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Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is
analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic).
Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016); J. Phys.
A: Math. Theor. 50, 015501 (2017)], an exact relation has been derived for the total energy transfer. This approach
results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic,
thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in
the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall
term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of
compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to
be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish
completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
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I. INTRODUCTION

Turbulence is a nonlinear phenomenon omnipresent in
nature. For a fully developed turbulence in the limit of infinitely
large Reynolds numbers, the fluid flow contains fluctuations,
populating a wide range of length and time scales. In the inertial
range sufficiently decoupled from the large-scale forcing and
small-scale dissipation, energy (and other inviscid invariants
of motion) takes part in a cascade process, transporting it
across scales. During this process, the average flux rate ε of an
inviscid invariant is independent of the length scale, thereby
characterizing a turbulent state. In the analytical framework
of homogeneous turbulence, there exist a number of exact
relations which express ε in terms of the statistical average
of two-point correlation functions or two-point differences of
relevant variables of the flow field (e.g., fluid velocity, density,
magnetic field, etc.). In three dimensions, this formalism
provides an accurate quantitative estimate of the kinetic energy
dissipation rate, and hence of the heating rate of a system by
the process of turbulent cascade. For incompressible hydrody-
namic (HD) and magnetohydrodynamic (MHD) turbulence,
such exact relations [1–3] can express ε purely in terms
of two-point differences. However, the basic assumption of
homogeneity and the existence of a so-called inertial zone
cannot be guaranteed, in general, for compressible turbulence.
Nevertheless, as the first step, the differential form derived
by Monin [4] was extended to compressible isothermal HD,
MHD, and polytropic HD, considering the total energy as
inviscid invariant [5–8]. The relation for isothermal HD turbu-
lence [5] was then numerically verified for a driven supersonic
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regime (at rms Mach number ∼6) [9]. All these compressible
exact relations were written in a flux-source form

−4ε = ∇ · F + S, (1)

where the source S vanishes identically in the incompressible
case, retaining only the divergence of the flux F on the
right-hand side. Unlike the divergence part, the source included
both single-point and two-point contributions, making the
interpretation difficult. Moreover, unlike the incompressible
exact relations, straightforward formulations of compressible
counterparts were not unique, indicating that some essential
physical constraints are missing. Recently, we derived an
exact relation for self-gravitating, isothermal turbulence [10],
and showed that proper accounting for the acoustic energy
equipartition eliminates single-point contributions from the
source S . Furthermore, the new constraint implied that the
correlation between the velocity and pressure dilatation does
not actually play any role in the total energy cascade process
in isothermal HD turbulence which was claimed previously
[11]. However, the previous flux-source formulation contained
certain terms which could be cast neither as a pure divergence
term (or a so-called flux term) nor as a source term. In addition,
there were also certain terms which could be cast as both flux
and source terms [7]. Finally, the compressible flux-source
form is cumbersome and in an anisotropic case its practical
applications are subject to nontrivial numerical integration.

In this paper, we have generalized the alternative formu-
lation of the exact relation derived recently for incompress-
ible HD and MHD turbulence [12,13] to the case of three-
dimensional, self-gravitating, isothermal MHD turbulence,
assuming statistical homogeneity. In contrast to the previous
flux-source form, the current formulation casts the invariant
flux rate ε in terms of mixed second order structure functions,
associating the fluctuations of the density (ρ), the fluid velocity
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(u), the vorticity (ω), the magnetic field (B), the current
(∇ × B) and other variables composed by them. Interestingly,
the new form is easily amenable to the turbulence of a rotational
fluid and also can be readily extended to the Hall MHD
turbulence. In addition, thanks to the new formulation, we
have algebraic forms (free of a global divergence) for the
general anisotropic case, which will be of great interest for the
studies of solar wind turbulence (the turbulence is anisotropic
due to a non-negligible background magnetic field). In the
framework of solar wind turbulence, this type of exact relation
is crucial to determine the turbulent heating rate [14,15] and
also to understand the wind acceleration mechanisms [16].
However, the main driver behind this work, quite naturally,
is astrophysics of star formation [17]. There, the importance
of molecular cloud turbulence, rotation, magnetic, and gravi-
tational effects was recognized a long time ago, while the lack
of rigorous theoretical results hindered the progress, opening
the field to competing speculative scenarios. One of the key
unsolved problems is how exactly the nonlinear coupling of the
turbulence with magnetism and gravity result in self-organized
fluid dynamics within star-forming molecular clouds. The
rigorous approach taken in this contribution will help to shed
light on that problem. In addition, this exact relation will help to
understand the detailed energy equipartition of distinct modes
in compressible MHD turbulence, and the role of shocks, which
are crucial in compressible fluid flows.

The paper is structured as follows. In Sec. II we discuss the
basic equation, the energy conservation, and the explicit forms
of two-point correlators of the total energy. The following
section consists of the derivation of the exact relation along
with its pure hydrodynamic version. In the same section, we
also propose a shorter way to derive the final exact relation.
Section IV is dedicated to the discussion of different features
of the current exact relation and its advantages. Finally, Sec. V
summarizes the whole paper.

II. BASIC EQUATIONS

In this paper, we are interested in a self-gravitating isother-
mal magnetohydrodynamic fluid. The basic equations are
given as

∂tρ + ∇ · j = 0, (2)

∂t j + ∇ · ( j ⊗ u) = −∇p + jb × b + ρg + dH + f , (3)

∂t b = ∇ × (u × b) + dM, (4)

∇ · g = −4πG(ρ − ρ0), (5)

where b = B/
√

μ0 with B being the magnetic field, j =
ρu, jb = ∇ × b, and p = c2

s ρ with cs being the (constant)
isothermal sound speed. dH , dM , and f represent the kinetic
dissipation, magnetic dissipation, and a stationary forcing. In
the Poisson equation (5), we use the density fluctuation with
respect to the spatial average ρ0 (also the statistical average)
rather than the local density ρ, which is compatible with
periodic boundary conditions often used in simulations of
turbulence in astrophysical systems. Now taking partial time
derivative of the momentum conservation equation and also

using the continuity equation, we get

∇ · ∂t g = 4πG∇ · (ρu) => ∂t g − 4πGρu = ∇ × AG,

(6)

where AG is the vector potential related to gravitation.
The total energy density at any point of the flow field is equal

to the sum of the densities of kinetic energy, magnetic energy,
gravitational potential energy, and thermodynamic energy at
that point and can be written as

E = (ρu2 + b2 − αg2)/2 + ρe, (7)

where α = 1/(4πG) and e = c2
s ln(ρ/ρ0) is the thermody-

namic potential energy. Note that the fluid velocity u at every
point describes the fluctuation velocity about its statistical
mean value (which can be eliminated by a suitable Galilean
transformation), whereas the density, the internal energy, the
magnetic field, and the gravity field correspond to the total
values at every point.

To show the conservation of energy when the viscous and
forcing terms are neglected, we evaluate the time derivative
of each term of total energy. We have (assuming periodic
boundary conditions or zero velocity on the boundary surface)

∫
V

∂t

(
ρu2

2

)
dx =

∫
V

[ j · g − u · ∇p + u · ( jb × b)]dx,

(8)
∫

V

∂t

(
b2

2

)
dx =

∫
V

jb · (u × b)dx = −
∫

V

u · ( jb × b)dx,

(9)

−α

2

∫
V

∂t g2dx =
∫

V

[∇ ·(g×aG) − j ·g]dx, (10)

∫
V

∂t (ρe)dx =
∫

V

u · ∇p dx, (11)

where aG = α AG/2. Adding up the three above expressions
and assuming additionally that the boundary surface is either
periodic or gravitationally equipotential (g = 0), we can prove
the total energy conservation for a nonviscous system without
external forcing. From the above equations, it is evident that
the kinetic energy exchanges with each of the three types
of potential energy (magnetic, gravitational, and thermody-
namic), whereas the three components of potential energy
evolve independently of each other. In fact, for such a fluid,
one can show that there is equipartition between the average
kinetic energy and the average total potential energy [18]. This
type of equipartition also holds for the linear wave modes of
compressible MHD. Following the same argument of [10], we
can define the two-point symmetric correlator of total energy
in the current case as

R(r) =
〈
RE + R′

E
2

〉
, (12)

with

RE ≡ ( j · u′ + b · b′ − αg · g′ + ρe′ + ρe)/2,

R′
E ≡ ( j ′ · u + b′ · b − αg′ · g + ρ ′e + ρ ′e′)/2. (13)
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III. DERIVATION OF THE EXACT RELATION

Unlike the exact relations for compressible isothermal MHD turbulence which have been derived [6,7], in this paper we
propose an alternative form which is an extension of [13] in case of compressible fluids. Under this formalism, the final exact
relation is simpler and hence, for a physical system, the calculation of the energy flux rate becomes much easier. To derive the
alternative form, we use the Lamb formulation of Navier-Stokes equations. Hence Eq. (3) can be rewritten as

∂t j = −u(∇ · j ) − ρ∇
(

u2

2

)
+ ( j × ω) − ∇p + ( jb × b) + ρg + dH + f , (14)

∂t u = −∇
(

e + u2

2

)
+ (u × ω) + ( jb × b)

ρ
+ g + 1

ρ
(dH + f ). (15)

The next step is to derive the evolution equations for R(r). Using Eqs. (2)–(5), we can write

∂t 〈 j · u′〉 = 〈 j · ∂t u′ + u′ · ∂t j〉 =
〈

j ·
[

− ∇′
(

e′ + u′2

2

)
+ (u′ × ω′) + ( jb

′ × b′)
ρ ′ + g′ + 1

ρ ′ (d
′
H + f ′)

]〉

+
〈
u′ ·

[
− u(∇ · j ) − ρ∇

(
u2

2

)
+ ( j × ω) − ∇p + ( jb × b) + ρg + (dH + f )

]〉
, (16)

∂t 〈b · b′〉 = 〈b · ∂t b
′ + b′ · ∂t b〉 = 〈b · [∇′ × (u′ × b′) + d ′

M ] + b′ · [∇ × (u × b) + dM ]〉
= 〈 jb · (u′ × b′) + b · d ′

M + jb
′ · (u × b) + b′ · dM〉, (17)

∂t 〈g · g′〉 = 〈g · ∂t g′ + g′ · ∂t g〉 = 〈∇ · (AG × g′) + ∇′(AG
′ × g)〉 + 4πG〈 j · g′ + j ′ · g〉

= α−1〈 j · g′ + j ′ · g〉, (18)

∂t 〈ρe′〉 = 〈ρ ∂te
′ + e′ ∂tρ〉 = 〈 j · ∇′e′ − pθ ′ − ρu′ · ∇′e′〉, (19)

∂t 〈ρe〉 = ∂t 〈ρ ′e′〉 = 〈ρ ∂te + e ∂tρ〉 = −〈pθ〉, (20)

where θ ≡ ∇ · u and we have used the statistical homogeneity to obtain 〈∇ · (AG × g′)〉 = −〈∇′ · (AG × g′)〉 = 〈AG · (∇′ ×
g′)〉 = 0. Finally, we calculate the evolution of R, which gives

∂tR = 1

4
∂t 〈 j · u′ + j ′ · u + 2b · b′ − 2αg · g′ + ρe′ + ρe + ρ ′e + ρ ′e′〉

= 1

4

〈
−(u′ · u)(∇ · j ) − ρ∇

(
u2

2

)
· u′ + u′ · ( j × ω) − u′ · ∇p + u′ · ( jb × b) + u′ · ρg + u′ · (dH + f )

− j · ∇′
(

e′ + u′2

2

)
+ j · (u′ × ω′) + j · ( jb

′ × b′)
ρ ′ + j · g′ + j

ρ ′ · (d ′
H + f ′)

− (u · u′)(∇′ · j ′) − ρ ′∇′
(

u′2

2

)
· u + u · ( j ′ × ω′) − u · ∇′p′ + u · ( jb

′ × b′) + u · ρ ′ g′ + u · (d ′
H + f ′)

− j ′ · ∇
(

e + u2

2

)
+ j ′ · (u × ω) + j ′ · ( jb × b)

ρ
+ j ′ · g + j ′

ρ
· (dH + f )

+ 2 jb · (u′ × b′) + 2b · d ′
M + 2 jb

′ · (u × b) + 2b′ · dM − 2 j · g′ − 2 j ′ · g

+ j · ∇′e′ − pθ ′ − ρu′ · ∇′e′ − pθ + j ′ · ∇e − p′θ − ρ ′u · ∇e − p′θ ′
〉
. (21)

Equivalently, one can write

∂tR = K + M + W + U + D + F , (22)

where K, M, W , and U account for, respectively, the kinetic, magnetic, gravitational, and thermodynamic contributions for the
energy correlator. D and F denote, respectively, the total dissipative and forcing terms. All the terms can be explicitly written as

K = − 1

4

〈
(u′ · u)(∇ · j ) + ρ∇

(
u2

2

)
· u′ − u′ · ( j × ω) + j · ∇′

(
u′2

2

)
− j · (u′ × ω′)

+ (u · u′)(∇′ · j ′) + ρ ′∇′
(

u′2

2

)
· u − u · ( j ′ × ω′) + j ′ · ∇

(
u2

2

)
− j ′ · (u × ω)

〉
, (23)
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M = 1

4

〈
u · ( jb

′ × b′) + u′ · ( jb × b) + j · jb
′ × b′

ρ ′ + j ′ · jb × b
ρ

+ 2 jb · (u′ × b′) + 2 jb
′ · (u × b)

〉
, (24)

W = −1

4
〈 j · g′ + j ′ · g − ρg · u′ − ρ ′ g′ · u〉, (25)

U = −1

4
〈ρu′ · ∇′e′ + ρ ′u · ∇e + pθ + p′θ ′〉, (26)

D = 1

4

〈
u′ · dH + j · d ′

H

ρ ′ + u · d ′
H + j ′ · dH

ρ
+ 2b · d ′

M + 2b′ · dM

〉
, (27)

F = 1

4

〈
u′ · f + j · f ′

ρ ′ + u · f ′ + j ′ · f
ρ

〉
. (28)

Now, by straightforward algebra, one can show following Banerjee and Galtier [13] that

K = 1

4
〈δ j · δ[(u · ∇)u] + δu · δ[∇ · ( j ⊗ u)]〉, (29)

M = 1

4

〈
δ j · δ

(
b × jb

ρ

)
+ δu · δ(b × jb) + 2δ jb · δ(b × u)

〉
, (30)

W = 1

4
〈δ j · δg − δu · δ(ρg)〉, (31)

U = 1

4
〈δρ δ[(u · ∇)e]〉, (32)

where we use the following algebraic manipulations.

(i) 〈u′ · ( j × ω) + j · (u′ × ω′) + u · ( j ′ × ω′) + j ′ · (u × ω)〉 = −〈δ j · δ(u × ω) + δu · δ( j × ω)〉, where we use the fact
that j · (u × ω) = −u · ( j × ω) = 0.

(ii) 〈−(u′ · u)(∇ · j ) − ρ∇( u2

2 ) · u′ − j ·∇′( u′2
2 ) − (u · u′)(∇′ · j ′) − ρ ′∇′( u′2

2 ) · u − j ′ · ∇( u2

2 )〉 = 〈δu · δ[(∇ · j )u + ρ∇( u2

2 )] +
δ j · δ[∇( u2

2 )]〉, where we used the fact that 〈(u · u)(∇ · j ) + 2 j · ∇( u2

2 )〉 = 〈∇ · (u2 j )〉 = 0 (by Gauss’ divergence theorem) for
homogeneous turbulence.

(iii) 〈 j · ( b× jb

ρ
) + u · (b × jb) + 2 jb · (b × u)〉 = 0.

(iv) Finally, 〈 j · ∇e + p(∇ · u)〉 = 〈u · ∇p + p(∇ · u)〉 = 〈∇ · (pu)〉 = 0.
Now, for a stationary state where the average total energy of the system does not change with time, the time derivative of

the total energy correlators can also be made to vanish due to the local isotropy hypothesis of Kolmogorov [19]. In addition,
considering the length scales very far from the dissipative scale, we can neglect all the dissipative contributions and hence the
final exact relation takes the form

−4ε =
〈
δ j · δ

[
(u · ∇)u + b × jb

ρ
+ g

]
+ δu · δ[∇ · ( j ⊗ u) + b × jb − ρg]

〉

+ 〈2δ jb · δ(b × u) + δρ δ[(u · ∇)e]〉, (33)

where F = ε gives the net energy flux rate of the flow.
Equation (33) is the principal result of this paper. This describes an exact relation of three-dimensional, self-gravitating,

compressible turbulence of an isothermal MHD fluid. Equation (33) expresses the flux rate of total energy purely in terms of
two-point spatial differences. In the pure HD case of self-gravitating isothermal fluid, b and jb vanish and hence the resulting
exact law takes the form

−4ε = 〈δ j · δ[(u · ∇)u + g] + δu · δ[∇ · ( j ⊗ u) − ρg] + δρ δ[(u · ∇)e]〉, (34)

which has also a simpler and more compact form than that obtained in Ref. [10].
Alternative derivation. Equation (33) can be derived in a slightly different way which is shorter than the method described

above. By definition, one can write

∂tR = 1

4
∂t 〈 j · u′ + j ′ · u + 2b · b′ − 2αg · g′ + ρe′ + ρe + ρ ′e + ρ ′e′〉

= 1

4
〈∂t j · u′ + j · ∂t u′ + ∂t j ′ · u + j ′ · ∂t u + 2∂t b · b′ + 2b · ∂t b

′ − 2α∂t g · g′ − 2αg · ∂t g′

+ e′∂tρ + ρ∂te
′ + ∂t (ρe) + e∂tρ

′ + ρ ′∂te + ∂t (ρ
′e′)〉 . (35)
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In addition, the conservation of the total energy gives

1

4
∂t 〈 j · u + j ′ · u′ + b · b + b′ · b′ − αg · g − αg′ · g′ + 2ρe + 2ρ ′e′〉 = 0. (36)

Now, subtracting (36) from (35), one can write

∂tR = −1

4
〈δ j · δ(∂t u) + δu · δ(∂t j ) + 2δb · (∂t b) − 2αδg · (∂t g) + δρδ(∂te) + δeδ(∂tρ)〉. (37)

A mere substitution of the partial time derivatives and a little rearrangement yields (33). However, using this approach, one does
not have to explicitly calculate the contributions K, M, W , and U , which contain the important information about the energy
cascading process in spectral space (see [10]).

IV. PROPERTIES OF THE EXACT RELATION

a. Incompressible limit. For an incompressible fluid, at
all points ρ = ρ0 = const and hence e = 0 and θ = 0. If we
further assume ρ0 = 1, Eq. (33) reduces to

−4ε = 2
〈
δu · δ[(u · ∇)u + (b × jb)] + δ jb · δ(b × u)

〉
.

(38)

In addition, noting that in homogeneous, incompressible tur-
bulence〈

δu · δ

[
∇

(
u2

2

)]〉

=
〈
2u · ∇

(
u2

2

)
− u′ · ∇

(
u2

2

)
− u · ∇′

(
u′2

2

)〉

=
〈
∇ · (u2u) + u2

2
θ ′ + u′2

2
θ

〉
= 0, (39)

one can immediately recover the exact relation for incompress-
ible MHD (Eq. (27) in [13]). Similarly, Eq. (34) can be reduced
to the corresponding incompressible version, which is identical
to Eq. (9) of [13]. Interestingly, in incompressible limit, the
total gravitational contribution vanishes identically.

b. Effect of mean magnetic field. In incompressible MHD
turbulence, it was shown that the effect of a uniform back-
ground magnetic field B0 cancels out [13]. Here we show
that in the case of compressible turbulence, the effect of mean
magnetic field is nontrivial. The magnetic contribution in the
exact relation is given by M where the contribution from
b0(≡ B0/

√
μ0) can be separately written as

M0 =
〈
δ j ·

(
b0 × δ

(
jb

ρ

))
+ δ jb · (b0 × δu)

〉

= b0

〈
δρ

(
u′ × jb

ρ
− u × jb

′

ρ ′

)〉
. (40)

From the above expression we can readily find that, if b0 	= 0,
M0 vanishes (i) for incompressible case (δρ = 0), (ii) when
j ′ × jb = j × jb

′, or (iii) if 〈δρ(u′ × jb

ρ
− u × jb

′

ρ ′ )〉 = 0.

c. Effect of alignments. One could consider a hypothet-
ical state where all different sorts of alignments are valid:
(a) helical Beltrami flow with u||ω and u × ω = 0, (b) with
a force-free magnetic field, jb||b or jb × b = 0, decoupled
from the dynamics, (c) with velocity and magnetic field aligned
u||b and u × b = 0 due to the so-called Alfvén effect, and
(d) with Zeldovich alignment u||g, resulting in cancellation
of gravitational terms (if u = λg with λ = const). (Note that

a simultaneous presence of all these alignments is hardly
realizable.) One can show that the energy flux rate does not
completely vanish and can be written as

Q =
〈
δ j · δ

[
∇

(
u2

2

)]
+ δu · δ

[
(∇ · j )u + ρ ∇

(
u2

2

)]

+ δρ δ[(u · ∇)e]

〉
, (41)

which however vanishes identically for the incompressible
case. The residual part contains only kinetic and thermody-
namic terms, whereas the magnetic and gravitational contri-
butions vanish. This shows that the kinetic relaxation state in
compressible turbulence may be quite different from u ‖ ω,
even if the compressibility is weak. In fact, the corresponding
relaxation state of compressible turbulence would involve the
thermodynamic potential energy. Interestingly, one can readily
recognize that Q is nothing but the hydrodynamic contribution
for an irrotational flow (∇ × u = ω = 0).

d. Influence of global rotation. With the current formulation,
the effect of a global rotation of the flow field can be handled
easily. If we assume that the system is rotating with an
angular speed � (not necessarily constant), then the fluid will
experience an additional Coriolis acceleration ac = (u × 2�).
The extra flux due to ac is given by

Kc = −2〈δ j · δ(u × �) + δu · δ( j × �)〉. (42)

Now, in the case of solid-body rotation, i.e., when � is a
constant, one can easily verify that Kc vanishes, which is
similar to incompressible turbulence where also a uniform
rotation cannot alter the energy flux rate in the so-called inertial
zone.

e. Extension to the Hall MHD turbulence. This new exact
relation can easily be extended to 3D compressible Hall MHD
turbulence. The Hall MHD equations differ from the ordinary
MHD equations by the inclusion of the Hall term in the
induction equation, which then takes the following form:

∂t b = ∇ × (u × b) − √
μ0di∇ × ( jb × b) + dM, (43)

where di denotes the ion inertial length of the MHD fluid and√
μ0di∇ × ( jb × b) is the so-called Hall term. In this case,

the additional contribution to ∂tR due to the Hall term can be
written as

MHall = −
√

μ0di

2
〈b′ · ∇ × ( jb × b) + b · ∇′ × ( jb

′ × b′)〉

=
√

μ0di

2
〈δ jb · δ( jb × b)〉. (44)
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The final exact relation for three dimensional, compressible,
Hall MHD turbulence is then simply

−4ε =
〈
δ j · δ

[
(u · ∇)u + b × jb

ρ
+ g

]

+ δu · δ[∇ · ( j ⊗ u) + b × jb − ρg]

〉

+ 〈2δ jb · δ[b × (u − √
μ0di jb)] + δρ δ[(u · ∇)e]〉,

(45)

which is considerably simpler than that recently obtained
for 3D compressible Hall MHD turbulence in Ref. [20].
Note that, in MHD models of star forming clouds based on
single-fluid approximation, the ambipolar diffusion is found
to be the dominant mechanism at small scales [21] and the
turbulent energy decay is found to be hardly affected by
the Hall terms [22]. However, a number of studies [23,24]
have shown that Hall diffusion can be significant in dense
regions of molecular clouds with particle density ranging
(107 − 1011) cm−3. Moreover, using multifluid models, it was
also found [25] that the Hall effect can be important for
the small-scale turbulence in molecular clouds under a broad
range of conditions. Here, the inclusion of Hall terms makes
the relation more complete, which allows one to formulate a
number of reduced versions (e.g., including gravity without
Hall effect or including compressible Hall MHD turbulence
without gravity, etc.).

V. DISCUSSION

In this current work, an exact relation has been de-
rived for three-dimensional, compressible turbulence for a

self-gravitating, magnetized isothermal fluid, which will be of
interest to both space physicists and astrophysicists. In contrast
with the previously obtained exact relations for compressible
turbulence [5–8,10,20], here we use an alternative formulation
and show that the final result expressed in terms of two-point
differences is notably more straightforward. This relation
provides an opportunity to obtain accurate estimates of the
turbulent heating rate of the solar wind for a general anisotropic
case. However, the evaluation of terms such as (u · ∇)u will
require the use of multispacecraft data (e.g., Cluster, Themis,
MMS, etc.). From a numerical point of view, it is also easier
to calculate all the terms of the right-hand side. In fact, the
general form of the relation is almost identical to that of the
incompressible ones, thereby justifying a more universal appli-
cability for turbulence, compared to the previous flux-source
formulation. By a simple calculation, we showed that, similar
to incompressible turbulence, a solid-body rotation cannot alter
the energy flux rate in compressible turbulence. Moreover, the
inclusion of the Hall term does not alter the global form of
the equation either. We also showed that the presence of a
uniform background magnetic field has a nontrivial effect on
the energy flux in compressible turbulence. Finally, it was also
shown that, unlike in incompressible turbulence, the presence
of alignments does not make the contributions from the kinetic
and the thermodynamic potential energies vanish. At the same
time, the magnetic (without the Hall term) and the gravitational
contributions would vanish under aligned conditions.
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