretion disk relies on very small values
of MPN, available in the proposed scenario. In particular,
the duration (the mean lifetime) of the crystalline structure
is significantly enhanced in the present model, allowing its
implementation to describe a wider class of astrophysical
transients. In other words, we upgrade the previous analysis
in Refs. [14,19], demonstrating how the radial oscillation of
the magnetic flux function, due to the plasma backreaction
and originally outlined in Ref. [13], is significantly affected
by collisional effects. However, such a damping allows the
microstructures to survive for a sufficiently long time to be
correlated with transient astrophysical phenomena, like the jet
formation or the dynamics of cataclysmic variables.

The regime dominated by the viscosity offers the most
intriguing feature emerging from the present analysis, i.e.,
the existence of a nonlinear instability of the system. This
is characterized by very high growth rates (at least for Pm

significantly different from one) and is able to enhance the
crystalline profile of the disk toward new plasma configu-
rations, presumably associated with saturation processes of
such an instability. Again, the rapid evolution of this new
regime suggests that it could concern the triggering of physical
processes across the thin disk configuration, emerging from a
change of preexisting conditions of the plasma. In particular,
we observe that such a limit Pm > 1 corresponds to the real
kinematic properties of the plasma which is, in many accretion
disk regions, quasi-ideal (see Refs. [2,19]). Thus, we are led to
infer that the new nonlinear instability we trace here is triggered
by a significant suppression of the disk turbulence, responsible
for the effective value Pm � 1, like in the α models [2]; indeed,
in the absence of turbulence, the viscosity and resistivity of the
disk take their quasi-ideal value, which corresponds to Pm � 1
[19].

A possible scenario in which the transition from the damped
to the unstable regime is nonlinearly viable could correspond
to a rapid cooling of the disk with the associated suppression of
the MRI and of the corresponding turbulence. In this respect,
we observe that the temperature is indeed suppressed in the
damping regime of the crystalline structure, suggesting the
following intriguing paradigm: If the disk backreaction is of
small scale, a crystalline configuration of the disk can be
achieved, but its evolution is strongly affected by the effective
viscosity and resistivity present in the disk so that its profile
is damped, together with the disk temperature. This cooling
of the disk suppresses MRI and then turbulence, restoring the
quasi-ideal character of the plasma which, in the nonlinear
regimes, induces the triggering of a new instability. However,
the validation of such a paradigm requires that some nontrivial
questions must be addressed, including (i) the clarification of
the real process (maybe external to the disk physics, like a
sound or a gravitational wave impacting it), which is able
to determine the existence of the crystalline morphology of
the radial profile, and (ii) the demonstration that the cooling
phase of the disk takes place in the nonlinear regime, where
the instability can be triggered. Nonetheless, the main merit of
the present analysis consists in tracing a new possible scenario
for accretion disk nonlinear instability.
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