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Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows
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This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional
wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models.
The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types
of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains
initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the
laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of
the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence
which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the
two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined.
The mean first passage time before each event is then systematically computed as a function of the Reynolds
number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated
puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before
collapse is separated in two. One finds that ln(T ) = Apr − Bp , with Ap and Bp positive. Moreover, Ap and Bp

are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes
initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean
first passage time T before collapse is also separated. The author finds that T � exp[L(Ar − B)] with A and B

positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations
theoretical approaches of the study of mean first passage times and multistability, where ln(T ) in the limit of small
variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss
the exponential dependence in L of T . In particular, it is shown how a T � exp[L(A′R − B ′)] can be derived
in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville.
This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical
effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the
saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to
the asymmetric probability density function of kinetic energy of turbulence.
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I. INTRODUCTION

Transitional wall turbulence is an important regime of many
geophysical or industrial flows. One fundamental example
is the stably stratified planetary boundary layer. This flow
manifests itself over ocean (where the stratification is mostly
stable) and over land after the late afternoon transition (which
corresponds to the stabilization of stratification) [1,2]. In both
examples, the stably stratified wall flow will display the feature
of simple, academic transitional wall flows such as plane
Couette flow and pipe flow [1]. These flows are controlled by
the Reynolds number, the ratio of advection over viscosity. In
these prototypes of transitional wall turbulence, for a given
range of Reynolds number, turbulence can coexist in time
and space with laminar flow [3,4]. Turbulent patches (termed
puffs in Hagen-poiseuille pipe flow [5]) can split [4,6], extend
[5,7–9], or collapse after a time [10,11]. These flows are thus
very intermittent and this intermittency is the main obstacle in
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understanding and modeling this type of turbulence. This limits
the quality of climate models where boundary layer turbulence
is parametrized using a simple model because it is not explicitly
resolved [2].

Stated more precisely, transitional wall flows undergo spa-
tiotemporal intermittency (STI) [10]. The core ingredients of
this behavior are the stability of the laminar base flow for all
Reynolds numbers [12,13] (or quite beyond the transitional
range), transient chaos of small subsections of the flow [14],
and the possibility of contagion of neighboring regions [15].
In infinite size domains, turbulence is sustained with a steady
turbulent fraction in the transitional range as a consequence of
this process [15,16]. One fundamental feature of STI in pipe
flow is that the turbulent puffs are transient and metastable and
can collapse or split after a mean first passage time T [17,18].
This time is often termed the lifetime of the puff in this context.
Knowing and understanding the duration of these transients is
a necessity if one is to propose models of such flows that are
realistic and simple enough so that they can be incorporated in
climate models [2], for instance. In pipe flow, extensive data
on the passage time is available concerning the low Reynolds
number part of the transitional range. One finds that ln(T ) is
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FIG. 1. Sketch of the conceptual phase space of a transitional
wall flow, including basin boundary, minimal seed of turbulence, the
turbulent coherent structures (1 to n puffs) and the events linking
these metastable states: turbulence collapse, puff splitting, build-up of
turbulence from the laminar base flow under vanishing perturbations
(possibly joining optimal trajectory). L stands for laminar base flow.

faster than linear in Reynolds number [11]. In smaller pipes,
one finds that ln(T ) is proportional to pipe length × Reynolds
number [19]. Such a size scaling may have the same origin as
other exponentially increasing chaotic transients in extended
systems (see [20], Sec. 4). Verification of the proposed scalings
has not yet been done in the higher part of the transitional range
and in larger pipes. In other flows, the available results are even
more fractional. The main limitation in obtaining these results
is of course the extreme length of the transients at play. Educing
the exact scaling of mean first passage times is fundamental if
one wants to discuss the physical mechanism behind turbulence
collapse and build-up.

If one is to extend or even obtain the Reynolds number and
length dependence of mean first passage time before collapse of
transitional wall turbulence, especially in flows with a realistic
geometry, one has to propose a strategy adapted to the study
of very rare events which is numerically and theoretically
tractable. This strategy should be applied in a large enough
range of Reynolds number and domain length so that scalings
are thoroughly verified. One can define several rare events
along with their passage time, which are sketched in Fig. 1.
One finds the collapse of puff and laminar-turbulent pipes and
the splitting of a turbulent puff. Another class of events is the
build-up of turbulence starting from the laminar state, under
perturbations of vanishing variance, often passing by optimal
perturbations or a minimal seed [21,22]. Fortunately, all three
events can be reformulated as a problem of multistability
between several metastable states. Multistability has been a
very active field of study in statistical physics and probabilities
[17,23–27]. Many tools and concepts are available that can be
used for the study of transient turbulence. Moreover, many
of these tools and concepts originate from kinetic chemistry
[17,27], so that they can be presented to a very wide community
using references to classical results such as the Arrhenius
law [17].

In this paper, I present a joint numerical and theoretical
study of the mean first passage time before these events in
two models of pipe flow. A spatiotemporal stochastic partial
differential equation (SPDE) model of pipe flow was chosen
[16]. The extensive numerical study, besides giving insightful
physical results, should hopefully propose guidelines and
methods for the study of rare events in direct numerical
simulations. This study is complemented by a theoretical and
numerical analysis of a two degrees of freedom stochastic
differential equation (SDE) model [28]. Since the chosen
models are stochastic, all the theoretical assertions strictly
hold and the orders of approximations are understood. The
numerical method used for rare events calculation in these two
models is called adaptive multilevel splitting (AMS) [23,29].
It is a mutation-selection algorithm [30], arising from kinetic
chemistry [27], designed to compute extremely fast, extremely
rare multistability events along with the corresponding mean
first passage times. The passage times will be computed in a
very large range of length and Reynolds number so as to verify
precisely scaling laws, and thus discuss physical mechanisms
with a sound basis. The numerical results will be discussed
and complemented by theory derived from large deviations
approaches of the study of rare events [25,31–34]. These
approaches concern the asymptotic study of very large mean
first passage times T and very small probabilities ρ, under
a felt noise of small variance 1/B. Large deviations revolve
under the formulation of said passage times, probability density
functions (pdf), etc., as a large deviation principle,

lim
1/B→0

1

B
ln(T ) = I (��B), lim

1/B→0
− 1

B
ln(ρ) = I ′(��B). (1)

The functions I and I ′ are generally called rate functions, are
independent of the noise variance 1/B (as indicated by the
diagonal strikethrough ��B), and are of finite amplitude. The
rate functions can often be derived using dedicated techniques
[24,25,32,33]. Behind many of these computations lies the
instanton, the most probable trajectory in multistability events
in the low variance noise limit. Parametric studies, presentation
of numerical results, and comparison with theory will be
very convenient using such a framework. In particular, written
approximately, one can see that these results generalize the
Arrhenius law for mean first passage times T � exp(BI ) and
the Boltzmann factor for pdf ρ � exp(−BI ′). This uses the
notation � to write in a compact manner that the equalities
should be understood in the limit of the logarithm form of
Eq. (1) ([25], Sec. 3.2). Earlier successful use of such coupled
theoretical and numerical studies is for instance the general
study of metastability in the stochastic Ginzburg-Landau equa-
tion [24], and similar work has been performed in a model of
the zonal turbulent jets of Jupiter [35]. Indeed, geophysical
fluid dynamics is another situation where multistability occurs
[36], and many parallels can and will be drawn between the
two fields of study. An accelerated sampling procedure for
computation of mean first passage time before collapse of
puffs in a model of pipe flow has also recently been proposed
[37]. The sampling is done by reducing or increasing the
Reynolds number when the kinetic energy crosses certain
thresholds, in order to facilitate turbulence collapse. First
passage durations are reconstructed from these samples using
a pdf based argument. Empirical criteria give guidelines

023109-2



EXTREMELY RARE COLLAPSE AND BUILD-UP OF … PHYSICAL REVIEW E 97, 023109 (2018)

for choices of thresholds and Reynolds numbers leading to
maximum precision. Large deviation methods have also been
applied in a direct manner to compute most probable paths
and transition rates between the linearly laminar base flow and
Tollmien-Schlichting type waves in low Reynolds number two
dimensional plane Poiseuille flow [38]. Improvement of the
temporal discretization and of the optimization procedure may
lead to calculations in three dimensional plane Poiseuille flow,
where wall turbulence can exist.

This study will be presented according to the following
plan. The SPDE model of pipe flow and my choice of control
parameters will be presented first (Sec. II A). The numerical
method, AMS, and its application to the model will be pre-
sented next (Sec. II B). Numerical results will then be presented
in two parts: first by detailing the feature of selected turbulent
collapse, puff splitting, and turbulence build-up trajectories
(Sec. III A), second by presenting the parametric study of
mean first passage times (Secs. III B and III C). Theory is then
used to interpret the parametric dependence of numerically
computed passage times. I first discuss the length dependence
of mean first passage time in the various regimes of collapse
in Sec. IV A. The conceptual two degrees of freedom model
is then analyzed analytically to derive the Reynolds number
scaling of the mean first passage times before collapse of
turbulence in Sec. IV B. The results and perspectives are
eventually discussed in the Conclusion (Sec. V).

II. MODEL AND METHOD

A. Stochastic partial differential equations model
of transitional Hagen-Poiseuille flow

To a large extent, the complexity of transitional pipe
flow can be successfully reduced to one dimension of space
(the streamwise position x) models coupling the streamwise
velocity u and the intensity of turbulence q [16]. At their
core, the models are based on the observation that pipe flow
turbulence is very similar to an excitable system, like the action
potential in a neuron. In this paper, I use a stochastic partial
differential equation (SPDE) model which reads

∂u

∂t
= − (1 + U )

∂u

∂x
+ ε1(1 − u) − ε2uq, (2)

∂q

∂t
+ U

∂q

∂x
= ∂2q

∂x2
+ q[u + r − 1 − (r + δ)(q − 1)2]

+ q

√
2

β
η.

〈η(x,t)〉 = 0, 〈η(x,t)η(x ′,t ′)〉 = δ(x − x ′)δ(t − t ′).

(3)

The term η is a noise white in time and space. It leads to
a multiplicative noise interpreted with an Itō rule (see [18],
Sec. 4.2). In this system of stochastic partial equations, r is
the Reynolds number, the main control parameter. Following
Barkley [16], the other parameters are set as ε1 = 0.04, ε2 =
0.2, δ = 0.1 and the inverse variance of the noise is set at
β = 1.5 so that the model describes the relevant dynamics.
One key element is that q �= 0 stimulates 1 − u and that 1 − u

goes to zeros when q = 0. In this manner q leads to 1 − u. The
pipe is periodic in x and has a length L.

This model contains the physics of pipe flow, from the
fully laminar base flow to higher Reynolds number slugs
[39] through the transitional regime [16]. One can consult the
mentioned references for more details on the typical regimes
and on the internal mechanics of the system of (stochastic)
partial differential equations. Note that the origin of the noise
in transitional turbulence models is different from that in two
dimensional turbulence models, where metastability is also
studied [36]. This is not an extrinsic energy injection, so that it
is not balanced by dissipation. Instead, it represents the intrinsic
fluctuations of turbulence. In particular, such noises terms are
absent in direct numerical simulations. In wall turbulence,
the injection of energy is actually extraction of energy by
turbulence from the laminar base flow mostly through the
lift-up process [40]. This effect is taken into account in the
deterministic part of the models.

I give here a brief overview of the typical content of the
model in the transitional regime. Turbulence [see Figs. 2(a)
and 2(b)] exists if r � 1 and coexists in a steady manner with
laminar flow provided r � 1.8 [16] [Fig. 2(c)]. The model
realistically reproduces turbulent puffs [16] [Figs. 2(a) and
2(b)]. These coherent structures display localized nonzero
turbulence q �= 0 along with a deficit of streamwise velocity
u < 1. The model contains the asymmetry of u between the
sharp trailing edge and the smooth leading edge of the puff.

When studying the collapse of turbulence, one can consider
two types of initial conditions. On the one hand, one can
consider the collapse of an isolated equilibrium puff [at r =
1.0, Fig. 2(a)] [11]. The equilibrium puff is anything but at
equilibrium, since it can not only collapse, but also split, until a
quasisteady state is reached [Fig. 2(b) at r = 1.3]. This second
state is hereafter termed a steady turbulent fraction. It is the
other starting point for the study of turbulence collapse [10].
One of the reasons of the relevance of this second starting
point is that it is well defined no matter the Reynolds number
in the transitional regime. Meanwhile isolated puffs become
harder and harder to define as r is increased, mainly because
of puff splitting. Said puff splittings will be computed using
an isolated puff as initial condition. Isolated puffs will also be
used as targets for the computation of turbulence build-up.

In order to give a clear view of the meaning of the
values of r in terms of regime of turbulence (not sustained,
coexistence, uniformly turbulent), the time and space average
of the turbulent fraction Q and the streamwise velocity deficit
1 − U ,

Q ≡ 1

T L

∫ x=L,t=T

x=0,t=0
q(x,t) dxdt,

1 − U ≡ 1 − 1

T L

∫ x=L,t=T

x=0,t=0
u(x,t) dxdt, (4)

are computed in the range 0.6 � r � 2.5 in a pipe of length
L = 1600 using a duration T = 2000 [Fig. 2(c)]. This indi-
cates that Laminar-turbulent coexistence occurs in the range
1 � r � 1.8. I do not go into detail in the scaling of Q and U
in r at rc 	 1.0 above which a steady nonzero turbulent fraction
can exist in the flow. This has already been examined a twin
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FIG. 2. Streamwise velocity u and turbulence intensity q as a
function of space x in two situations: (a) isolated puff, (b) steady
turbulent fraction. (c) Space and time average of turbulence intensity
Q and streamwise velocity deficit 1 − U as a function of the Reynolds
number r in the transitional range. The range of laminar-turbulence
coexistence, where 0 < 1 − U < 1, is indicated by black dashed lines.

chaotic model [16]. I will consider collapse of turbulence, puff
splitting, and turbulence build-up in the range 0.6 � r � 1.8.

B. Adaptive multilevel splitting

I now explain the principle of the method I use to compute
the rare turbulent collapses, puff splittings, and build-ups.
The algorithm adaptive multilevel splitting (AMS) will be
used to calculate the corresponding trajectories and mean
first passage times (i.e., the lifetime of turbulence). For more
details, see for instance the monograph by Del Moral [30]
for a general presentation of the mathematical framework
of mutation-selection algorithms, see [23,41] for the initial
presentation of the algorithm and mathematical demonstration
of the convergence of such calculations, and see for instance
[24] for a thorough presentation of its use coupled to theory to
study multistability in a gradient system. Note that Giardana-
Kurchan-Lecomte-Tailleur algorithms follow a similar princi-
ple of cloning and large deviation theoretical framework, even
if they are designed to study atypical trajectories by weighting
by Lyapunov exponents [42]. In the context of transitional wall
flows, edge states are such atypical trajectories that could be
studied using these Lyapunov weighted dynamics [43,44].

1. Principle of the algorithm

AMS is a mutation-selection algorithm, in the family of
importance sampling [23,30], which uses N clone dynamics
{ 
X1�i�N (t)} to compute N reactive trajectories, the prob-
ability for their occurrence, and an estimator of the mean
first passage time before they occur. In my study, one has

X(t) = (q(x,t),u(x,t)). First I shall generally define reactive
trajectories and first passages. It is very natural to describe
this in phase space, a point of view which is commonplace
in the study of transitional turbulence. Let us term A the
neighborhood of the starting point 
X0 [for instance partially
turbulent flow Figs. 2(a) and 2(b)] and B the neighborhood
of the arrival point (for instance laminar base flow). They are
sketched in Fig. 3(a). I also defineC, a hypersurface that closely
surrounds A. A first passage is the natural dynamics of the
system starting from 
X0, fluctuating and having excursions
out of A until it reaches B [Fig. 3(a), black then red line].
The average duration of first passage trajectory is termed the
mean first passage time T . This is the lifetime of turbulence
in the context of transitional pipe flow. A very important part
of the dynamics is the reactive trajectory. This is the portion
of the dynamics during which the jump between the two
states actually occurs. It is strictly defined as a realization
of the dynamics of the system which leaves A, crosses C,
and then reaches B before A [Fig. 3(a), red line]. For a large
class of problems and reaction coordinates, AMS calculates
specifically these trajectories in an asymptotically unbiased
manner along with the mean first passage time T .

I now describe the steps of the algorithm [Fig. 3(b)]. AMS
uses N clones dynamics of the system and φ : 
X → φ( 
X) ∈ R,
a reaction coordinate. The reaction coordinate measures the
position of 
X relatively toA andB. One often takes φ(∂A) = 0
and φ(∂B) = 1 on the subsets boundaries. The larger φ, the
further away the excursion of 
X is. My specific choices of
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FIG. 3. (a) Sketch of first passages and reactive trajectories in
phase space. (b) Sketch of the principle of the adaptive multilevel
splitting algorithm, in the case of three clones. The sketch indicates
the starting state A, the arrival state B, levels of reactions coordinates
φ, and two examples of branching.

φ will be given at the end of the section. The algorithm
iteratively computes N reactive trajectories in the following
manner [Fig. 3(b)]:

(i) In a stage 0, natural dynamics of the system are run. The
{ 
Xi} start from C and evolve in time until they either reach A
or B. If the event is rare, most, if not all, of them reach A [blue
lines in Fig. 3(b)]. The number of iterations is k = 0. I then
execute the iterative mutation selection stages.

(ii) At each stage, I compute the maximum of φ on each
trajectory 	i = maxt [φ( 
Xi(t))] and order the 	i by increasing
values [numbers assigned to blue lines in Fig. 3(b)]. The
trajectory j which realizes the smallest 	j = mini 	i is
suppressed [number 1 in Fig. 3(b)]. This is the selection: I
favor trajectories which have excursions toward B. In order
to keep the number of trajectories constant, a new trajectory

Xj is generated by branching [number 1′ branched on 2
in Fig. 3(b)]. Another trajectory 
Xl �=j is chosen: index l is
drawn randomly from {1, . . . ,j − 1} ∪ {j + 1, . . . ,N} using a
uniform distribution. Since we work with dynamics discretized
with time step dt and 	l > 	j , there exists M ∈ N such
that φ[ 
Xl(mdt)] < 	j , ∀m < M and φ[ 
Xl(Mdt)] > 	j . This
means that Mdt is the first time at which 
Xl crosses the level
	j . We set 
Xj (mdt) = 
Xl(mdt) for 0 � m � M . Precisely
enforcing this constraint is fundamental for unbiasedness of
the method [23,45]. The new trajectory 
Xj (t) then follows its
natural time discretized dynamics from (M + 1)dt on, until it
reaches either A or B [for instance, the purple or red curves
branched respectively on 2 and 3, Fig. 3(b)]. It uses its own
realization of the noise, making it different from 
Xl from the
branching point on. The number of iterations is increased by
1, k = k + 1. This stage is repeated until all trajectories 
Xi(t)
reach B. The final k is used for calculations of passage time.

Each AMS run yields a random number of iteration k. An
important intermediate quantity, the probability α of reaching

B before A is first calculated. An estimator of α is

α =
(

1 − 1

N

)k

,

α =
〈(

1 − 1

N

)k
〉

o

	
〈
exp

(
− k

N

)〉
o

. (5)

The exponential approximation of α is useful to given an order
of magnitude of k from α. The · indicates the random output
of each AMS run and the average 〈·〉o indicates average over
o independent realisations of the algorithm (see Appendix A).
When running the algorithm, I will also compute the average
duration of reactive trajectories τ , the duration of nonreactive
trajectories t2 (those that start from C and go back to A), and

the average duration t1 it takes for the system to go from 
X0 to
the hypersurface C. It can be demonstrated (see [29]) that the
estimator of the mean first passage time is

T =
〈
(t1 + t2)

(
1

α
− 1

)
+ (t1 + τ )

〉
o

. (6)

This can be heuristically understood by noting that there is one
out of n + 1 excursions which realizes a reactive trajectory so
that α 	 1/(n + 1). Indeed, the probability α is numerically
defined in direct numerical simulations (DNS) of the type of
stage 0 as the number of passing trajectories over N as we take
the limit N → ∞. One then notes that a first passage trajectory
consists of n 	 1/α − 1 “failing” trajectory of duration t1 + t2
and then a reactive trajectory of duration t1 + τ . The average
over multiple independent realizations of AMS will always be
performed before presenting results on mean first passage time
T , average duration of trajectories τ = 〈τ 〉o.

The acceleration provided by the use of AMS in the
computation of reactive trajectories and mean first passage
times is exponential. If one uses classical direct numerical
simulations, the cost is of order T , while using AMS has
a cost of order k ∝ ln(T ). This is particularly interesting
when T increases exponentially with the control parameters
of the system. Note that like every numerical procedure,
the quantities calculated by AMS converge with numerical
parameters. These quantities converge with the time step like√

dt [46]. This actually originates from the convergence of
hitting times calculated through a numerical discretization with
a standard time scheme: no improvement is brought by classi-
cal higher order discretizations. Only times calculated using
very special discretizations converge faster than

√
dt [47].

Quantities calculated by AMS also converge with grid size
dx → 0 [24]. The role of the number of clones N in obtaining
a precise estimate of α, T , τ is peculiar [23,30,41,45,46]. By
precise, I mean that α is within a small and well defined
interval of confidence around 〈α〉o with a high probability.
I explain the effect of N in details in Appendix A. Once
the basic improvements of φ are performed, there may still
exist a bias in the estimation of α (etc.) by 〈α〉o that goes
to 0 when N goes to infinity. Outputs of each single run of
AMS are certainly random variables whose variances decrease
like 1/

√
N . In order to obtain a precise estimate, one should

average over o realizations the output of AMS calculations.
The larger the N is, the fewer o are necessary. Moreover, the
increase of N increases the precision of the outputs of a single
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AMS calculation. One can therefore consider that the AMS
calculations converge as N,o → ∞. The use of AMS is thus a
trade-off between cost (1/dt , 1/dx, N , o) and precision. The
constraint on φ for convergence is that it should be sensible:
the better the φ, the faster the convergence with N [45,46].
A poorly chosen φ leaves very specific traces in the statistics
of k over repeated independent realizations of the algorithm,
so that it is easily detected [45,46]. In practice, one chooses
φ after a few trials in a test case which can be confronted to
either theory or direct numerical simulation.

2. Reaction coordinates

Now I present the reaction coordinates I use to compute
specific events (turbulence collapses, splittings, etc.) with the
AMS in the case of the SPDE model of pipe flow.

When computing turbulence collapses, either of an isolated
puff [Fig. 2(a)] or of a domain with steady turbulent fraction
[Fig. 2(b)], I use the reaction coordinates defined as follows.
Let Q0 be the spatially averaged turbulence intensity of the
initial condition. In order to generate collapses, φ is defined as

Q0 ≡ 1

L

∫ L

0
q(x,t = 0) dx,

φ ≡ 1 −
√

1

LQ0

∫ L

0
q(x,t) dx. (7)

The square root extends the range of low Q in φ. This is useful
in order to treat correctly the last stages of the collapse. In
order to generate splittings, we define the turbulent fraction F
(relative area where q � qmin), and use the reaction coordinate

F(t) ≡ 1

L

∫ L

x=0
θ (q − qmin) dx,

φsplit ≡ F(t)

F(0)
− 1, (8)

where θ is the Heaviside step function. I chose qmin = 0.1. In
order to calculate build-ups of turbulence out of the laminar
base flow, I used the reaction coordinate

φseed ≡
√

1

LQf

∫ L

0
q(x,t) dx − ε, (9)

where ε is a vanishing positive constant which defines the
laminar state A as a tiny ball around q(x) = 0 ∀x. This
parameter ε has to be small enough so that A is strictly
included in the “basin of attraction” of the laminar state. The
constant Qf is the spatial average of q taken for a typical
equilibrium puff [Fig. 2(a)]. In that case, the initial condition
is q = 0 and u = 1 ∀x. Two supplementary independent
noises

√
2/ηu and

√
2/ηq , white in time and space, are

respectively added to Eqs. (2) and (3). Their variances vanish
as we let  → ∞. These two noise terms represent the small
perturbations that may exist in a controlled though imperfect
experimental Hagen-Poiseuille flow. In this paper, I chose them
to be white for simplicity and for consistency with the periodic,
strongly modeled system I use. If this procedure were to be
transposed to a direct numerical simulation, one could for
instance localize this noise in space, in a small streamwise
range, in order to model perturbations at the pipe inlet or at the

walls, in order to model rugosity of the pipe, external vibration
in the experimental facility. In further applications to stably
stratified wall flows, this can represent the impact of downward
propagating internal gravity waves on the laminar wall flow [2].

Convergence in the limits N,o → ∞ has been tested (see
Appendix A). Precise results at a reasonable cost are obtained if
N = 1000. I also use dt = 0.01 and dx = 0.2. Equation (2) is
integrated semi-implicitly without introducing artificial drifts
([18], Sec. 4.2).

III. NUMERICAL RESULTS

I now present the numerical computations of collapse
splitting and build-up trajectories as well as the corresponding
mean first passage times in the SPDE model using the AMS.

A. Visualizations of turbulence collapses,
puff splittings, and puff build-ups

I present five typical examples of trajectories in the form
of spatiotemporal diagrams of q [Figs. 4(a) and 4(b)], 1 − u

[Figs. 4(c) and 4(d)], and ln(|q|) [Fig. 4(e)]. Refer to Fig. 2(c)
in order to situate the value of Reynolds number r of each
simulation.

The turbulence collapses are computed using reaction co-
ordinate φ [Eq. (7)]. I first present the collapse of an isolated
puff at r = 1 [Fig. 4(a)]. This event occurred in a pipe of length
L = 800. This is the most studied event in such situations. In
the model, the collapse occurs as a block: q decreases relatively
homogeneously in the puff with very little shrinking until the
puff has collapsed. The mean first passage time before collapse
of this puff is T 	 1.3 × 104. I then present a puff splitting
at r = 0.95 [Fig. 4(b)]. The splitting was calculated using
reaction coordinate φsplit [Eq. (8)]. This illustrates the well
known fact that puff splitting occurs through the extension of
the puff on the leading edge and then splitting in the middle
(see [4,6] and references within). The splitting occurs after a
mean first passage time T 	 2 × 108. Provided L � 300, the
collapse or splitting of isolated puffs is independent of the pipe
length.

I then present events which are harder to sample in direct
numerical simulations. They concern the collapse of a pipe
starting with the steady turbulent fraction. I first present a
peculiar regime which manifests itself in the lower range
1 � r � 1.2 of laminar turbulent coexistence [see Fig. 2(c)],
provided the pipe is not too long. A spatiotemporal diagram of
1 − u is given in Fig. 4(c). In that case, at r = 1.1, the collapse
of turbulence occurs puff by puff, quite independently from
one another, and takes a relatively long time τ 	 3000, while
the collapse of each of the puffs has a relatively shorter duration
of order O(10). The mean first passage time before collapse
of turbulence in this pipe of length L = 1200 at r = 1.1 is
T 	 1017 � τ . In very long pipes or provided r � 1.2, the
collapse of turbulence in a pipe initially having the steady
turbulent fraction is quite generic. Let us present an example
of such a collapse with a spatiotemporal diagram of 1 − u at
r = 1.2 and L = 1200, for which T 	 1032 [Fig. 4(d)]. The
collapse occurs in a short time τ 	 35. In fact, the collapse of
all the puffs is simultaneous and no more independent. What
most likely changed between r = 1.1 [Fig. 4(c)] and r = 1.2
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FIG. 4. Spatiotemporal diagrams of reactive trajectories in the SPDE model computed using AMS. (a) Collapse of an isolated puff at r = 1.
(b) Splitting of a puff at r = 0.95. (c) Collapse of a domain of length L = 1200, initially with steady turbulent fraction, at r = 1.1. (d) Collapse
of a domain of length L = 1200, initially with steady turbulent fraction, at r = 1.2. (e) Color levels of the logarithm of turbulence intensity for
a build-up of a turbulent puff out of noise of vanishing variance at r = 1.15 and  = 25 000.

[Fig. 4(d)] is the increased probability of puff splitting. This
makes the long lasting existence of a gap between puffs very
unlikely, so that the most probable path for turbulence collapse
necessitates that no gap is left. Consequently, the collapse of
all the puffs occurs at the same time.

I eventually present the build-up of a turbulent puff, starting
from the laminar base flow, out of a noise of vanishing
variance. I use the reaction coordinate φseed [Eq. (9)] and I
set  = 25 000 and r = 1.15 in a domain of length L = 50.
A spatiotemporal diagram of the logarithm of the turbulent
intensity ln(|q|) showing the development of the puff from
a laminar state stimulated by noise of very small variance is
given in Fig. 4(e). The generation of the puff occurs through
the selection of a germ of small spatial length and small but
finite amplitude at t 	 1.5. The germ is created by an extreme
realization of the noise of small variance. The germ then grows
in amplitude, the spatial maximum of the structure saturates
(t 	 3.5), and it extends in length until it reaches a state similar
to that of an equilibrium puff. The logarithm of the mean first
passage time out of the laminar state is O(103) at this . The
event is very rare. Such a large  was used to check that I
indeed stimulated a germ of turbulence from the laminar state
and did not simply push a flow that already contained this
germ. Indeed, if the flow already contained the germ, there is
no more saddle to pass. The probability of developing a puff
would then converge toward a finite value as the variance of
the added noise vanishes, 1/ → 0. The mean first passage
time would also converge toward a finite value. Meanwhile, the
probability of developing a puff would tend to 0 as 1/ → 0
and the mean first passage time would diverge exponentially if
the saddle had not been crossed and a germ had to be developed

[17,24,25,48]. This is the case of the presented example. The
difference in the  dependence of T is a confirmation that
there exists a saddle point between the laminar state and the
one puff state in the model equations (2) and (3).

B. Isolated puffs: Reynolds number dependence
of mean first passage times

I now consider the collapse and splitting of isolated puffs
[see Figs. 2(a), 4(a), and 4(b)] systematically and quantita-
tively. I will compute the duration of collapse trajectories of
isolated puffs (distribution, average τ , and variance) and the
mean first passage time before both events T in the relevant
range of Reynolds number [see Fig. 2(c) for comparison]
starting from a range of initial conditions.

I first consider the duration of collapse trajectories. I use
isolated puffs in pipes of lengths 200 � L � 1600 at r = 1.0.
I perform AMS computations of puff collapse using φ [Eq. (7)]
and N = 20 000 clones. Using the 20 000 computed reactive
trajectories, a sample large enough to faithfully represent the
variety of collapses, I compute the empirical distribution of
collapse duration μ(s) as well as the average collapse duration
τ = 29.2 ± 0.2 (for all sizes) and the variance of duration
σ = 9.8 ± 0.1 (for all sizes). Note that this is the physical
distribution of collapse durations. The quantities μ(s), τ , and
σ can in principle be sampled in DNS, at a much higher cost, by
accumulating an equivalent number of collapses and using the
corresponding durations to perform the statistics. In this case,
this is done using approximately 2000 trajectories sampled
out of 107 trials at r = 1.0 in a domain of size Lx = 200.
The average and variance of trajectory durations calculated
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FIG. 5. Normalized distribution of duration of collapses of iso-
lated puffs in pipes of lengths 200 � L � 1600 at r = 1.0, sampled
by mean of AMS and DNS, compared to a normalized Gumbel
distribution.

by mean of DNS is equal (up to the incertitudes) to those
calculated by AMS.

I display the distributions of durations, originating from
AMS and DNS, for all considered lengths as a function of
the normalized duration s ′ = (s − τ )/σ (Fig. 5). On top of
that, I add a normalized Gumbel distribution. The normalized
Gumbel distribution reads

μ(s ′) = π√
6

exp

[
−πs ′

√
6

− γ − exp

(
−πs ′

√
6

− γ

)]
, (10)

where γ 	 0.6 is the Euler constant. This choice of comparison
originates from the fact that it has been demonstrated that
for one degree of freedom system, the duration of reactive
trajectories follows a Gumbel distribution [26]. Note that
this result is demonstrated by considering only the stochastic
process, independently of the simulation or sampling proce-
dure. This is numerically verified [46] (for standard behavior).
Similarly, the variance of durations σ could be explained by
a physical model in the case of random walk of fronts in the
Ginzburg-Landau equation [24]. In the case of collapse in this
model of pipe flow, the comparison between the distribution
of duration of reactive trajectories and the normalized Gumbel
is very good. In a spatially extended system, namely the one
dimensional Ginzburg-Landau equation, it has been checked
that the duration of reactive trajectories followed a distribution
very similar to a Gumbel [24]. The comparison was very
precise at large durations s � τ .

I then compute the mean first passage time before collapse
of isolated turbulent puffs as a function of the Reynolds number
r in pipes of length L = 800 in two types of AMS calculations
(both using N = 1000 clones).

Using direct numerical simulations of the model, I gen-
erated a set of initial conditions which are equilibrium puffs
at r0 in the range of Reynolds number 0.9 � r0 � 1.15. In
the first type of AMS calculation, I compute the mean first
passage time Tr0 (r) before collapse of each of these puffs
in the range of Reynolds number 0.6 � r � 1.8. This covers
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FIG. 6. (a) Decimal logarithm of the mean first passage time
of several events as a function of the Reynolds number r in a
pipe of length L = 800: collapse fixed puffs (lines), collapse of
near equilibrium puffs (red lozenges), as well as splitting of near
equilibrium puff (red dots). The vertical dashed lines indicate the
range of laminar turbulent coexistence [Fig. 2(c)]. (b) Measured slopes
Ap (blue asterisks) and ordinate at the origin Bp (red lozenges) for
equilibrium puffs at different Reynolds numbers as a function of the
total intensity of turbulence of said puffs Q. The dashed lines indicate
the affine fits of these data.

the range of r where turbulence cannot be sustained and the
range where turbulence coexists with laminar flow with a finite
turbulent fraction [Fig. 2(c)]. Since this concerns the collapse
of turbulent puffs which are not changed (while the Reynolds
number is), these events are termed “‘collapses of fixed puffs”
(in Fig. 6 for instance). Due to the definition of reaction
coordinates and of mean first passage times, I condition the
dynamics to have a turbulent fraction which is no greater than
that of the initial conditions. Such a conditioning is well taken
into account theoretically by fixing the necessary boundaries,
since we work with stochastic dynamics (see [18], Sec. 5.5
and [25], Sec. 6.1). The numerical studies of the collapse
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of isolated puffs actually always include some conditioning,
since it is often required that the puffs do not split when mean
first passage times are studied in models [16,37]. In this case
this is taken one step further in order to investigate how the
structure of the phase space of the stochastic model (via the
corresponding initial conditions) leads to the dependence of
T on r for near equilibrium puffs. From general theoretical
argument, one expects that values ofT for two initial conditions
remain distinct if the control parameters are changed, provided
that the initial conditions are not both within one standard
deviation of the most probable state. The difference between
values of T can actually be written formally in an integral
form (see [18], Sec. 5.5 and [25], Sec. 6.1) which is rarely
tractable, unless the model is a gradient system. In said gradient
systems, the logarithm of the ratio of two conditioned mean first
passage times from two distinct initial conditions is actually
given by the potential difference between these two initial
conditions. This potential difference can grow or decay with
control parameters, depending on the system. Performing this
type of numerical experiment will thus inform us of how the
phase space of the stochastic model changes with r . Provided
the revealed dependence on r is simple enough, I may provide
a clear description of how the mean first passage time of the
near equilibrium puff depends on r .

I present the decimal logarithm log10[Tr0 (r)] for three
puffs at equilibrium at r0 = 0.95, r0 = 1.10, and r0 = 1.15
[Fig. 6(a)]. Two regimes of log10[Tr0 (r)] appear. For r � 0.8,
All the curves collapse and Tr0 (r) is nearly independent of the
initial condition. Only the durations of the collapse trajectories
τ , included in T [see Eq. (6)], differ. For r � 1, the mean
first passage time before collapse of these puffs is clearly
distinguishable from one initial condition to another. In fact,
an affine tendency ln[Tr0 (r)] = Ap(r0) × r − Bp(r0) appears,
with Ap > 0 and Bp > 0. The growth rate Ap(r0) and ordinate
at the origin Bp(r0) are systematically calculated by affine fits.
We find that both Ap(r0) and Bp(r0) are both growing affine
functions of the initial total turbulent intensity Q0 of each puff
[Fig. 6(b)]. This can be written as

Q0(r0) ≡
∫ L

x=0
qr0 (x,0) dx,

Ap(r0) = A′
p(Q0(r0) + A′′

p), (11)

Bp(r0) = B ′
p(Q0(r0) + B ′′

p), A′
p 	 B ′

p.

I now present the mean first passage time before collapse
and splitting of near equilibrium puffs [Fig. 6(a), red symbols].
This is done for illustrative purpose. The two curves cross
near r = 1.0, above which splitting becomes more probable
than collapse. The slight discrepancy between the Reynolds
number threshold of sustained turbulence obtained from the
spatial averages [Fig. 2(c)] and the Reynolds number at
which Tcollapse = Tsplitting comes from small errors in both
estimations. Since they are not the main focus of this paper,
these two Reynolds numbers are estimated using smaller data
sets and thus come with an error. The mean first passage
time before collapse of equilibrium puffs is actually a subset
of the results presented in the former paragraph, since the
equilibrium puff at r0 is only considered as an initial condition
for AMS calculation at r0. This actually shows how the

former result [Eq. (11)] controls the mean first passage time
before collapse of equilibrium puffs. Indeed, if one knows the
ensemble average of the total turbulence intensity Q0(r) of
the equilibrium puff at r , one can then deduce the mean first
passage time before of equilibrium puffs at this Reynolds num-
ber, since ln(T ) = A′

p(Q0(r) + A′′
p) × r + A′

p[Q0(r) + B ′′
p].

Performing these two types of experiments showed us that the
mean first passage time before collapse of equilibrium puffs
could be separated into two parts. First, the reaction of the
system to any puff, at a given Reynolds number, gives the
affine dependence ln(T ) = Apr − Bp. Second, the amplitude
of the equilibrium puff yields the two coefficients Ap and Bp.

The mean first passage time before build-up of turbulence
has been considered quantitatively for a range of r and  (not
shown here). One finds that ln(T )/ 	 0.035. This depends
very little on r .

C. Steady turbulent fraction: Length and Reynolds number
dependence of mean first passage times

I now consider the collapse of turbulence in pipes initially
containing their steady turbulent fraction at r [see Fig. 2(b),
examples Figs. 4(c) and 4(d), and dependence of Q on r in
Fig. 2(c)]. Unlike the isolated puff, this starting point is always
easily defined. The mean first passage time before collapse
of turbulence T and the average duration τ of turbulence
collapses in these pipes are computed as a function of r and L

systematically in the length range 50 � L � 1600 and in the
Reynolds number range 1.05 � r � 1.6, where such a steady
turbulent fraction can be sustained in the infinite length limit.

I first present ln[T (L)] at r = 1.15 in Fig. 7(a). The linear
growth of ln(T ) with L is visible. A linear fit is performed
to calculate the growth rate. The fit is added to the plot
in my example. In practice the exponential growth of T

with L, ln(T ) = f (r) × L, is found no matter the Reynolds
number in the range [1.05; 1.6] [Fig. 7(b)]. Note that the
mean first passage time before the collapse of isolated puffs is
independent of the length of the pipe provided that it is large
enough (for instance L > 200 at r = 1.15). This is illustrated
at r = 1.15 by adding the logarithm of the mean first passage
time before the collapse of isolated puffs as a function of L

in Fig. 7(a) (red curve). I then consider the growth rare f (r)
of T as a function of r . It is calculated systematically in the
range 1.05 � r � 1.6 and displayed in Fig. 7(c). This function
f (r) is in good approximation affine with r , f (r) 	 Ar − B

with A,B > 0. We can educe this tendency in a large range
of length and Reynolds number in the SPDE model. Note that
it had previously been seen in a smaller range of length and
Reynolds number in direct numerical simulations [19].

I eventually present the logarithm of the average durations
of collapse trajectories as a function of the pipe length in the
range of Reynolds number [1.05; 1.6] [Fig. 7(d)]. Error bars
are added: they are computed using the variance of τ over the
realizations of the algorithm used to compute τ . While there
is a slightly larger uncertainty over the value of ln(τ ) in the
intermediate range of 1.2 � r � 1.3, these error bars show that
the tendencies of τ (r,L) can be trusted and do not arise from
large uncertainties over the estimate. We can distinguish two
types of behavior of ln(τ ). For r < 1.2, the average duration
of trajectories grows very fast with L after a threshold pipe
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FIG. 7. (a) Logarithm of the mean first passage time before
collapse of turbulence as a function of length at r = 1.15 in pipes
initially containing either the steady turbulent fraction or an isolated
puff. The black dashed line is the linear fit of ln[T (L)]. (b) Logarithm
of the mean first passage time before collapse of turbulence as a
function of length for increasing r in pipes initially containing steady
turbulent faction. (c) Slope f (r) of the linear fit of the logarithm of
the mean first passage time before collapse of turbulence as a function
of the Reynolds number. (d) Logarithm ln(τ ) of duration of reactive
trajectories of collapse of laminar-turbulent pipes as a function of pipe
length for increasing Reynolds number. The error bars are determined
using the variance of the estimate of τ over several realizations of
AMS computations.

length (L � 200 for r � 1.1) and saturates. This threshold
pipe length decreases with the Reynolds number. These very
long durations are due to the specific type of collapse, which
involves independent collapse of each puff [Fig. 4(c)]. The
threshold pipe length is simply given by the length above
which the pipe can contain two puffs at a given Reynolds
number. The duration saturates when the pipe is long enough
for splitting to be probable in one of the many holes created by
puff collapses (L � 600 for r � 1.1). At r = 1.2, independent
puff collapses occur for intermediate length (200 � L � 800),
while global collapses [Fig. 4(d)] become the typical event in
long pipes (L � 1200). At larger Reynolds numbers (r � 1.3),
the collapse duration varies little with length and is two orders
of magnitude smaller than what is found at lower Reynolds
numbers. The pipe undergoes a global collapse of turbulence.
This systematic examination of collapse duration thus gives
a quantitative criterion to determine whether the collapses
happen independently puff by puff, or globally.

IV. THEORY AND INTERPRETATION

The Reynolds number and length scalings of mean first
passage times before collapse of turbulence in the SPDE
model can be interpreted and discussed in view of theories of
metastability. In Sec. IV A, I consider the collapse of turbulence
in pipes initially containing the steady turbulent fraction and
I interpret the mean first passage time dependence on length.
This will take the point of view of small variance local noise.
I show in Sec. IV B how the Reynolds number and size depen-
dence of the mean first passage times T � exp[L(Ar − B)]
can be derived in a two degrees of freedom model. This will
take the point of view of large pipe lengths. This will again
mostly concern the global collapse of laminar-turbulent pipes,
but should also bring some insight on the mean first passage
time before collapse of isolated puffs. Relying on these results
is entirely consistent since the model I analyzed with AMS is
stochastic.

A. Length scaling of mean first passage times before collapse of
turbulence in pipe containing the steady turbulent fraction

The first stage of my discussion consists of justifying the
persistence of a single scaling in size for T , while collapse
trajectories display very different features as r and L are varied.
More generally, this discussion also serves as a reminder that
independent events, which had been invoked to explain the
ln(T ) ∝ L scaling, are not the only phenomena which can lead
to such a size scaling.

In this section, I use properties of T which are demonstrated
in the limit of zero noise variance β → ∞, but nevertheless
control T if the noise variance is fixed but relatively small.
Indeed, most theoretical results on multistability concerning
mean first passage times T are demonstrated in the limit of
noise of variance 1/B → 0 for a stochastic process with an
action St ,


̇X = 
b( 
X) +
√

2

B
a( 
X)
η, 〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′), (12)

St = 1

4

∫ t

s=0
( 
̇X − 
b)†(aa†)−1( 
̇X − 
b) ds. (13)
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Here arrows designate vectors, a is a matrix, and † designate
the transpose. The matrix (aa†) is the correlation matrix of the
noise: the total variance of the noise stands as an independent
factor 1/B. The term 
b is the deterministic part of the Itō
process. This is a formal rewriting of systems such as Eqs. (2)
and (3). The results on T take the form of a large deviation
principle: a probability is exponentially small in the inverse
noise variance [25,31]. This is written more rigourously on the
logarithm of said mean first passage time in the limit of small
variance noise,

lim
β→∞

− 1

B
ln(T ) = I (��B). (14)

This rate function I may very well depend on the control
parameters of the system with the strict exception of the felt
noise variance. Moreover, this function is not some unknown:
it depends in a very regular manner on the properties of the
stochastic differential equation of interest. These results are
relevant for a broader range of parameter where the noise
variance is small 1/B � 1/Bc, that is to say smaller than
some minimal threshold. Indeed, many properties on the
asymptotic regime, such as the prevalence of instanton-type
trajectories, are found in stochastic systems where the inverse
noise variance is not varied or turbulent flows where such an
inverse noise variance is not a control parameter [49].

There are several ways of calculating the rate function I .
A systematic approach can consist in minimizing the action
S of the system [Eq. (13)] over path 
X(s) and duration
t (see [24,32,33,38,50], and [25] Sec. 6.1). The action is
the time integral of a Lagrangian measuring the amount of
noise felt by reactive trajectories [Eq. (13)]. This yields a
set of Euler-Lagrange equations, whose integration gives the
reactive trajectory. The rate function I is the infimum of
the action. Another approach can be using the Gärtner-Ellis
theorem: calculating a characteristic function then performing
a Legendre transform, an operation similar to using differ-
ent ensembles in thermodynamics (see [25] Sec. 3.3.1, [34]
Secs. 2.3, 6.5, B 1). A less systematic approach can consist
of a direct calculation. The rate function I = �V is given by
the difference of a function V( 
X) ( 
X = {u,q} in this case),
termed a quasipotential, between two very specific points 
X of
the phase space: the starting point 
XA of the first passage and

XS , the lowest saddle of V between the starting point and the
arrival point B [31],

�V = V( 
XS) − V( 
XA). (15)

This quasipotential difference can be understood by examining
the most probable reactive trajectory, termed the instanton,
which minimizes the action S [24,25,32,33]. It first contains
a fluctuation path, from the starting point to the saddle, stim-
ulated by noise, on which the action is strictly positive. This
yields the quasipotential difference. It then has a relaxation

path 
̇X = b( 
X), which is deterministic in the zero noise limit,
on which the action is zero and which does not contribute to
the quasipotential difference.

The name quasipotential arises from the study of multista-
bility in gradient systems, where d 
X

dt
= −
∇V + √

2/B
η. In
that case the potential V = V governs the whole deterministic
part of the dynamics. In such a gradient system, Eq. (14) is in
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FIG. 8. Rate function I of the mean first passage time before
collapse of a laminar-turbulent domain as a function of β [the inverse
variance of the multiplicative noise of Eq. (3)], calculated by two
manners: ratio of ln(T )/β and slope of the best linear fir of ln(T )(β).
The computation is performed using a domain length of L = 200 and
a Reynolds number of r = 1.3.

fact a well known result; it derives from the Eyring-Kramers
formula of the mean first passage time [17,48], which is even
more widely known as the Arrhenius law, owning to its original
discovery in kinetic chemistry. The mean first passage time can
be entirely calculated in the low noise limit in gradient systems
and extensive comparisons with results of AMS calculations
can be performed [24]. In the nongradient SPDE model, such a
quasipotential would require extensive derivations in order to
be analytically readable. However, it is sufficient to know that
it exists and to know some of its general properties in order to
propose a first discussion of the numerical results.

If we make the loose assumption that the noise locally felt
by the puffs has a small variance when β = 1.5 in Eq. (3),
the mean first passage time before collapse of turbulence is
governed by the properties of such a quasipotential. This can
be checked by performing the artificial experiment where we
follow the mean first passage time before collapse of laminar
turbulent domain in the model of Eqs. (2) and (3) when β

is varied. This is done at r = 1.3 and for a domain length
of L = 200. When examining the logarithm of the mean first
passage time as a function of β, I note that this function is
very close to linear, hinting toward large deviations of T in
the large β limit. We can thus define a rate function I as the
best linear fit of ln(T ) function of β. In order to determine
how good an approximation of ln(T ) the product I × β is,
I display ln(T )/β and I in Fig. 8. This shows that we have
ln(T ) ∝ β, for β � 2, with a proportionality factor which has
the properties of the quasipotential difference in the large β

limit. This justifies the use of results on large deviations of T

in the large β limit to give an approximation of T , even if taking
this limit is physically artificial. While there can be a 10–20%
error on the estimate of ln(T ) by this manner, the variations
of I still strongly influence those of ln(T ). This cannot be
used if one wants to explain fine changes of T . However, this
is acceptable if one wants to discuss changes of ln(T ) by an
order of magnitude [Fig. 7(b)]. The length L dependence of
the mean first passage time can thus be discussed in view of
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results on other systems. In particular, I will invoke the length
dependence of potentials and quasipotentials when the reversal
of the field is nearly homogeneous in space [Figs. 4(a) and 4(d)]
[24]. Such reversals were termed a flipping of the field. In that
case, it has been shown analytically and verified numerically
that the potential was linear in length �V ∝ L, in the case
of a gradient system. This length scaling originates from the
necessity of having a correlated movement of the field at each
point of space. This scaling can strongly influence the length
dependence of the mean first passage time even if β is finite
though relatively small. I can thus explain the three regimes
of exponential length dependence, two of which exist for all
Reynolds numbers:

(i) If the domain is small and can accommodate only one
puff, we have a global collapse of said puff, a flipping of the
field, and the quasipotential goes like �V = LδV , with δV a
density of quasipotential, leading to ln(T ) 	 LβδV at finite β.
This regime exists for all Reynolds numbers. The range of pipe
length concerned decreases with r as puff density and steady
turbulent fraction increase with r [Fig. 2(c)].

(ii) If the domain is larger and can accommodate several
puffs and if the Reynolds number is not so large that puff
splitting is rare enough, then the puffs collapse independently
from one another [Fig. 4(c)]. Let us term T1 the mean first
passage time for the collapse of any of the n puffs contained
in the domain. The mean first passage time for the collapse
of turbulence in the whole pipe is then T = T n

1 . Since the
collapse of each single puff occurs as a block, one still has
ln(T1) 	 βLpuffδV in the large β limit. one also has L = nLpuff.
As a consequence ln(T ) 	 βn(L/n)δV at finite β. One then
finds �V = LδV . Note that this mechanism was invoked in
Ref. [19] for small length systems.

(iii) If the domain is large enough that it can accommodate
several puffs and if the Reynolds number is large enough that
splitting becomes very probable, then all the puffs collapse
together [Fig. 4(d)]. The argument is now the same as in the
small scale case; one finds again �V = LδV with the same
quasipotential density. This again leads to T 	 exp(LβδV) at
finite β.

In any case, one finds that ln(T ) 	 βδVL. If one assumes
that βδV = (Ar − B), we thus have the calculated scaling in
length ln(T ) = L(Ar − B) [Figs. 7(a) and 7(b)] of the mean
first passage time before collapse of turbulence, throughout all
type of collapse.

B. Reynolds number dependence of mean first passage time
before collapse of turbulence derived from a quasipotential

Another point of view can be taken in order to discuss
the size and Reynolds number scalings of mean first passage
times and derive that T � exp[L(Ar − B)]. If the Reynolds
number r is not so small or the length L is large enough
that the turbulence in the pipe collapses as a whole, one
can consider the collapse toward zero of quantities like the
spatially average intensity of turbulence Q, or the spatially
averaged kinetic energy of turbulence. This analysis does not
apply to the independent collapse of puffs which occur in
the narrow range 1.0 � r � 1.15. In that case, instead of
invoking somewhat artificial large deviations in the limit of
small variance of the ad hoc local noise felt by the system
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FIG. 9. Rescaled probability density function ρ of the kinetic
energy of turbulence e sampled in numerical simulations of plane
Couette flow (from the data of [3]).

to approximate T at finite but relatively large β, one can
more naturally and more rigorously consider large deviations
in the limit of large length [51]. Indeed, one very naturally
finds that limL→∞ ln(T )/(L) = I (r,�L) in the results of AMS
calculations. Such a behavior is not surprising since it has
already been reported in the probability density functions
ρ of the kinetic energy of turbulence e in plane Couette
flow [3]. This is shown again in Fig. 9. This is particularly
the case when the PDF are not Gaussians any more, when
the length dependence could not be related to central limit
behavior, i.e., when the pdfs have exponential tails for e < 〈e〉
(Fig. 9). This large deviations behavior of the pdfs can be
understood with the same quasipotential as for the mean first
passage time. Indeed, this quasipotential also governs the
probability density function, which ha a Boltzmann factor form
ρ ∝ exp(−β̄V) [31,52], where β̄ scales the inverse variance
(with β̄ ∝ LxLz in plane Couette flow). This motivates us to
educe the quasipotentials in models of wall flows.

After having introduced the general concepts used to study
metastability, I now apply them to a simple but enlightening
model of transitional wall flow. I will show that the scaling
limL→∞ ln(T )/L = AR − B can be derived in that case.
Following the idea of large deviations in the large length limit,
this model should be understood as a model for some spatial
averages. While a theoretical analysis of the transitions in the
SPDE model may be possible, it would require a thorough a
technical work which is outside the scope of the current paper. I
will proceed in three steps. I first present the model and its basic
deterministic properties and show what type of noise should
be included to faithfully represent spatially averaged behavior
in Sec. IV B 1. I then compute the quasipotential V which can
then be used to determine the probability density functions
in Sec. IV B 2. I eventually use the quasipotential to compute
analytically the mean first passage times before collapse and
the corresponding trajectories, and show how a scaling of the
type T � exp[L(Ar − B)] can arise in Sec. IV B 3.
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1. Conceptual model

The two degrees of freedom model I use was originally
proposed by Dauchot and Manneville [28]. It arises from a
projection of principle and truncation of the Navier-Stokes
equations on the first wall normal Fourier mode of ux , the
departure to the streamwise base flow, represented by X1,
and second wall normal Fourier mode of uy , the wall normal
velocity field, represented by X2. The two coupled ordinary
differential equations read

dX1

dt
= s1X1 + X2 + X1X2, (16)

dX2

dt
= s2X2 − X2

1 . (17)

The first linear terms s1,2X1,2 arise from viscous dissipation.
For a higher readability of the analysis, I set s1 = s2 =
−1/R � 0. The Reynolds number is thus denoted by R. The
additive term +X2 comes from advection by the linear base
flow and the quadratic terms, from advection by the departure
to the base flow. This model contains many of the basic features
of transitional wall flows. The fixed point X1 = X2 = 0, which
corresponds to no nontrivial flow on top of the linear flow, is
linearly stable for all Reynolds numbers. The linear operator
arising from the linearization of the ODEs about (0,0) is highly
non-normal, due to +X2 in Eq. (16). This leads to transient
growth of the type t exp(−t) of optimal perturbations to the
state (0,0) on both sides of the boundary of the basin of
attraction of the laminar state. The model includes lift-up in
this manner [40]. If R � 2, two other fixed points arise from a
saddle node bifurcation. They correspond to

X±
2 = −RX±

1
2
, X±

1 =
−1 ±

√
1 − 4

R2

2
, (18)

and X2 explicitly reads

X±
2 = −(R − 2

R

)± √
R2 − 4

2
. (19)

The existence of a finite amplitude nontrivial state distinct from
the stable linear flow is represented by the − solution and the
saddle point in between is represented by the + solution. Note
that this saddle node bifurcation can occur because of the non-
normal term +X2 in Eq. (16). All the fixed points are illustrated
in the bifurcation diagram of Fig. 10. To some extent, X1 is
akin to the spatial average 1 − U and X2 is akin to the spatial
average Q. I first note that X1 arises from ux , like u, while X2

arises from uy like q. Also, the stable nontrivial solution X−
1

will saturate quickly, while more and more energy is given to
the mode X−

2 , as is seen for the two spatially average variables
[Fig. 2(c)]. Given the low dimensionality of the model, these
solutions are time independent. Note that in the large Reynolds
number limit R → ∞, a Taylor expansion shows that X±

1,2
follow simple scaling laws,

X−
1 = −1 + O

(
1

R2

)
, X−

2 = −R + O
(

1

R

)
, (20)

X+
1 = − 1

R2
+ O

(
1

R4

)
, X+

2 = − 1

R3
+ O

(
1

R5

)
. (21)
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FIG. 10. Bifurcation diagram of the deterministic two degrees of
freedom model, as a function of Reynolds number R, including both
X1 and X2. The continuous lines indicate the stable fixed points. The
dashed lines indicate the unstable fixed points. The green dot indicates
the saddle node bifurcation.

These scaling laws are visible in the bifurcation diagram for
R � 3. I recover here another classical property of transitional
wall flows. The kinetic energy of perturbations necessary to
cross the boundary between turbulent and laminar base flow
decreases like a power of R (see [13] and references within).
One can find similar models arising from a similar procedure
in geophysical fluid dynamics [53]. However, their statistics
are more complex than those I consider here [54].

In order to discuss transitions from the nontrivial fixed point
X−

1,2 to the laminar fixed point (0,0), a measure of complexity,
which was integrated out in the model, should be reinserted.
In accordance with the SPDE studied numerically, I do so by
adding noise to the model, with inverse variance β̄, which now
reads

dX1

dt
= − 1

R
X1 + X2 + X1X2 +

√
2

β̄
ga(X1)η1, (22)

dX2

dt
= − 1

R
X2 − X2

1 +
√

2

β̄
ga(X1)η2, (23)

〈ηi(t)〉 = 0, 〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′). (24)

I use the variable X1 in the multiplicative noise led by η1,2,
which are uncorrelated and white in time. There are several
reasons for this. First, we will see that X1 is the fastest variable
of the two. This choice of course gives to the noise the property
of going to zero when there is no turbulence. More importantly,
X1 remains bounded by 1 and does not grow much with the
Reynolds number. As a consequence, this choice also gives the
property that the variances of X1 and X2 are independent of R,
or at the very least grow slowly with R, as is seen in spatially
averaged data sampled from direct numerical simulations [3].

I will discuss several types of noise using ga(X1) = |X1|a .
When multiplicative, the noise is interpreted with an Itō rule.
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The case a = 0 is that of simple additive white noise. This
case is less relevant in collapses when X1,2 are close to 0
(which is then not absorbing). It is however a first, tractable
(numerically and analytically) approximation if one is to study
the trajectories going from the turbulent state to the saddle: this
assumes that the amplitude of turbulence does not vary much on
the turbulent side of the saddle. This causes little error, because
in the framework of rare events, studying the trajectory from
the starting point to the saddle between the starting point and
arrival point is sufficient to compute the mean first passage
times. The two other cases are a = 1 and a = 1/2. These two
cases correspond to a multiplicative noise going to zero with the
amplitude of turbulence. The model is now relevant to describe
collapse at all values of X1,2. The case a = 1 follows the
original SPDE. The case a = 1/2 follows models arising from
reaction diffusion process, like the one describing directed
percolation [55]. It is moreover an illustration of a peculiar
transition occurring in such model when a is decreased below
1
2 (see Appendix E).

The noise inverse variance is controlled by the constant
β̄. My theoretical analysis will concern the limit 1/β̄ → 0.
This can either be a crude representation of a turbulent
puff, assuming that it feels a relatively low noise variance.
More realistically, this can represent the limit L → ∞, where
X1 and X2 are space averaged variables, and the Reynolds
number is not so small that all turbulence collapse occurs
globally [Fig. 4(d)]. These noise terms arise from the spatial
integral Q = 1

L

∫ L

x=0 qη. I can show analytically and confirm
numerically in Appendix B that Q is a delta correlated in
time random variable. The average of Q is 0 and its variance
decrease like 1/L with a factor which grows like the intensity
of turbulence in the flow. I thus choose β̄ ∝ L in my model.
This further justifies using a multiplicative noise with a > 0.
I can then also discuss how nontrivial rescaled pdfs of kinetic
energy (see Fig. 9) arise from such models.

2. Educing the quasipotential

As explained in Sec. IV A, the parametric dependence of
mean first passage times in stochastic system is very often
governed by the quasipotential V of the system. In order to
educe such a quasipotential, the deterministic part of stochastic
differential equations of the type of Eqs. (2) and (3), Eq. (12),
or Eqs. (22) and (23) can be rewritten through a transverse
decomposition


̇X = −aa† 
∇V( 
X) + 
l( 
X) +
√

2

B
a(
x)η. (25)

I use B as the noise inverse variance and aa† as the noise cor-
relation matrix. When it exists, this decomposition is unique.
There is an orthogonality condition between 
l and 
∇V , and 
l
cannot be written in a gradient form. One can see the origin of
the aa† factor in Appendix E [Eq. (E1)]. Note that there exist
some cases where the existence of such a decomposition does
not ensure thatV govern passage times or the steady probability
measure (when defined). This happens when there are direct
connections between fixed points of the deterministic model
[54], for instance. There is no such problem in this model,
where fixed points of the deterministic model are isolated.
This means that mean first passage time goes like exp(β�V)

and probability density functions go like exp(−βV) (when
defined). However, this decomposition of the deterministic part
of the equation is absolutely not trivial. As a consequence, I
will consider numerical solutions of the problem and analytical
approximated systems in order to discuss V .

The quasipotential V can be displayed by considering the
steady pdfρ(X1,X2) of the system Eqs. (22) and (23) in the case
a = 0. The pdf ρ is obtained by solving numerically the steady
Fokker-Planck equation equivalent to the coupled SDEs (see
[18] Sec. 5.2),

0 = − ∂

∂X1

[(
− 1

R
X1 + X2 + X1X2

)
ρ

]

− ∂

∂X2

[(
− 1

R
X2 − X2

1

)
ρ

]
+ 1

β̄

(
∂2

∂X2
1

+ ∂2

∂X2
2

)
ρ.

(26)

The partial differential equation is discretized using finite
differences. Note that this is not a problem constrained by
boundary conditions, but instead by the normalization of ρ

to
∫

ρdX1dX2 = 1. In this paper, this constraint is taken into
account in the numerical problem by reformulating the partial
differential equation into a variational problem and using a
Lagrange multiplier. An alternative method can be to relax the
time dependent Fokker-Plank equations [54]. In the low noise
limit, the pdf ρ follows large deviations in 1/β̄ and one has

− lim
1/β̄→0

1

β̄
ln(ρ) = V(X1,X2), (27)

i.e., a Boltzmann factor. We ensure that V exists by checking
that the numerical solution does converge toward such a
form in the high β̄ limit. I give an example of probability
density function at R = 2.1 (just above the bifurcation of the
deterministic system) for a = 0 and β̄ = 200 in Fig. 11(a).
There is a small maximum near X1,2 = 0, the “laminar”
deterministic stable fixed point. A second more probable
maximum is visible, X1 	 −1/2 and X2 	 −1, near the
nontrivial “turbulent” deterministic fixed point. I verify that
ρ is governed by a quasipotential in the large β̄ limit: I display
minX1 [−(1/β̄) ln(ρ)] as a function of X2 in Fig. 11(b) for
increasing values of β̄. The curves are shifted by a constant
so that the minimum is zero, as is common in the study of
large deviations. The collapse of the curves is visible. It is
very similar to the behavior of the probability density functions
sampled in numerical simulations of Couette flow (Fig. 9).

The quasipotential does not have a trivial analytic expres-
sion. In particular, it is certainly not a third order polynomial.
Hopefully, the dynamics have a very particular structure which
will simplify the study. Let us first rescale the equations in
χ1 = X1, χ2 = X2/R, so that χ1,2 = O(1) through most of
the turbulence collapse. The rescaled coupled SDEs read

dχ1

dt
= R

(
χ1χ2 + χ2 − 1

R2
χ1

)
+

√
Rga(χ1)

√
2

β̃
η1, (28)

dχ2

dt
= − 1

R

(
χ2 + χ2

1

)+ 1√
R

ga(χ1)

√
2

β̃
η2, (29)

where β̃ = Rβ̄. The structure of a slow- fast system appears
(see [18] Sec. 8.3). I retained 1/R2 for physical reasons
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FIG. 11. (a) Color levels of the probability density function
ρ(X1,X2) obtained by solving the Fokker-Planck equation (26) with
a = 0 (additive noise), β̄ = 200, R = 2.1. (b) minX1 [−(1/β̄) ln(ρ)]
for increasing values of β̄ at R = 2.1 and a = 0 (additive noise),
along with asymptotic quasipotential. (c) Asymptotic quasipotentials
calculated analytically [Eqs. (32), (34), and (36)] for R = 4 and all
three noise cases (labeled “asy,” a = 0, additive, and a = 1, a = 1

2
multiplicative). On top of it is added the quasipotential calculated
numerically by solving the Fokker-Planck equation (labeled “FP,”
a = 0) and the quasipotentials evaluated numerically by integration
of the SDEs for all three noise cases (labeled “num”).

discussed throughout the paper. The Reynolds number R

controls the time scale separation. The variable χ1 is slaved to
χ2 because it adjusts very fast to changes of χ2, in a time scale
of order R. Meanwhile, the variable χ2 evolves more slowly
with a time scale of order 1/R. This master slave structure
of X1,X2 is another similarity with the SPDE model, where
q leads 1 − u. Note that the prefactors of the noise in R are
also typical of slow-fast dynamics, at fixed β̄. I introduce the
variable ζ1

ζ1 ≡ χ1 + χ2

χ2 − 1
R2

. (30)

This variable will adjust fast to zero and the system will keep
χ1 	 −χ2/(χ2 − 1/R2). We can then perform the elimination
of the fast variable ζ1. This procedure is rather similar to
adiabatic elimination of the fast mode in deterministic system
(see [56] Sec. 5.1 for the principle of adiabatic elimination
and Sec. 5.2 for projection on central manifold), with some
subtleties arising from the noise and correlations with the
eliminated variable. Note also that this not a weakly nonlinear
analysis near the threshold of a bifurcation, as is often the
case in fast variable elimination of deterministic dynamical
systems. Such a procedure is commonplace in the study of
rare events. However, unlike here, the time scale separation
is often governed by β̄, the large deviation parameter. This
leads to a more complex situation [32]. As noted in Sec. II A,
this difference with slow-fast systems arising from two dimen-
sional turbulence is caused by the different role of the noise.
In this case, it is not an energy injection; the nontrivial state
exists even without noise. The noise is instead the trace of the
intrinsic turbulent fluctuations. This will not cause problems,
since the elimination is based on order identification in the time
scale parameter 1/R, so that will we be able to keep small 1/β̄

and be consistent.
The change of variable to ζ1 is performed in Appendix C 1.

A heuristic elimination in the Langevin equation is performed
in Appendix C 2: this procedure is more readable, however it
does not strictly ensure the validity of the result in my two pa-
rameters R,β̃ case. Such validity is obtained by performing the
elimination in the Fokker-Planck equation (see Appendix C 3),
even if the operation is now less readable. When the result is
rescaled and terms that will vanish when studying the large
deviations are removed, we find the stochastic differential
equation for X2 alone at a = 0,

Ẋ2 = −
(

1

R
X2 + R2 X2

2

(RX2 − 1)2

)
+
√

1

β̄
η

= − dV
dX2

+
√

1

β̄
η. (31)

An approximation was made to incorporate the saddle and
laminar fixed point in the slow system. It makes sense to
include the low amplitude X1 < 1, X2 < R in this procedure,
because X2 still controls X1 through the linear non-normal
lift-up term in this range of amplitude and is thus still the
leader in the dynamics. Since it involves only one degree of
freedom, one has l = 0 when writing the SDE in the form of
Eq. (25). The system is necessarily gradient and thus derives
from a quasipotential V . Knowing the noise correlation matrix
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as a function of X2, we can thus deduce the quasipotential from
the deterministic part of my model where X1 is eliminated, for
all three noise types (a = 0, 1

2 , and 1). I do this by rewriting
the resulting SDEs for X2 in the general form of Eq. (25).
In the additive noise case, partial fraction decomposition and
integration yields the quasipotential

V = 1

2R
X2

2 + X2 + 2

R
ln(1 − RX2) + 1

R

1

1 − RX2
− V0.

(32)

The quasipotentials, as rate functions, are often shifted by a
constant V0 chosen so that V(X−

2 ) = 0 at the main minimum.
I use the constant V0 so that V(X−

2 ) = 0. I add the analytically
calculated V at R = 2.1 to the plot of numerically calculated
V in Fig. 11(b). There is already a good agreement, even if R

is small. The minimum near 0 and the saddle is well captured
by my approximation of keeping 1/R2 in the slow dynamics.
Moreover, the approximation will give a more precise value
for X2 of the global minimum of quasipotentials in the whole
range of Reynolds number.

The same procedure can be repeated when using a mul-
tiplicative noise (see remarks in Appendix C). Note that
keeping the X2 dependence of the multiplicative noise implies
an approximation to the fast variable elimination similar to
keeping the precise structure of minima and saddle in the
quasipotential. If we use a = 1, the SDE in which X1 is
eliminated reads

dX2

dt
= −

(
1

R
X2 + X2

2(
X2 − 1

R

)2
)

︸ ︷︷ ︸
=−[X2/(X2−1/R)]2dV/dX2

+
√

2

β̄

X2

X2 − 1
R

η2. (33)

Following the general form of Eq. (25), the quasipotential, as
a function of X2, reads

V = 1

2R
X2

2 +
(

1 − 2

R2

)
X2 + 1

R3
ln(|X2|) − V0. (34)

Note that because of the noise variance vanishing fast enough
at X1,2 = 0, the quasipotential goes to minus infinity at
X2 = 0. As a consequence, the function exp(−β̄V) will diverge
extremely fast like |X2|−β̄ at X2 = 0 and β̄ large. Therefore it
cannot be normalized and the pdf is not defined as a function.
Instead, it is a distribution, a dirac delta function in 0. This
divergence of V at zero arises from the constant part of b and
a noise variance going to zero fast enough at zero.

If we choose a = 1/2, the SDE where X1 is eliminated
reads

dX2

dt
= −

(
1

R
X2 + X2

2(
X2 − 1

R

)2
)

︸ ︷︷ ︸
=−[X2/(X2−1/R)]dV/dX2

+
√

2

β̄

√
X2

X2 − 1
R

η2. (35)

Following Eq. (25), this yields again the quasipotential

V = 1

2R
X2

2 +
(

1 − 1

R2

)
X2 + 1

R
ln(1 − RX2) − V0. (36)

Note that now, the quasipotential is finite at 0. This is the case
for all 0 � a � 1/2. The probability density function will still
diverge at 0 like X−1. Note however, that since the system is

discretized numerically, this divergence is slowed down, and
this can lead to the laminar state not being absorbing any longer.
As discussed in Appendix E, this property should manifest
itself only if a is strictly under 1

2 .
I compare all three quasipotentials calculated analytically

to numerical solutions, either of the Fokker-Planck equation
or the coupled SDEs, in Fig. 11(c). The agreement between
numerical and analytical estimation of V is good for 0 > X2 >

X−
2 , at least within one standard deviation, as shown by the

perfect agreement between numerical and analytical results in
that range. In particular, the value of the minimum ofV , atX2 �
−R, is well captured by the approximation performed in the
elimination of the fast variable. Some properties are especially
worth mentioning. ForX2 	 X−

2 , the quasipotentials are nearly
parabolic. Note however that they remain parabolic away from
X−

2 only if |X2| > |X2|−. In the range 0 � |X2| � X−
2 , the

quasipotentials are nearly linear. This is similar to DNS results
(Fig. 9). This leads to exponential tails in the probability
density functions. For more than one standard deviation, the
numerical results estimated from simulations of the SDEs or
solution of the Fokker-Planck equation are not trustworthy,
since the corresponding probabilities are very low and thus
poorly estimated by standard methods. Nevertheless, one finds
both numerically and analytically that for X2 > X−

2 , one
has Va=0 � Va=1/2 � Va=1. In order to check the validity of
analytical estimation ofV for more than one standard deviation
out of X−

2 and illustrate the analytical calculation of mean first
passage time before of turbulence in that model, I will now turn
to a comparison between analytical result and AMS numerical
results. I will then compare the numerically computed mean
first passage times to those predicted by the Arrhenius law
exp(β̄�V), which is the focus of my study. This will show that
the analysis can not only help estimate pdfs and explain their
shape but also estimate mean first passage times.

3. Mean first passage times and trajectories

The mean first passage time from state X−
1,2 to state

X1,2 = 0 is given analytically by the quasipotential difference
between X−

2 and the saddle in all three cases (a = 0, a = 1,
and a = 1/2). This reads (1/β̄) ln(T ) = Vsaddle − V(X−

2 ). This
difference can be calculated exactly using the full formula
Eqs. (19), (32), (34), and (36) in Appendix D. In the limit
of large R, through a Taylor expansion, we find �Va=0 = R

2 −
4 ln(R)

R
+ O( 1

R
), �Va= 1

2
= R

2 − 2 ln(R)
R

+ O( 1
R

), and �Va=1 =
R
2 − 1

R
+ O( 1

R2 ). This means that in all three cases, at lowest
nonzero order, the mean first passage time before the exit of
state X−

1,2 has the same asymptotic dependence in R and β̄. In
large deviations form and at large R, it reads

lim
1/β̄→0

ln(T )

β̄
= �V = R

2
. (37)

Note that this final asymptotic result is not impacted by the
approximation made in the fast variable elimination, since the
corrective terms vanish. In all three cases, the actual potential
difference is lower than the asymptotic result, since corrections
are all negative. The a = 1 is quite close to the asymptotic
result. Meanwhile, in the a = 0 and a = 1

2 case, the correction,
while going to zero at R → ∞ is decreasing very slowly and
is in fact close to a constant of order 1 for R � 20.

023109-16



EXTREMELY RARE COLLAPSE AND BUILD-UP OF … PHYSICAL REVIEW E 97, 023109 (2018)

-0.8 -0.6 -0.4 -0.2 0
X

1

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

X
2

X
1
 nulcline

relaxation path : X -

relaxation path :0
trajectory collapse
collapse start
collapse end
trajectory build-up
fixed points
build-up start
build-up end

FIG. 12. Reactive trajectories in the two degrees of freedom
model at R = 2.5, showing build-up of turbulence under additive
noise (β̄ = 10 000), collapse of turbulence under additive noise (β̄ =
1500), the starting and ending points of trajectories, the relaxation
paths from the saddle point X+

1,2 to the nodes X−
1,2 and 0 and the X1

nullcline X1 = [X2/(X2 − 1/R)].

One can compare this analytical result to AMS calculation
of the mean first passage time before reaching (0,0) in all three
cases (a = 0, a = 1, and a = 1/2), and escapes from state
(0,0) in the a = 0 case (comparable to build-up of turbulence).
I choose the reaction coordinates

ϕa=0 = 1 − X2

X−
2

,

ϕa>0 = (1 + εa>0)

(
1 − X2

X−
2

)
, (38)

ϕseed = (1 + εs)
X1

X−
1

− εs.

This distinguishes the cases of additive (ϕa=0) and multiplica-
tive noise (ϕa>0). A small constant εa>0 is added to 1 in ϕa>0, so
that AMS stops very slightly before X2 has entirely collapsed
and the noise has entirely vanished, thus ensuring that the
final branchings will not be perturbed by a possible absence of
noise. In the case of build-up of turbulence a small constant is
subtracted to ϕseed so as to define A as a tiny ball around the
laminar state. I follow the same procedure as in the study of
mean first passage times before collapse of turbulence in the
SPDE. I calculate reactive trajectories. I present the collapse
of turbulence at β̄ = 1500 and the build-up of turbulence at
β̄ = 10 000, both at R = 2.5, in Fig. 12. The collapse trajectory
remains very close to the X1 = X2/(X2 − 1/R) line: variable
X2 remains the master on the whole trajectory. The collapse
trajectory is stimulated by noise from X−

1,2 down to X+
1,2 (this is

the fluctuation path) and then collapses to 0 deterministically
(this is the relaxation path). Meanwhile the build-up trajectory
is stimulated by noise from 0 to X+

1,2 (this is the fluctuation
path) and then reaches the turbulent state X−

1,2 deterministically
(this is the relaxation path). Even if the trajectories are very
close, note that the fluctuation path from X−

1,2 to X+
1,2 is not the

time reverse relaxation path seen in the build-up trajectory,
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FIG. 13. (a) Logarithm of the mean first passage time before exit
of state X−

1,2 as a function of β̄ in the two degrees of freedom model for
increasing Reynolds number R in the three noise cases. (b) Growth
rate f̄ (R) of the mean first passage time before exit of state X−

1,2 as a
function of Reynolds number R in the two degrees of freedom model
for additive noise.

since the system is not gradient. Thus, trajectories of both
types are governed by instantons in the limit of low variance
noise. Note that both trajectories spend some time fluctuating
around the saddle point X+

1,2. This decomposition of collapse
and build-up trajectories stresses the importance of the saddle
points on the separatrix between states or on a minimal germ
[see Fig. 4(e)] in the case of build-up of turbulence.

I then calculate T as a function of β̄ for R ∈ [2; 20]. In
the case of additive noise, I display ln(T ) as a function of
β̄ for 2.5 � R � 20, as well as ln(T )(β̄) at R = 6 for the
a = 1 and a = 1

2 multiplicative noise cases in Fig. 13(a). One
can see that for all R, ln(T ) grows linearly with β̄, so that
f̄ (R) = ln(T )/β̄ is independent of β̄, as calculated analytically
[Eq. (37)]. Moreover, the slope of ln(T )(R) ostensibly grows
with the Reynolds number. I perform an affine fit for all
Reynolds numbers. This yields f̄ (R), for all three noise cases.
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I then display f̄ (R) for all three noise cases as a function of
the Reynolds number, along with the asymptotic prediction
[Eq. (37)] and full quasipotential differences [Eqs. (D1),
(D3), and (D2)] in Fig. 13(b). The growth rate f̄a=0,1,1/2(R)
calculated numerically with AMS is affine in R and is in very
good agreement with the asymptotic result: it has a slope within
10% of 1

2 and within 10% of corresponding quasipotential
differences for all three noise cases. The ordinate at the origin
is negative in all three cases, for both numerical results and full
quasipotential difference. The source of the small discrepancy
can be the approximation of the saddle done in the fast variable
elimination. The definition of B can also come into play
because the saddle point is very near it. I find analytically and
numerically that f̄a=0(R) < f̄a=1/2(R) < f̄a=1(R), as was the
case for the quasipotentials [Fig. 11(c)]. All things considered,
if one remembers that the noise in the model goes to zero with
the length β̄ ∝ L, one finds analytically and numerically that
this two degrees of freedom model leads to a mean first passage
time dependence of the type T ∝ exp[L(A′R − B ′)]. The use
of the quasipotential difference also shows the importance of
the saddle point in collapse or build-up.

V. CONCLUSION

A. Summary

This paper presented a joint numerical and theoretical
study of multistability in two stochastic models of transitional
wall flows. The numerical study was focused on turbulence
collapse, splitting, and build-up in a SPDE pipe flow model
proposed by Barkley [16]. Adaptive multilevel splitting, a
mutation selection algorithm dedicated to the fast study of
multistability, was used to compute the trajectories of puff
splitting, turbulence collapse, and build-up, and corresponding
mean first passage times in a reproducible manner. Using AMS
exponentially reduced the cost of these computations. Simi-
larly to other rare events or atypical trajectories calculation,
AMS modifies the dynamics to sample said rare events. It
is indeed a necessary condition for a valid rare events study
that said events are sampled and not guessed. An advantage
of a method like AMS is that it comes along with a strong
mathematical and theoretical background that quantitatively
demonstrates, in a increasing number of systems, how the
occurrence of observation of rare events is changed. This leads
to a precise estimation of mean first passage time. Along with
this comes rules for assessment of the precision of estimations
and numerical verifications.

The quantitative study was first focused on isolated puffs.
The mean first passage time T before puff collapse was com-
puted in the whole range of Reynolds number of transitional
turbulence for a wide range of initial conditions (thus including
the collapse of equilibrium puffs in the lower range of Reynolds
number). Using a fixed initial condition for the computation of
mean first passage times before collapse and basing the reaction
coordinate on turbulent intensity generalizes the conditioning
on the maximal turbulent fraction, which should not be much
larger than that of the initial condition. Computing these
times in such a conditioned manner while varying R shows
that the logarithm of T is affine in the Reynolds number
ln(T ) = Apr − Bp. Moreover, the coefficients Ap, Bp depend

in an affine manner on the total turbulence intensity of the initial
puff Q0 = ∫ q dx. Performing such a conditioned study helps
uncover the reaction of the phase to given states of isolated
puffs in a manner which is well described by theory. Moreover
this provides a first separation of the mean first passage time
before collapse of turbulence between the reaction of the phase
space to a given initial condition and the way the natural
initial conditions depend on the Reynolds number. Indeed,
knowing Q0(r) yields the faster than linear growth of ln(T )(r)
for equilibrium puffs. Approximates of the mean first passage
times before splitting of equilibrium puffs were computed in
order to illustrate the crossover of mean first passage times
of collapse and splitting very near the threshold of sustained
laminar-turbulent flow.

I could moreover compute turbulence collapse in pipes
initially containing their steady turbulent fraction. This showed
two regimes of collapse of laminar-turbulent flows: just above
the threshold of sustained laminar-turbulent coexistence, the
collapse occurs puff by puff through independent events.
Meanwhile all puffs collapse in a correlated manner in the rest
of the range of laminar-turbulent coexistence, due to increased
probability of puff splitting. The length and Reynolds number
scaling of the mean first passage time before collapse of tur-
bulence in these laminar-turbulent pipes is independent on the
type of collapse and one finds that T � exp[L(Ar − B)] with
positive A and B in the whole transitional range, thus providing
a counterpart for results obtained in DNS of short pipes [19].

Large deviation approaches of the study of probabilities and
passage times were used to discuss the length and Reynolds
number dependence of the mean first passage time before col-
lapse of turbulence. These theories often yield the dependence
of said probability and mean first passage times through a
quasipotential (1/B) ln(T ) = �V in the limit of zero variance
noise 1/B → 0 [25]. I discussed the persistence of the same
length dependence of mean first passage time before collapse
of laminar-turbulent coexistence ln(T ) ∝ L in all regimes
of collapse. Furthermore, I proposed the computation of the
quasipotential in a simple two degrees of freedom model
proposed by Dauchot and Manneville [28], which has all
the properties one would expect of spatially averaged wall
turbulence. This showed that mean first passage times before
collapse of turbulence of the type exp[L(A′R − B ′)] could
be derived in asymptotic limits. This derivation stresses the
importance of the saddle between the laminar and the turbulent
state for the mean first passage time dependence and the natural
trajectories followed by turbulence build-up and collapse.
Additional numerical simulations of the simple model showed
that these derivations were precise.

B. Discussion

Most of the properties of the two degrees of freedom model
are found in the spatially averaged SPDE model and more
generally in numerical and laboratory experiment. This means
that the derivation of the mean first passage time dependence
on L and R in this simple SDE model can enlighten us on the
physical mechanisms controlling the mean first passage time
before collapse of turbulence initially at its steady turbulent
fraction. In all cases, we find master- slave dynamics, where the
Q variable leads and the 1 − U variable follows. In the average
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value of the steady state, the leaderQ quantity grows somewhat
linearly with the Reynolds number while the follower saturates.
The leading variable indicates how much kinetic energy is
given to turbulence and how much turbulence has to be
collapsed. This amount of energy grows more or less linearly
with Reynolds number and this is reflected in the position
of the quasipotential minimum. The fact that at fixed length
the noise felt by the master variable saturates is reflected in
the multiplicative noise depending solely on X1. These two
combined effects lead to the affine quasipotential difference.
The fact that turbulence has to be collapsed as a whole,
like “flip” reactive trajectories of gradient systems [24], gives
relevance to the study of such spatially averaged variables. This
means that the noise variance goes to 0 like 1 over the length and
leads to the length dependence of mean first passage time T .
The case of the isolated puff is somewhat similar; the increase
of length corresponds to the increase of Q0.

This two degrees of freedom model can also show us that
the physical mechanisms leading to the asymmetric probability
density functions of kinetic energy of turbulence (see [3,57])
are the same as those controlling the parametric dependence of
mean first passage time before collapse of turbulence. Indeed
the mean first passage time before collapse of turbulence is
governed by �V while the pdf is governed byV . The combined
effect of very weak Reynolds number dependence of noise
variance and linear growth of kinetic energy of turbulence
with Reynolds number leads to the linear quasipotentials in
the range 0 � e � 〈e〉 and therefore the exponential tails.

C. Perspectives

The success of the combined use of the numerical method
for the computation of trajectories and mean first passage times
and of the theoretical framework for their interpretation opens
a wide range of perspective for the study of transitional tur-
bulence in wall flows. Methods like AMS can be successfully
applied to chaotic and turbulent dynamics [58]. This means
that the mean first passage time before collapse of turbulence
can now be extensively computed both in academic or realistic
flow configurations. Mean first passage time scalings with
Reynolds number and length and flow configurations can thus
be computed extensively, beyond what is deduced from the
models studied here or DNS of small systems [19]. One can
then check whether the physical mechanisms at work in the
models studied in this paper are also relevant in actual pipe flow.
Even if the internal dynamics are different (stochastic versus
temporal chaos), similar reasonings may be followed, since
they are based on the same notions in both cases (comparison
of coherent lengths to the domain size, independence of events,
etc. [20]). When studying the role of saddles in passage time
Reynolds number dependence and turbulence collapse, edge
states may very likely play the role of the simple saddle point
used in the two degrees of freedom model [43,44].

From another point of view, this also opens a way to
estimate optimal evolutions, starting from the laminar base
flow, leading to turbulence that goes even beyond computing
the minimal seed [21,22]. Indeed, by computing the most
probable trajectory traveling from the laminar base flow to
turbulence under a noise of vanishing variance, either with
an AMS-type method or through action minimization [38],

the trajectory leading to turbulence under a wide range of
arbitrarily small external perturbations can be found. This
approach does not require us to “teleport” the flow in a state
of finite energy since the initial condition is the laminar base
flow. The perturbing noise of vanishing variance only plays
a role in the fluctuation trajectory from the laminar state to
the most probable saddle on such paths: from that point on,
theory ensures that the trajectory is a deterministic relaxation
path and that it starts from a saddle point [25]. Moreover, this
approach requires a single computation: there is no need for
a dichotomy on a finite energy of the initial conditions. Such
build-up calculations are under way, and should inform us of
mechanisms leading to development, collapse, or extension of
turbulence in transitional wall flows.
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APPENDIX A: EFFECT OF AMS PARAMETERS
ON THE PRECISION OF ESTIMATES

The notion of convergence of quantities z estimated by AMS
is peculiar, because it involves two parameters: the number of
clones N of the computation, and the number o of repetitions
of independent AMS computations at a fixed number of clones.
Another specificity is that it is probabilistic: α is within a given
interval of confidence of the estimate with a given probability.
Unless the simulation is extremely expensive, one performs an
estimation of z = α, T , τ . . ., etc., by averaging the output of
independent AMS computations at fixed clone number N over
several to many independent realizations [23,24,45,46],

〈z〉o = 1

o

o∑
i=1

z
i
. (A1)

In the paper, I drop the 〈·〉o for readability. The quality of
this estimate, depending on N and o, can be quantified using
two cumulants: the variance over realizations 〈(z − 〈z〉o)2〉o
and the difference between the average over realizations and
a “true” value estimated either by direct numerical simulation
(in order to separate the effect of N from the effect of dt) or by
theory: 〈z〉o − z. The DNS used for the calculation of α follow
the stage 0 of the algorithm and estimates α by the ratio of
reactive trajectories by total number of test trajectories, when
this number goes to infinity. Mathematical results exist on the
variance

σα ≡ lim
o→∞〈(α − 〈α〉o)2〉o (A2)
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as a function of the number of clones N , using somewhat
idealized dynamics [23,45]. Indeed, the estimate of α by AMS
has a variance σα , no matter the model or the formulation of
the algorithm. This variance can be used to compute ±2σα/

√
o

which gives the 95% confidence interval for the estimation of
α. It can be demonstrated that

σα � α
√| ln(α)|√

N
. (A3)

There is equality in the ideal case [23]. The relative variance
σα/(α

√| ln(α)|) is found to decrease like 1/
√

N even in
nonideal cases [24,45,46] (provided φ is reasonable). As to
limo→∞〈α〉o, several situations exist, depending on the formu-
lation of the AMS algorithm, the estimator of α, and the number
of degrees of freedom of the model to which AMS is applied.
While one can ensure complete unbiasedness in one degrees
of freedom models using an estimator slightly improved with
respect to Eq. (5) [45,46], a bias may exist between the
AMS estimation (averaged over realizations) and the estimate
using DNS [23,46]. One empirically finds that the quantity
�α/αDNS = (〈α〉o − αDNS)/αDNS is negative or zero: positive
values of �α/αDNS fall quite within a relevant confidence
interval around zero and correspond to small sampling errors.
In the general case of no systematic bias �α/αDNS goes to 0
like 1/N . This means that if the bias is absent or negligible
(the number of clones is not so small), obtaining a precise
estimate of the probability of observing an event is a tradeoff
between the number of clones used in AMS computations
and the number of independent realizations over which one
averages. If one uses fewer clones in AMS computations (for
instance, because of a constraint of memory), one then needs
more realizations of AMS computations to average over in
order to obtain a precise estimate. If one uses more clones,
then fewer realizations are necessary.

No demonstration of the scaling of σα exists yet that math-
ematically applies to the use of AMS on a SPDE model like
Eqs. (2) and (3). This does not mean that this scaling is false.
Indeed, transposing the argument of these demonstrations to
SPDEs yields a justification which is certainly not less strong
than many physical derivations. This state of fact means that
one has to verify scalings and assertions empirically. In order
to do so, I choose cases where α can be estimated using
direct numerical simulations. I considered collapse events of
isolated puffs at r = 0.85, r = 0.95, r = 1.0, and r = 1.05
and splitting events at r = 1.0, all of them in a domain of
length L = 800. These cases display relatively small α [down
to O(10−5)] and span an order of magnitude of α. In all these
cases, I estimated αDNS, τDNS using a large enough number
of simulations. The quality of this estimate will be given by
95% confidence intervals. The precision on the estimate of T

follows from the precision on the estimate of these quantities.
In parallel, I performed AMS computations of these events
using a range of clone numbers 10 � N � 5000. For each
of them, I used a large enough number of realizations (going
from thousands when using N = 10 clones to tens when using
N = 5000 clones), so that the statistics of α were estimated
with precision.

I first illustrate the convergence of the average of 〈α〉o as o

is increased in Fig. 14(a). I used the case of a collapse event
at r = 0.85. This shows that large errors can be made if one
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FIG. 14. (a) Probability 〈α〉o of observing a collapse estimated
after a sum over the number of independent repetitions of AMS as a
function of o at r = 0.85, for several N . (b) Estimate of the probability
of observing a collapse α (red curve) as a function of the number
of clones used in AMS computations, with large o. The blue curve
indicates the probability as estimated by DNS αDNS. The error bars
indicate the 95% confidence interval computed using the variance
over repetitions. The dashed blue lines indicate the 95% confidence
interval for estimation of αDNS by DNS. (c) Relative variance of the
estimate of the probability of observing a collapse or a splitting as
a function of N for several r . (d) Relative difference between the
estimate of α by AMS and DNS for collapse and splitting events as a
function of N for several r .
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uses few clones and few realizations, for instance with N = 10.
However, one can see that the average over realization always
reaches an asymptotic value as the number of realizations is
increased. The rate at which this asymptotic value is reached
increases as the number of clones is increased. The variance
σα quantifies this rate. Note that a small but nonzero difference
is visible between AMS estimates of α at N = 10 clones and
AMS estimates with higher numbers of clones. At small N , this
difference is larger when using the exponential approximate
estimator of α [Eq. (5)]. One can then illustrate the effect of
the number of clones on 〈α〉o as a function of N , displayed
on top of the estimate of α using DNS [Fig. 14(b)]. I used a
o large enough for the asymptotic value to be reached. One
can see that this estimate reaches an asymptotic value as N is
increased. One also see that even if a small difference appears
between AMS and DNS computation, one still has an overlap
of the 95% confidence interval as soon as N � 50, ensuring
the probabilistic quality of the estimate. Thus, if the variance
of α follows the ideal scaling of Eq. (A3), one can know how
precise an estimate of α is, given the number of clones in AMS
computations and the number of independent realizations. In
order to verify this scaling and quantify how many o are
generally need to estimate 〈α〉o, I display the rescaled variance
(〈(α − 〈α〉o)2〉√N )/(α

√| ln(α)|) as a function of the number
of clones N [Fig. 14(c)] One can see that for the collapse
events, the variance of α is actually very close to the lower
boundary of the idealized case, since the rescaled variance is
nearly 1 for all r and N . Meanwhile, one finds that the rescaled
variance is larger by a factor of 2 for the splitting events, even
if it follows the predicted scalings in α and N . This indicates
that splitting events are harder to simulate and that a larger
number of clones or repetitions may be needed in order to
obtain a given precision. There may be room for improvement
of the reaction coordinate. Figure 14(c) overall indicates that
even if the estimate of the variance is not yet demonstrated to
follow the scaling of Eq. (A3) in the case of SPDE [Eqs. (2) and
(3)], such a proposition may very well be true. It is therefore
reasonable to undertake such a demonstration. I eventually
consider the relative difference between the estimate of α

using AMS and the estimate of α using DNS: �α/αDNS ≡
(〈α〉o − αDNS)/αDNS [Fig. 14(d)]. Note that this quantity is the
typical bias in the incertitude when considering the logarithm
of α [or similar quantities like ln(T )]. One can see that in all
cases, the quantity �α/αDNS reaches an asymptotic value as
N is increased. In the case of collapse events, this value is very
close to 0 [typically 10−2 with my estimates; this incertitude
should be compared to values of order O(10)]. There are small
differences in the asymptotic large N value of �α/αDNS as r is
changed. My samples show that for r = 0.85 and r = 0.095,
the same asymptotic value limN→∞ �α/αDNS 	 −0.025 is
reached. As r is increased, the samples show that one has
limN→∞ �α/αDNS 	 0.01 at r = 1.0 and an asymptotic value
of this relative difference which cannot be distinguished from
0 at r = 1.05 (when a small confidence interval on αDNS is
taken into account). This would indicate that the quality of
the estimate of α by AMS is improving as r is increased.
The a priori is that the quality of the estimate decreases as
α decreases. It is possible that some changes in the structure
of the reactive trajectories as r is increased make them easier
to compute by AMS. In the case of splitting events, while the

relative difference converges toward a relatively small value
(10−1, to be compared to logarithms of α of order 10), this
asymptotic value is not zero, hinting again toward the higher
difficulty of estimating the splitting probability.

Other AMS estimates can be compared to DNS estimates.
Mathematical results exist only for α, so that there are only
empirical guidelines for other physical quantities [46]. I tested
the case of the average duration of trajectories, because it is
physically well defined and because it is easily computed by
both AMS and DNS. The average duration of trajectories τ

computed by AMS is close to τDNS. Indeed, when considering
the five cases of Fig. 14 (collapse at r = 0.85, r = 0.95,
r = 1.0, and r = 1.05, and splitting at r = 1.0), one find that
|〈τ 〉o − τDNS|/τDNS is smaller than 10−2 for collapse events at
all four Reynolds numbers, when using 10 � N � 5000 clones
in computations. Unlike |〈α〉o − αDNS|/αDNS, no tendency
with N appears: this difference is always small, even when
using N = 10 clones. Behind this lies the precision in the
estimate of reactive trajectories themselves by AMS. If one
wishes to sample them in order to examine the physics of
transitions, using few clones N and many repetition o is always
a good strategy. The relative difference is slightly larger for
splitting events at r = 1.0, |〈τ 〉o − τDNS|/τDNS = O(10−1). It
is smaller than the relative difference of splitting probabilities
[Fig. 14(d)]. Note also that the rather large durations of
collapses puff by puff [Figs. 4(c) and 7(d), 1.0 � r � 1.15]
is not likely a numerical artifact but quite probably a physical
effect. Indeed, no effect of the number of clones was seen
in these estimates of τ . Moreover, when using an imperfect
reaction coordinate, AMS calculation may in fact overselect
short duration trajectories, which are actually improbable, over
longer duration trajectories, which are more probable and
which imply spending a long time around local probability
maxima [45,46]. When this occurs, AMS outputs leave specific
traces in the estimates, such as fat tails in the distributions
of k, a large, nonvanishing as N → ∞, skewness in the
distribution of α. This makes the problem easy to detect.
Collapses puff by puff are such long duration trajectories
displaying bottlenecks near local probability maxima. For this
reason, the long durations displayed for 1.05 � r � 1.15 in
Fig. 7(d) are very doubtfully numerical artifacts.

Note that when using AMS to study transitions in the
two degrees of freedom model Eqs. (22) and (23), effects
comparable to those see in Fig. 14(d) while using the estimator
[Eq. (5)] remain much smaller, while ln(T ) spans more than
two orders of magnitude.

APPENDIX B: LENGTH SCALING OF SPATIALLY
AVERAGED MULTIPLICATIVE NOISE

The spatial average of the noise term of Eq. (3) reads

Q ≡
√

2

β

1

L

∫ L

x=0
q(x,t)η(x,t) dx︸ ︷︷ ︸

≡I

. (B1)

This comes from the SPDE interpreted with an Itō rule, so that
the average of q(x,t) is uncorrelated from η(x,t): “η happens
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dt later than q in the time discretization.” This means that

〈Q〉 =
√

2

β

1

L

∫ L

x=0
〈q(x,t)η(x,t)〉︸ ︷︷ ︸

=0

dx. (B2)

Let us now consider the lagged variance of Q. I will work
with discretized time, since this is how Itō processes are
mathematically defined. In that case, one has that

〈η(x,t)η(x ′,t ′)〉 = δ(x − x ′)δt,t ′
1√
dt

. (B3)

Note the distinction between the Dirac delta function δ(x − x ′)
and the Kronecker symbol δt,t ′ arising from the distinction
between continuous space and time discretized with a time
step dt . The time covariance of Q is

〈[Q(t) − 〈Q〉][Q(t ′) − 〈Q〉]〉
= 〈Q(t)Q(t ′)〉 = 2

βL2
〈I (t)I (t ′)〉. (B4)

We could simplify using Eq. (B2). This is a first consequence
of having an Itō process. Let us now consider the lagged
covariance

〈I (t)I (t ′)〉 =
∫ L

x=0

∫ L

x ′=0
〈q(x,t)q(x ′,t ′)η(x,t)η(x ′,t ′)〉 dxdx ′.

(B5)

Without loss of generality, let us set that t ′ � t . In Eq. (B5),
we have two cases for the two points two times covariance of
q and η

〈q(x,t)q(x ′,t ′)η(x,t)η(x ′,t ′)〉
= 〈q(x,t)η(x,t)q(x ′,t ′)〉〈η(x ′,t ′)〉, if t ′ > t, (B6)

〈q(x,t)q(x ′,t ′)η(x,t)η(x ′,t ′)〉
= 〈q(x,t)q(x ′,t)〉〈η(x,t)η(x ′,t)〉, if t ′ = t. (B7)

This again comes from the fact that we are considering an
Itō process (see [18] Sec. 4.2). The spatial averages and
correlations are not made explicit at this point. Since η(x ′,t ′)
can be extracted in the case t ′ > t and we have 〈η(x ′,t ′)〉 = 0,
this leads to 〈I (t)I (t ′ > t)〉 = 0. The lagged correlation of
Eq. (B5) can be rewritten with a Kronecker delta symbol
δt,t ′ . I also use that 〈η(x ′,t)η(x,t)〉 = 1

dt
δ(x − x ′) in discretized

equations. We can thus rewrite the lagged correlation

〈I (t)I (t ′)〉 = 1

dt

∫ L

x=0

∫ L

x ′=0
〈q(x,t)q(x ′,t)〉δ(x − x ′)δt,t ′ dxdx ′

= 1

dt
δt,t ′

∫ L

x=0
〈q(x,t)q(x,t)〉 dx. (B8)

I performed a first integration on x ′ which uses the Dirac δ func-
tion. Due to the translational invariance in the periodic pipe,
the second order moment 〈q(x,t)2〉 = Cq(t) is independent
on space. Note however, that this function is not independent
on time, since it contains the information on the collapse of
turbulence after a mean first passage time T . This corresponds
to having q = 0 on ensemble average after T . One typically
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FIG. 15. Normalized variance 〈(Q − 〈Q〉)2〉Ldt sampled in di-
rect numerical simulations of the model (while no collapse occurred)
as a function of the domain size, for several Reynolds numbers.

has Cq(t) = O(1) if t � T and 0 � Cq(t) � 1 if t � T . One
important fact is that Cq(t) is expected to become independent
on size as size is increased, since the spatial correlation extends
within one puff or up to another puff at most. Note that
Cq(t) does however contain some information about the spatial
averages of 1 − u and q. We thus have the lagged covariance
of the multiplicative noise term

〈[Q(t) − 〈Q〉][Q(t ′) − 〈Q〉]〉

= 2

βL2dt
δt,t ′LCq(t) = 2

βLdt
δt,t ′Cq(t). (B9)

The average and lagged variance of Q are therefore the same

as that of a noise term of the type
√

1
2β̄

fa(q,u)η, with β̄ ∝ L,

provided Cq brings little size effect, as argued.
In order to illustrate this and show that Cq indeed adds very

little size dependence, I compute 〈[Q(t) − 〈Q〉]2〉Ldt from
direct numerical simulations of the model at r = 1.3, 1.4, and
1.5 (Fig. 15). Time series of

√
2/βηq are sampled over a

duration of 50 000 time unit (too short for a likely collapse
at these Reynolds numbers). I compute the cumulants. We can
first see that Cq brings no size dependence to the variance of the
noise, since the rescaled variance is independent of size. The
increase of the variance of this noise with the Reynolds number
also encourages to use a multiplicative noise in the model, since
it follows the increase of Q and 1 − U with Reynolds. I also
computed the relative skewness. It remains mostly under 10−2

in absolute value and has no definite sign, for all sizes. The
decrease of the absolute value of the skewness with the sample
duration indicates us that most asymmetry in the distribution
of qη is the consequence of the finite duration of the sample.
This further hints toward Gaussianity of this noise term. Note
that some ensemble averaging would be necessary to infinitely
increase the size of the sample, while enforcing the condition
that no collapse occurs.
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APPENDIX C: CHANGE OF VARIABLE AND FAST
VARIABLE ELIMINATION

1. Slow-fast system

I change variables in the system of SDEs [Eqs. (22) and (23)]
to use the new variable ζ1, Eq. (30). Due to the nonlinearity of
the change of variable, care must be taken. I first calculate the
derivatives of ζ1,

∂ζ1

∂χ1
= 1,

∂2ζ1

∂χ2
1

= 0,

∂ζ1

∂χ2
= − 1

R2

1(
χ2 − 1

R2

)2 , (C1)

∂2ζ1

∂χ2
2

= 2

R2

1(
χ2 − 1

R2

)3 .

I then perform the change of variables using the Itō lemma
(Ref. [18] Sec. 4.3.4) in the case a = 0. The new system of
SDEs now reads

dζ1

dt
= R

(
χ2 − 1

R2

)
ζ1 +

√
R

√
2

β̃
η1 + 1

R3
(
χ2 − 1

R2

)2
×
(

χ2 + χ2
2(

χ2 − 1
R2

)2 − 2ζ1χ2

χ2 − 1
R2

+ ζ 2
1

)

+ 2

β̃R3
(
χ2 − 1

R2

)3 +
√

2√
β̃R

5
2

1(
χ2 − 1

R2

)2 η2, (C2)

dχ2

dt
= − 1

R

(
χ2 + χ2

2(
χ2 − 1

R2

)2
)

+ 1√
R

√
2

β̃
η2

− 1

R

(
2ζ1χ2

χ2 − 1
R2

+ ζ 2
1

)
. (C3)

In Eq. (C2), the second line and the second term of the third line
arise from dχ2/dt . Meanwhile the first term of the third line is
specific to changes of variables in stochastic differential equa-
tions and takes into account particular correlations between
variables.

2. Langevin equations

I first perform a heuristic elimination working only with the
Langevin equations. This approach is more readable, however,
I will perform more approximations. Fortunately, this will have
little impact on the leading order result. From the Langevin
equation at leading order for ζ1 (neglecting 1/R3 drift and
the 1/R5 variance noise), if the time scale separation is large
enough, one can assume that χ2 is a constant. Thus, taking the
initial condition ζ1 = 0, I obtain by variation of the constant

ζ1(t) 	
∫ t

s=0
exp

(
−R

∣∣∣∣χ2 − 1

R2

∣∣∣∣(t − s)

)√
2R

β̃
η1(s) ds.

(C4)

This tells us that 〈ζ1〉 = 0 and that

〈ζ1(t)ζ1(t ′)〉 = 1

β̃

[
exp

(
−R

∣∣∣∣χ2 − 1

R2

∣∣∣∣|t − t ′|
)

− exp

(
−R

∣∣∣∣χ2 − 1

R2

∣∣∣∣(t + t ′)
)]

. (C5)

Inserted in Eq. (C3), I therefore find that h1 = 2ζ1χ2/[R(χ2 −
1

R2 )] is a noise term (a priori not Gaussian) whose variance is

of order O( 1
R2β̃

), negligible with respect to
√

2/(Rβ̃)η2 in the

R expansion. Meanwhile h2 = ζ 2
1 /R contains a deterministic

drift term of order 1/(Rβ̃) which will not be neglected in the
slow-fast separation. However, it is a deterministic term of
order 1/β̃ which will vanish the 1/β̃ → 0 limit. Let us term
(1/β̃)V1 a quasipotential containing the corrections brought
to the deterministic part by h2. If one has the one degree
of freedom process dx/dt = −∇[V0 + (1/β̃)V1] +

√
2/β̃η,

the pdf and mean first passage time will be proportional
to g = exp(−β̃V0 + V1), so that in the limit, one finds that
limβ̃→∞ − 1

β̃
ln(g) = V0. As a consequence, we will study the

process

dχ2

dt
= − 1

R

(
χ2 + χ2

2(
χ2 − 1

R2

)2
)

+ 1√
R

√
2

β̃
η2, (C6)

for comparison with ρ and T .
As I will explain more formally in Appendix C 3, fast

variable eliminations are not always that simple. If the scale
separation is also the large deviations parameter (see [32]), a
parameter like 1/β̃ remains finite, and the effect of h1 and h2

have to be taken into account in full detail. Taking this effect
into account with the procedures used in this paper would not
be possible. They are caused by very large deviations of χ2

out of its starting point. The corrections can quite dramatically
impact the large deviations of the slow variable, especially in
the case where their moments build up to create the noise felt
by the slow variable and even the multiple equilibria.

A similar procedure can be used to work out the case of
multiplicative noise. η1,2 will come with g[|χ2/(χ2 − 1/R)|]
factors and corrections in ζ1 will arise from the expansion of g.
Again, they will have high orders in 1/β̃ and will be negligible
in the 1/β̃ → limit.

3. Elimination in the Fokker-Planck equation

I now perform the elimination in the Fokker-Planck equa-
tions equivalent to the two coupled SDEs [Eqs. (C2) and
(C3)]. I follow the principle of the elimination presented in
[18] Sec. 8.3.3, where the time scale separation and operator
properties are very similar. Note that some difference in the
treatment will arise from appearing drift terms and very high
order in 1/R which will trivially be eliminated. This approach
is less readable in terms of the effect of each term in the
dynamics. However it shows more clearly how and why terms
are eliminated, especially since there are two small parameters
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1/R and 1/β̃. I define some differential operators

L1f ≡ ∂

∂ζ1

[(
χ2 − 1

R2

)
ζ1f

]
+ 1

β̃

∂2f

∂ζ 2
1

, (C7)

L2f ≡ ζ 2
1

∂f

∂χ2
, (C8)

L′
2f ≡ −2ζ1

∂

∂χ2

(
χ2

χ2 − 1
R2

f

)
, (C9)

L3f ≡ ∂

∂χ2

[(
χ2 + χ2

2(
χ2 − 1

R2

)2
)

f

]
+ 1

β̃

∂2f

∂χ2
2

, (C10)

L4f ≡ ∂

∂ζ1

[
f

χ2 − 1
R2

(
2

β
(
χ2 − 1

R2

) + χ2 + χ2
2(

χ2 − 1
R2

)2 − 2ζ1χ2

χ2 − 1
R2

+ ζ 2
1

)]
, (C11)

L5f ≡ 1

β

∂2

∂ζ 2
1

(
f

χ2 − 1
R2

)
. (C12)

Note that I made an approximation in including Reynolds number dependence in L3. This is done in order to give a better
description of the quasipotential minima and saddle. Even if the time scales of X1,2 are not separated by the same scalings if
of low amplitude, X2 is still leader through the non-normal linear lift up term. The Fokker-Planck equation for pdf P (ζ1,χ2,t)
equivalent to the Langevin equations (C2) and (C3) reads

∂P

∂t
= RL1P + 1

R
L3P + 1

R
L2P + 1

R
L′

2P + 1

R3
L4P + 1

R5
L5P. (C13)

One finds ν the steady pdf of ζ1, where the slow dynamics of χ2 is eliminated, from the leading order L1ν = 0. This normalized
pdf reads

νχ2 (ζ1) =
√

β̃
∣∣χ2 − 1

R2

∣∣
2π

exp

(
−β̃

∣∣∣∣χ2 − 1

R2

∣∣∣∣ζ 2
1

2

)
. (C14)

Using ν, I define the projector of a pdf on statistics where the fast steady dynamics of ζ1 and the slow time dependent dynamics
of χ2 are independent,

�f (χ2,ζ1,t) = νχ2

∫
f (χ2,ζ1,t) dζ1. (C15)

In particular, applied to the pdf P , this yields �P = νχ2 (ζ1) × p(χ2), where p(χ2) is the pdf of χ2 when the fast variable is
eliminated. The goal of the procedure is to obtain a partial differential equation of the Fokker-Planck type for p(χ2). We have that
L1�f = 0, since ν is in the kernel of L1 and the integral is independent on ζ1 and thus factors out of the derivatives. Meanwhile
�L1f = 0, since this is the integral of derivatives both with respect to ζ1: it yields boundary terms at infinity which are zero. I
define the probability density function of v(χ2,ζ1,t) in which the two variables are made independent due to time scale separation
as well as another function w,

v ≡ �P, w = (1 − �)P, �w = 0. (C16)

We will work with Laplace transforms

ĥ =
∫

h(t) exp(st)dt, (C17)

so that the time derivatives correspond to a multiplication by s for Laplace transforms. Using v̂, ŵ, and applying operator � and
1 − � to Eq. (C13) yields respectively

sv̂ = 1

R
�L3v̂ + 1

R
�(L2v̂ + L′

2v̂) + 1

R
�(L3 + L2 + L′

2)ŵ + 1

R3
�

(
L4 + 1

R2
L5

)
P̂ , (C18)

sŵ = RL1ŵ
1

R
(1 − �)(L2 + L′

2 + L3)ŵ + 1

R
(1 − �)(L2 + L′

2 + L3)v̂ + 1

R3
(1 − �)

(
L4 + 1

R2
L5

)
P̂ . (C19)

From Eq. (C19) we can write that

ŵ = 1

R

[
s

R
+ L1 + 1

R2
(1 − �)(L2 + L′

2 + L3)

]−1

◦
[

1

R
(1 − �)(L2 + L′

2 + L3)v̂ + 1

R3
(1 − �)

(
L4 + 1

R2
L5

)
P̂

]
. (C20)
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We can then insert it in Eq. (C18); this yields

sv̂ = 1

R
�L3v̂ + 1

R
�(L2v̂ + L′

2v̂) + 1

R3
�(L3 + L2 + L′

2) ◦
[

s

R
+ L1 + 1

R2
(1 − �)(L2 + L′

2 + L3)

]−1

◦ [(1 − �)(L2 + L′
2 + L3)v̂] + 1

R3
�(L3 + L2 + L′

2) ◦
[

s

R
+ L1 + 1

R2
(1 − �)(L2 + L′

2 + L3)

]−1

◦ (1 − �)

(
L4 + 1

R2
L5

)
P̂ + 1

R3
�

(
L4 + 1

R2
L5

)
P̂ . (C21)

Since the time scale at which p(χ2) lives is R and it is the time dependence of v, we find that v̂ takes non-negligible values when
s = O(1/R). The procedure works by order identification; the relevant order for p(χ2) is 1/R, where we have

sv̂ = 1

R
�L3v̂ + 1

R
(�L2v̂ + L′

2v̂). (C22)

In all these eliminations, the quality of the result depends on how much the time scale is actually concentrated around 1/R. Note
that � and L3 do not commute, however, we have

�L3v̂ = νχ2

∫
ζ ′

1

[L3(νχ2 )p̂(χ2)]dζ ′
1 = νχ2L3

⎛
⎜⎜⎜⎜⎝
(∫

ζ ′
1

νχ2 (ζ ′
1) dζ ′

1

)
︸ ︷︷ ︸

=1

p(χ2)

⎞
⎟⎟⎟⎟⎠ = νχ2 (ζ1)L3p̂(χ2). (C23)

The integral can be passed within the differential operators and
the probability density function νχ2 (ζ1) is normalized. We then
note that �L′

2v̂ = 0, since the integrand is odd. Meanwhile,
we pass ζ1 and the integral in the ∂χ2 derivative and perform
the Gaussian integral in �L2v̂; this yields

�L2v̂ = νχ2 (ζ1)
1

β̃

∂

∂χ2

(
1

χ2 − 1
R2

p̂(χ2)

)
.

This gives rise to a deterministic term 1/[β̃(χ2 − 1/R2)], since
it appears in a first order derivative of the pdf p(χ1). This
is actually the same term as the average in the fast variable
elimination in the SDE. Again, we will not take this term into
account in the final result. Indeed, as explained in Sec. C 2,
while this term remains in the slow dynamics, it will disappear
when we consider large deviations in the 1/β̃ limit. This can
be shown more formally by performing the elimination not
on the probability density function, but on a large deviation
function S such that P ∝ exp(−β̃S). One then does the order
identification, on R and on β̃ (similarly to [32], where the scale
separation and the large deviation parameter are the same). In
this case the “L2” terms are indeed retained at order O(1/R):
they are actually the type of terms which bring the subtle effects
in the slow-fast separation of Grafke et al. [32], with one small
parameter. However, they will be one order too low in β̃ to
be retained in the differential equation for the large deviation
function, and thus will not perturb the large deviations of χ2.

Once these two terms are neglected, we find that

sνχ2 (ζ1)p̂ = νχ2 (ζ1)
1

R
L3p̂. (C24)

We can factor νχ2 (ζ1) and take the inverse Laplace transform.
This yields the Fokker-Planck equivalent to Langevin equa-
tion (C6).

APPENDIX D: QUASIPOTENTIAL DIFFERENCES

I give the quasipotential difference between the saddle X+
2

and the minimum X−
2 , which appears in mean first passage

times. If the noise is additive, a = 0, we have

V(X+
2 ) − V(X2)−

= �V = R

2

√
1 − 4

R2
− 4 ln(R)

R
+ 2

R

√
1 − 4

R2

− 2

R

⎡
⎢⎣ln

⎛
⎜⎝ 1

R2 + (1− 2
R2 )+

√
1− 4

R2

2

1 + R
(R− 2

R
)−R

√
1− 4

R2

2

⎞
⎟⎠
⎤
⎥⎦. (D1)

In the first case of multiplicative noise a = 1
2 , we have

�V = R

2

√
1 − 4

R2
− 2 ln(R)

R

− 1

R

⎡
⎢⎣ln

⎛
⎜⎝ 1

R2 + (1− 2
R2 )+

√
1− 4

R2

2

1 + R
(R− 2

R
)−R

√
1− 4

R2

2

⎞
⎟⎠
⎤
⎥⎦. (D2)

In the second case of multiplicative noise a = 1, we have

�V =
(

R

2
− 1

R

)√
1 − 4

R2

− 1

R3
ln

⎛
⎝(R − 2

R

)+ R

√
1 − 4

R2(
R − 2

R

)− R

√
1 − 4

R2

⎞
⎠. (D3)

APPENDIX E: NONABSORBING LAMINAR
STATE FOR a < 1/2

In the a = 1 case, the pdf ρ(X1,X2) [solution of Eq. (26)]
is not defined as a function, but instead as a distribution. In the
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FIG. 16. (a) Time series of X1,X2 obtained from numerical
integration of the coupled SDEs in the a = 1

2 case (square root mul-
tiplicative noise) at β̄ = 5 and R = 3. (b) Color levels of probability
density function ρa= 1

2
(X1,X2) sampled numerically by integration of

the SDEs for R = 3 and β̄ = 5.

a < 1
2 cases, this is quite different and the pdf is a function.

This is also the case for the empirical distribution sampled
numerically in the a = 1

2 case. The pdf can be normalized and
defined as a function in that case. This can be illustrated by
numerical integration of the coupled SDEs at R = 3 and β̄ = 5
and a = 1

2 [Fig. 16(a)]. The time series show that the X1,2 = 0,
the a priori absorbing point, can be visited quite often, but that

the system still manages to avoid turbulence collapse. This is
in agreement with the fact that while the probability of being in
the neighborhood of the laminar state is large in the steady state,
the probability of being in the turbulent state, while smaller, is
nonzero. This is seen in the steady probability density function
of ρa= 1

2
(X1,X2), sampled numerically [Fig. 11(b)]. The slow

divergence at zero is not captured numerically due to the finite
duration of the sample and binning, but ρ 1

2
(0,0) is still quite

large.
This can be understood by calculating the probability

density function ρ of X2, when the fast variable is eliminated
and the quasipotential is known. The pdf is the solution of the
steady Fokker-Planck equation,

0 = − ∂

∂X2

⎧⎨
⎩−
[

dV
dX2

+ O
(

1

β

)](
X2

X2 − 1
R

)2a

ρ

⎫⎬
⎭

+ 1

β̄

∂

∂X2

⎛
⎜⎜⎜⎜⎝
(

X2

X2 − 1
R

)2a

ρ

︸ ︷︷ ︸
=μ

⎞
⎟⎟⎟⎟⎠. (E1)

Note that the quasipotential is already introduced, since I

include a ( X2

X2− 1
R

)
2a

/( X2

X2− 1
R

)
2a

factor in the first order derivative.

I solve for μ and compute ρ,

ρ = C

(
X2

X2 − 1
R

)−2a

exp [−βV + O(1)] = Cρ ′. (E2)

The pdf ρ can be defined as a function if it is normalizable,
if C = 1/

∫
ρ ′ dX2 is defined. This integral is obviously not

defined if a � 1, due to the divergence of the quasipotential
and thus, the exponential. If a < 1

2 , not only the quasipotential
is finite, but the integral of the prefactor is also defined. Indeed,

0 � 1

C
�
∫ −1

X2=−∞

(
1 + 1

R

)2a

exp[−β̄V + O(1)] dX2

+
∫ 0

X2=−1

⎛
⎜⎜⎜⎝ 1 − 1

RX2︸ ︷︷ ︸
�(1+1/R)/|X2|

⎞
⎟⎟⎟⎠

2a

× max
X2∈[−1;0]

exp[−β̄V + O(1)] dX2. (E3)

The first integral is finite because the integral is a Gaus-
sian; meanwhile the second integral is bounded above
by [1/(1 − 2a)](1 + 1/R)2a maxX2∈[−1;0] exp [−βV + O(1)]
if a < 1

2 , otherwise it is not defined.
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