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We study the linear stability and nonlinear behavior of the electroconvection between two concentric half-
cylinders with no-slip conditions on all boundaries. The no-slip condition makes impossible to apply the standard
modal approach. Hence, we apply a finite element technique similar to the one we have used in a previous
paper about the electroconvection in a rectangular enclosed domain. When compared to the classical problem of
electroconvection between two full concentric cylinders, the linear criterion is higher, due to the viscous shear
introduced by the lateral walls. As a consequence, the structure of the eigenmodes is very different. There is a
repulsion between modes with the same symmetry, forcing pairs of modes to cross each other repeatedly. For inner
injection and small value of the ratio between the inner and outer radii the no-slip condition changes the nature
of the bifurcation from subcritical to supercritical, while it is always subcritical for outer injection. To understand
this behavior, we perform a modal analysis using the eigenfunctions obtained from the linear stability analysis
as modal basis. We show that the supercritical branch is originated by the nonorthogonality of the modes when
no-slip boundary conditions are imposed. These mechanism explains the previously unexplained appearance of

the supercritical branch in the enclosed rectangular configuration.
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I. INTRODUCTION

We study the linear stability and the nonlinear bifurcation
of the electrohydrodynamic (EHD) convection in a dielectric
liquid between two half-cylinders with no-slip boundary condi-
tions in the strong injection regime. EHD is an interdisciplinary
science dealing with the interaction of fluids and electric
fields. It has a great number of applications in industrial
processes: EHD pumping [1-3], heat transfer enhancement
[4-6], turbulent mixing [7], EHD spraying and atomization
[8,9], and biomicroelectromechanical systems (bio-MEMS)
and nanotechnology applications [10-12].

One of the classical problems in EHD is the convection
generated between two infinite cylindrical and concentric
electrodes withradii R; < R,. The space between the cylinders
is filled with a perfectly dielectric liquid. An electric potential
difference is applied between the cylinders. When the applied
voltage is above a critical value, injection on one or both of the
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electrodes occurs. We will consider only unipolar injection,
inner if the injecting electrode is the one with radius R; and
outer if it is the one with radius R,,. The injected charge having
the same polarity as the injecting electrode, the ions are pushed
away from the electrode, setting the liquid into motion. The
linear stability analysis of the full 3D problem was performed
by Agriit and Castellanos [13]. In a recent paper, Fernandes
et al. [14] studied the linear stability of this problem, both
numerically and analytically, although they did not considered
the nonlinear regime.

In a previous paper [15], the authors studied numerically the
linear stability and the nonlinear bifurcation of the full cylinder
problem simplified to a 2D configuration. The bifurcation is
subcritical, that is, once the critical voltage is attained, the
stationary branch is unstable. The velocity of the fluid increases
until, in the final steady state, the maximum velocity of the
liquid is greater than the drift velocity of the ions. The charge
distribution is then controlled by the velocity field and regions
void of charge appear. This nonlinear bifurcation is similar to
what happens in one of the most classical problems in EHD,
the convection generated by two infinite parallel electrodes
immersed in a perfectly dielectric liquid and subjected to a
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electric voltage applied between the electrodes. However, in
two recent papers [16,17] the authors considered a variation
of this two-plate problem, with the infinite domain substituted
by a finite closed rectangular domain with no-slip boundary
conditions applied on all the boundaries. In the first paper, using
numerical simulations, the authors showed that the bifurcation
may become supercritical for some values of the aspect ratio of
the domain. In this case, steady convective rolls with maximum
velocity smaller than the drift velocity of the ions can be
formed. In the second paper the authors studied the linear
stability of the enclosed problem, and showed that the structure
of the modes is quite different from that of the infinite case.

Here, we study a similar modified version of the two-
cylinder configuration. We consider the electroconvection
between two concentric half-cylinders, of radii R; < R, with
no-slip boundary conditions on all the boundaries. An electric
voltage is applied between the half-cylinders, with the inner
cylinder connected to a higher voltage and the outer one
grounded for inner injection, and the reversed way for outer
injection. We will assume that unipolar injection takes place
in both cases. We study the linear stability of this problem,
along with the nature of the nonlinear bifurcation. We restrict
our analysis to the strong injection regime, although the main
conclusions are applicable to arbitrary injection strength. The
change of geometry from the planar one introduces two new
elements influencing the system: the injection direction and
the radius ratio. We will see that the behavior of the system is
different when the injection of charge occurs at the inner or the
outer electrodes. This is especially true for the change of the
nature of the bifurcation from subcritical to supercritical. This
different behavior offers some clues of the explanation of this
change of nature.

The results of the linear stability analysis are similar to those
obtained in Pérez et al. [17]. The no-slip boundary conditions
increases the threshold value for injection and changes the
structure of the modes. The modes with the same symmetry
repel each other as the ratio between the inner and outer radii
changes. For the nonlinear aspects, the presence of no-slip
walls can change the nature of the bifurcation, as it was
discussed by the authors in Wu et al. [16] in a rectangular
domain with top and bottom flat electrodes. With free-slip
lateral walls the bifurcation is always subcritical. When no-slip
boundary conditions are imposed the bifurcation becomes
supercritical for some ranges of values of I". In the half-cylinder
configurations, the ratio between the radii of the inner and outer
cylinders plays the role of the aspect ratio in the rectangular
configuration. When free-slip conditions are imposed on the
flat walls the bifurcation is always subcritical, as it is the case
with full concentric cylinders [ 15]. When no-slip conditions are
imposed, and the injection of ions occurs on the inner electrode,
the bifurcation may become supercritical for small values of the
radii ratio. As this ratio is increased it becomes subcritical again
and remains that way. However, when the injection occurs at
the outer electrode, the bifurcation is subcritical for all the
values of the radii ratio that we have explored.

We have performed a modal analysis of the evolution of
the flow pattern using the eigenmodes for each configuration
computed in the linear stability analysis as a basis. In the
free-slip case the modes are essentially orthogonal, while
in the no-slip configuration they are not. We show that, for

inner injection, the supercritical nature of the bifurcation can
be explained by this nonorthogonality, as several modes can
extract energy from the electric field and their final amplitudes
are of similar values. The bifurcation becomes subcritical when
the second mode is excited. This mode modifies the charge
distribution and throws the system away from the supercritical
branch into the upper one. In the outer injection case, the modes
are still nonorthogonal, but the critical value of the stability
parameter is much higher than in the inner injection regime.
As a consequence, the modes grow so much that the velocity
field takes control of the distribution of electric charge and a
region void of charge is created, which is a characteristic of
the subcritical bifurcation. This mechanism explains also the
previously unexplained appearance of the supercritical branch
in the closed rectangular configuration described in reference
Pérez et al. [17].

The paper is organized as follows. In Sec. II we state
the physical domain, the governing equations, the boundary
conditions of both free- and rigid-walls cases and inner and
outer injection configurations. The relevant nondimensional
parameters are also set. Section III is devoted to the description
of the method dealing with the linear stability analysis, as well
as analyzing the results. As it was the case in Pérez et al.
[17], the no-slip boundary conditions on the flat walls prevents
the use of the standard modal analysis used by Agriit and
Castellanos [13]. A semianalytical technique based on finite
elements is applied. In Sec. IV we examine the nonlinear
behavior. First, as a test of the numerical technique, we present
the linear stability criteria obtained from the simulations and
compare them to the values obtained from the eigenvalue
analysis. After that, we discuss the nature of the bifurcation
for each configuration. Finally, we perform a modal analysis
to understand the nonlinear behavior for each configuration.
The main conclusions are summarized in Sec. V.

II. PROBLEM FORMULATION

A. Basic equations and boundary conditions

We consider a dielectric liquid confined in the 2D region
between two-half cylinders, of radius R; and R,, with R; < R,
(see Fig. 1). The liquid is assumed to be incompressible, New-
tonian, isothermal, and perfectly insulating, with mass density
p, kinematic viscosity v, and absolute permittivity . When
inner injection is considered, a stationary electric potential ®,
is applied to the inner cylinder and the outer is grounded. The
applied potentials are reversed when the outer injection case
is studied. The electric field acts upon these charges and, if the
applied potential is high enough, put the liquid in motion. We
will make the assumption of unipolar injection, where only one
of the electrodes injects charges and only one type of charge
carriers is present. We will further assume that the density
of injected charge on the injecting electrode, g;, is constant
(autonomous injection). The collecting electrode is assumed
to behave as an open boundary for the ions. These are common
assumptions in EHD problems [18].

The constitutive law for the current density is

J=gKE — DVq + qu, (1)

where ¢ is the volumetric charge density, u is the fluid velocity,
and E is the electric field. The first term in Eq. (1) is the
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FIG. 1. Computational domain with dimensional boundary con-
ditions for inner injection. For outer injection the boundary conditions
on the electric potential are interchanged and the boundary condition
for the charge density is applied at the outer electrode.

drift current, K being the ionic mobility of the charge carriers.
The second term is the contribution from diffusion where D
is the charge diffusion coefficient. The last term is due to the
convection of the electric charge by the velocity of the liquid «.
In EHD problems, usually diffusion is negligible compared to
drift [18]. Hence, the charge conservation equation becomes:

dq
ot
As boundary condition for the charge we impose ¢ = g; on the

+V -[¢(KE +u)] = 0. )

J

_ r
r=R =——: & = l(inner),
1-T
® = O(outer),
_ 1
r=R,=——: & = O(inner),
1-T
& = 1(outer),
0=0,m ad/dy =0

Here,R; = R;/d,R, = R,/d,andT" = R;/R,.Figure 2 shows
the geometry and boundary conditions of the problem in
nondimensional form. In the rest of the paper we will use
the terms lateral walls or flat sides to describe the 0 = 0,7
boundaries.

The nondimensional parameters appearing in the equations
and boundary conditions are

ed, g:d? 1 /e\"? R;
T = , C= , M=—|— , '=—. (6)
pvK ed, 0 R

0

The parameter T is the ratio between the electric and viscous
terms in Navier-Stokes equation. It acts as a kind of electric
Rayleigh number and will stand for the stability parameter.
The mobility number M is the ratio between the so called
hydrodynamic mobility and the ionic mobility [19]. It only
depends on the fluid properties. The injection number C

injecting electrode. Figure 1 shows the dimensional boundary
conditions for inner injection.

The equations describing the problem are the Poisson equa-
tion, the Navier-Stokes equations, and the charge conservation
equation. To build the nondimensional equations we choose
the following scales:

x,y~d=(R,— R, t ~d*/Kd,, u~Ko,/d,
D~ P,, E'\’q)a/d’ qNE(Da/dz,
p~ed?/d>.

(3)

We have used the distance between the cylinders,d = R, — R;,
to define the spatial scale. With these choices, the nondimen-
sional equations of the problem become

2

du 2 M 2
— 4+ @ -Vu=-M Vp—f-?AuvLM qE,

at
V-u=0,

AD = —¢q,
E=-Vo,
dq
ot
As the fluid is considered to be isothermal, the dielectric force
is not relevant. The electrostriction force, being the gradient
of a scalar magnitude, can be included in the gradient of the
pressure. Therefore, the force term in the first equation in
Eq. (4) is restricted to the Coulomb force [18].
The nondimensional boundary conditions are

+ V. lgu+ E)]=0. “4)

uy,uy, =0, g = C(inner),

uxvuy = 01 (5)
g = C(outer),

Uy,uy, =0 (rigid walls)

ou,/dy,uy =0 (free walls).

(

measures the injection strength. In this paper we will only
consider the strong injection case (C = 10).

III. LINEAR STABILITY ANALYSIS

We study here the linear stability of the hydrostatic state.
We apply the same technique detailed in Pérez et al. [17],
adapted to the half-cylinders geometry. For small values of the
applied voltage viscosity prevents any motion of the liquid.
As the voltage is increased, the liquid is eventually put in
motion when a certain threshold value is attained. We study
the linear stability of the system using the standard method of
small perturbations. The steady state is perturbed with small
perturbations and we study how they grow. If all perturbations
decay, the system is stable. The smallest value of the stability
parameter for which the perturbations grow in time is the
critical value T,.
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FIG. 2. Computational domain with nondimensional boundary
conditions for inner injection. For outer injection the boundary con-
ditions on the electric potential are interchanged and the boundary
condition for the charge density is applied at the outer electrode.

A. Hydrostatic solution

The hydrostatic solution corresponds to a steady state
characterized by the liquid at rest. The hydrostatic profiles
of the charge and the electric field can be computed from
equations Eq. (4) imposing that the temporal derivatives are
zero and the velocity Uy = 0. The equations for the hydrostatic
state are

—VPy+ QoEy =0,

Ady = —Qy,
Ey= -V,
V- (QoEp) = 0. (7

The solutions only depend on the radial coordinate, hence
the electric field can be expressed as Eg = Ey(r) e, and the
charge profile as Q¢ = Qo(r). The equations are

1d(rEp)
rodr Qo.
d E
(rQoEo) _ 0. 8)
dr
The boundary conditions are
— R/,
inner injection: Qo(r = R;) = C, / Eydy =1,
Ri
— Ri
outer injection: Qo(r = R,) = C, / Eydy =1. (9)
Ra

The solutions have the form

R.E, C
Eo(r) = — 5/1+ R (r2 = R2),

Oo(r) = c . (10)
2 _ 2
\/1 (= R

Here, R. = R;(R,) stands for inner (outer) injection. E; is the
value of Ej at the injector. It is defined by Eq. (9), which is

an implicit equation in E;. This equation can be solved by
numerical integration for each value of C. E; is positive for
inner injection and negative for outer injection.

B. Perturbation equations
We look for perturbations of the base magnitudes. We
express the physical magnitudes as
u(x,y,t) = u'(x,y,1),
p(x,y,t) = Po(x,y) + p'(x,y,1),
D(x,y,1) = Do(x,y) + @'(x,y,1),
E(x,y,t) = Eo(x,y) + E'(x,y,1),
q(x,y,t) = Qo(x,y) + q'(x,y,1). (11)
The primed quantities are supposed to be much smaller than the
corresponding base quantities. Introducing these expressions
into Eq. (4), taking into account Egs. (7), and keeping only the

first order terms in the primed quantities leads to the following
set of equations:

ou’ o M 2 1

V-u =0,

AP = —¢',

E/Z—Vq>/,

36]/ ’ ’ ’

- +V Qo + E) +4'Egl =0. (12)

The standard way to proceed is to write the primed equations
as a product of an exponential function depending on time and
a function depending on the spatial variables alone,

u U(x,y)

14 Oy | o

o | = vy | (13)
q' O(x,y)

The symbol o denotes the growth rate, which can be complex.
When Im(o) =0, the principle of exchange of stabilities
applies. As it is discussed in Atten and Moreau [20] for the
plane-plane geometry, it is not possible to prove rigorously
that this principle applies in the free walls case. But the
numerical results show that this is actually the case. Here,
we will assume that Im(o) = O for both free and rigid walls
situations. Then, for the marginal state that corresponds to the
onset of the motionitis o = 0. The comparison with the results
issued from the direct numerical computation will validate this
assumption.

In the free walls case, when symmetric boundary conditions
are applied at the flat sides, the spatial functions can be
developed in terms of normal modes, adapting the 3D analysis
in Agrdit and Castellanos [13] to the 2D geometry. As an
example, the charge perturbation would be expressed, in polar
coordinates, as Q(r,68) = f(r)e'™?, the number m being related
to the number of rolls. The no-slip boundary conditions on the
flat sides prevent us from applying the same procedure in the
rigid walls case, and a different strategy based on a numerical
computation must be envisaged.
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We introduce Egs. (13) into Eqgs. (12). We are interested in the margin stability, o = 0, so the time derivative does not appear.
In this way, the number M disappears too and will have no influence on the linear stability. The pressure can be rescaled to include
the parameter 7 in its definition. We also drop for convenience the primes from the magnitudes. Then the stability equations can

be rewritten as

Vp—Au=T(=0Q¢VV + qEy),

V.-u=0,
AV = —q,
V- [Qo(w—VV)+qEo =0. (14)
The boundary conditions are now
_ r
r=R; = 1-T V=0, uguy =0, inner injection : g =0,
_ 1
=R =1"T V=0, uy,uy =0, outer injection : g =0,
0 =0,7 aV/ay =0, Uy,y =0 (rigid walls),
duy/dy,uy, =0 (free walls). (15)

Equations (14) along with boundary conditions Egs. (15)
define an eigenvalue problem. The secular determinant leads
to a relation between the relevant parameters of the form

F(T,Cc.r)y=0. (16)

We take T as the stability parameter, that is, for C and
I" fixed, the different values of the eigenvalue T give the
excitation thresholds of the different modes. The smallest
of these eigenvalues, T, will be the threshold for the linear
stability.

The generalized eigenvalue problem is solved using finite
elements. To build the matrices, we use DOLFIN [21], an
interface to the FEniCS package [22]. This is a framework for
automated solution of partial differential equations based on
the Finite Element method. The package allows the construc-
tion of the relevant matrices using a high level formulation
of the weak problem. It also handles the computation of
eigenvalues and eigenfunctions through the SLEPc package
[23], a software library for the solution of large scale sparse
eigenvalue problems. We refer to Pérez et al. [17] for more
details.

C. Results

We have considered the case C = 10, both with free and
rigid walls, for both inner and outer injection. We have used
triangular meshes built over a 200 x 100 structured grid, that
is, with 40 000 triangular elements. The meshes are thinner near
the injecting half-cylinder, and coarser next to the collecting
one.

1. Free walls case

We use the free walls case as a validation of our method.
In this configuration the standard modal expansion can be
used to study the linear stability. Let us point out that, when
free-slip boundary conditions are imposed on the flat sides
in Fig. 2, the linear stability problem becomes equivalent to
the complete cylinders configuration. Agriit and Castellanos
[13] studied the linear stability of the 3D configuration with
whole cylinders by applying the classical modal expansion.

(

We have adapted their study to the 2D case. We have solved
the resulting eigenvalue problem using the bvp4c function in
MATLAB. This function implements a collocation method
with C1 piecewise cubic polynomials [24].

Figure 3 shows the critical value 7, as a function of I" for
inner and outer injection obtained with the standard modal
analysis and the one developed here for purpose based on finite
elements. The results obtained with the two different methods
are in excellent agreement. In the strong injection regime under
consideration, inner injection is always less stable than outer
injection for all I'. In addition, as I" approaches 1, the critical
value for both injection configurations tends towards the
critical value for infinitely large plate-plate case, 7. = 164.1
[20]. The results of the FE method for I very close to 1 are
not provided. The reason is that, as I' — 1, the computational

® o |nner Free FE |
— Inner Free modal
— Inner Rigid FE
e e Outer Free FE
—— Outer Free modal
— Outer Rigid FE

600

500

400

TP =164.09
200} 1

Inner

Rigid

100+
:Free :

2 3 14 (rolls) ) )

0.0 0.2 0.4 0.6 0.8 1.0

T

FIG. 3. Linear threshold computed with Finite Elements (FE) and
modal analysis for inner and outer injection for C = 10. The results
computed with FE for rigid walls are also plotted. As I" approaches
1, the value of T, goes to the critical value corresponding to the plane
case, T.7, for all the cases. The number of rolls corresponding at each
hump is indicated for the inner injection branch in the free walls case.
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FIG. 4. Eigenvalues of the first four modes vs. I' for the free walls case for inner injection (a) and outer injection (b). The numbering in the
legend corresponds to the number of rolls observed in the half-cylinders configuration. Only a portion of each mode is showed.

domain becomes very large, considering R; = I'/(1 — I') and
R, = 1/(1 — I). Thus, a larger number of elements is required
and the computation time increases dramatically. Anyway, for
values of I" close to 1 the results are similar to those obtained
for a planar geometry.

InFig. 3 we can observe some humps in both branches. Each
hump corresponds to a different number of velocity rolls for the
velocity field (related to the m value in the modal analysis [13]).
The number of rolls observed in the half-cylinder geometry are
indicated up to 4 for the inner injection case. Figure 4 shows
the eigenvalues of the first four modes for each value of I'. The
cusps in the lower branch of Fig. 3 corresponds to the crossing
of two different modes as displayed in Fig. 4. Note that we
have plotted only a portion of each mode. If we prolong the
branches all the modes cross each other, although at values
of T higher than the critical value for the corresponding value
of I'.

We have plotted in Fig. 5 the eigenfunctions of the most
unstable modes in the inner injection case for I' = 0.05
and T' =0.15. The former corresponds to a point inside
the first hump in Fig. 3, while the latter lies inside the

0.6 0.8 1.0

0.4

0.2

0.0

second hump. The stream function for the first mode is
antisymmetric with respect to the x = 0 line, while the second
mode is symmetric. This pattern repeats itself with higher
modes. Also, all the velocity rolls are equivalent, in the
sense that they correspond to the modal factor ¢ in the
modal expansion. They only adapt their sizes to the total
number of rolls present and the space available between the
electrodes.

The crossing of the modes for the free walls case is similar
to the behavior in the planar injection problem discussed in
Pérez et al. [17]. However, there is a fundamental difference
in the interpretation of the results. In the planar case, the free
walls configuration is a way of modeling two infinite parallel
planes. In this problem, all the modes have the same minimum
value of the linear threshold 77 = 164.1. In a real experiment
with a sufficiently large domain, the system would choose this
absolute minimum value as the linear stability threshold. In the
cylinder configuration the situation is different. Indeed, if we
could perform an experiment keeping the 2D configuration, the
value of the linear criteria 7, would be fixed by the geometric
parameter I, as plotted in Fig. 3.

FIG. 5. Stream function contour plots of the eigenfunctions of the most unstable modes for I' = 0.05 (a) and I = 0.15 (b) for the free-walls
case. The number of rolls is related with the number m of the corresponding mode in the modal expansion.
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FIG. 6. First four eigenvalues as a function of I" for rigid walls. Plot (a) corresponds to inner injection, and plot (b) to outer injection. The

number of rolls of the dominant mode is showed up to four.

2. Rigid walls case

Figure 3 also shows the critical value 7, as a function of "
for rigid walls for both inner and outer injection, along with
the values for the free wall configurations. In both injection
configurations the linear criterion of the free walls case is the
lowest one, especially for small values of I'. The difference
becomes negligible as I' increases above 0.4. This behavior
is due to the viscous shear introduced by the lateral walls
in the rigid case. This damping affects only the convective
cells in the vicinity of the flat sides. Hence, its influence on
the global flow decreases as the number of cells increases,
that is, as I" increases. In both curves, humps similar to those
present in the free walls configuration are visible, although the
cusps are displaced. Each hump corresponds also to a different
number of rolls. As I approaches 1, the value of 7, tends to
T = 164.1, the critical value for two infinite parallel plates.
The same behavior has already been found for the free walls
case. We emphasize that the numbering of the modes does
not correspond to the number of rolls appearing in the flow.
As T increases, the first mode develops two lateral smaller
rolls. They grow in size and eventually, when the first mode is

0.6 0.8 1.0

0.4

0.2

0.0

-1.0 -0.5 0.0 0.5 1.0

again the most unstable one, a pattern of three fully developed
convective rolls is observed. Then two smaller lateral rolls start
to develop and the process repeats itself. A similar behavior is
exhibited by the second mode (see Fig. 7).

Figure 6 plots the value of 7" as a function of I" for the first
four most unstable modes for the rigid walls case, for inner
and outer injection. Note that the structure of the 7' versus I'
diagram is completely different from that of Fig. 4. The first
and second modes cross each other several times, but they
don’t cross the other modes. It is the same for the third and
fourth modes, and other higher ones. This behavior is similar to
what was observed in the 2D rectangular cavity configuration
described in Pérez et al. [17], and it can be explained by a
similar argument. Figure 7 shows the stream functions of the
most unstable mode for I' = 0.05 and I' = 0.20 with inner
injection. The former corresponds to the first mode and the
latter is related to the second one. Both are the most unstable
modes for the corresponding values of I". The modes with the
same parity have the same symmetry with respect to the x = 0
axis: antisymmetric for the odd modes and symmetric for the
even ones. The paths of the modes with the same symmetry

06 08 10 12

0.4

0.2

0.0

(b)

FIG. 7. Stream function contour plots of the eigenfunctions of the most unstable modes for I' = 0.05 (a) and I" = 0.20 (b) for the rigid
walls case and inner injection. The first one is antisymmetric and the second one is symmetric. The counter rolls in the corners appear because

of the no-slip boundary conditions for velocity.
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FIG. 8. Linear stability criteria as a function of I' for C = 10 for inner (a) and outer (b) injection in the case of rigid walls. The discrete
points correspond to values computed from the numerical simulations, while the solid lines have been computed with the FEM-based stability

analysis.

do not cross each other, so mode 3 repels mode 1, and mode
4 repels mode 2, forcing modes 1 and 2 to cross each other.
The mathematical reason is related to the conditions needed
to get degenerate eigenvalues in the eigenvalue problem. In
general, in a two-parameter system, two paths of symmetry-
breaking bifurcation points intersect only if they break different
symmetries (or if the solutions belong to different symmetry
classes), whereas the path of bifurcation points that break the
same symmetry cannot cross one another. For a more complete
explanation we refer the reader to our previous paper [17],
and also to other works on the Rayleigh-Bénard-Marangoni
problem, where this behavior has also been reported (see for
example refs. [25-27]).

The free walls case is a degenerate problem, and the modes
can cross each other without any restriction. It is worth to not
that, while for the free walls configuration all the convective
rolls are equivalent, this is not the case for the rigid walls case.
The new convective roll in the central region in the plot (b) of
Fig. 7 is not areplica of the rolls in plot (a) of the figure. Indeed,
this is due to the presence of the counter-rotating rolls close
to the corners, induced by the no-slip boundary conditions for
velocity.

IV. NONLINEAR ANALYSIS

In this section, we consider the nonlinear aspects of the
problem, in particular the nature of the bifurcation and how it
changes with the values of the parameter. The complexity of
the mathematical problem makes very difficult to perform an
analytic or semianalytic study, similar to what we have done
for the linear stability. Therefore, we have solved numerically
the full problem defined by the set of Egs. (4) along with the
associated boundary conditions Egs. (5).

A. Numerical methods

We solve the set of Egs. (4) using our in-house code Oracle.
This code implements a second order in time and space finite

volume method [28]. The computational domain is discretized
with a structured grid consisting of nonorthogonal quadrilat-
erals. All the meshes have 150 cells along the radial direction,
but the number of cells along the azimuthal direction increases
with the value of I'. For example, the mesh is 330 x 150 for
I' =0.05 and 628 x 150 for I' = 0.5. In all the cases, the
mesh is thinner near the injecting electrode. We use a colocated
arrangement, i.e., all variables are stored at the center of each
control volume. The central differencing (CD) scheme and the
improved deferred correction (IDC) scheme [29] are used to
compute the convective and diffusive fluxes in the Navier-
Stokes equations, respectively. For time integration, we use
a second-order semi-implicit three time levels (I3L) scheme
[28]. The velocity-pressure coupling algorithm is undertaken
by the SIMPLE algorithm [30], as the fluid is assumed to be
incompressible.

The charge transport equation is hyperbolic, therefore it
requires the use of special methods [31,32]. To prevent the
development of spurious numerical oscillations in the charge
density distribution, it is recommended to use nonoscillating,
nondiffusive, and bounded schemes [33,34]. In this study, we
have chosen a TVD scheme, the third-order smooth monotonic
algorithm for real transport (SMART) scheme of Gaskell and
Lau [35]. We refer to Refs. [31,32] for additional details. The
improved least-squares approach [36] is used to compute all
gradients including the electric field.

The simulations related to the projection on the modal basis
have been made with finite elements using the COMSOL
multiphisics software. The numerical computations of the
charge transport equation have been made with the transport
of diluted species module. This module includes a cross-
wind stabilization scheme by Do Carmo and Galeao [37].
Although more diffusive than the SMART scheme described
above, it controls well the undershoots and overshoots, so that
the values of electric charge density remain positive at all
times.
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FIG. 9. Bifurcation diagrams for inner injection, rigid walls, I' = 0.5(a) and I' = 0.05(b). The bifurcation is subcritical in the first case and

supercritical in the second one.

B. Results

All the simulations in this paper have been performed with
C =10and M = 60.

1. Linear stability

As a validation, we reobtain from the direct numerical
simulations the linear stability criteria discussed previously,
for inner and outer injection in the case of no-slip walls. We
start from the hydrostatic solution of Eqs. (4) and boundary
conditions Egs. (5) for a given value of I'. Then we start a
simulation computing all the physical magnitudes for different
values of T until the onset of fluid motion. Then we obtain
the critical value T, for each I" from the growth factor of the
perturbations. The procedure is more detailed in Wu et al. [15].

Figure 8 plots the computed thresholds for several values of
I" for inner [Fig. 8(a)] and outer [Fig. 8(b)] injection. The solid
lines correspond to the values obtained with the Finite Element
(FEM) analysis detailed in Sec. III. The agreement is very good
for both cases. The cusps observed in the plot correspond to
the crossing of modes described in Sec. III. These cusps are
clearer in the inner injection configuration.

2. Inner injection

In Wu et al. [15] we discussed the non linear phenomena
associated to two coaxial complete cylinders. The bifurcation
in that case was subcritical. This means that, once the value
of T is greater than the linear threshold 7, and the motion
starts, the system jumps to a steady state where the maximum
velocity of the fluid is always greater than the maximum drift
velocity induced by the electric field. This behavior can also
be obtained in the half cylinder configuration. Plot (a) in Fig. 9
shows the bifurcation diagram for I' = 0.5 and inner injection.
For T > T, = 124.34, the system jumps to the upper branch.
If T is further increased, the maximum velocity increases as
indicated by the vertical upwards arrow. The figure depicts the
typical hysteresis associated to subcritical bifurcations. Once

we reach the upper branch, if we start decreasing T the system
stays on the upper branch even for values T < T,. This goes
on down to a nonlinear critical value T (about 89.0 for this
value of I'). If T < T the motion stops and the system goes
back to the hydrostatic state.

However, the nature of the bifurcation can change for some
values of I". Plot (b) in Fig. 9 depicts the bifurcation diagram
for inner injection and I' = 0.05. In that case, we can see
that above the linear critical value 7, = 92.63 a supercritical
stable branch appears. Along this branch we find steady states
where the maximum velocity of the fluid is lower than the
maximum drift velocity. As the value of T increases we follow
this supercritical branch, up to a new critical value T, =
104.5, where the system jumps to a finite amplitude branch
similar to that one observed for I' = 0.5. In this branch the
maximum velocity of the liquid is greater than the maximum
drift velocity. If we decrease now the value of 7' we follow this
branch down to a non linear threshold Ty 2~ 69.0. Figure 10
shows the electric charge distribution for the stationary states
corresponding to points B(a), C(b), and D(c) in Fig. 9. The
first point is on the supercritical branch, the velocity of the
fluid is not high enough to overcome the drift velocity, and
there is no region void of charge. Points C and D are on
the upper branch. Here, the electric charge distribution in the
bulk is mainly controlled by the velocity of the fluid. As a
consequence, regions void of charge are formed in the bulk.

Our simulations show that the supercritical branch only
exists for small values of I". We can define three critical values
of parameter T': T, is the linear criterion to start the motion
of the liquid; T, the critical value at which the system jumps
from the supercritical to the upper branch; T is the non linear
criterion at which the motion of the liquid stops when we follow
down the upper branch. Figure 11 plots these critical values for
several values of I". We have not found any values of 7;, beyond
I' = 0.125. The bifurcation is subcritical for higher values of
the radius ratio and supercritical for smaller ones. In all cases,
the values of T, are smaller than the corresponding T, as it
is expected from the bifurcation structure.
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FIG. 10. Electric charge density for rigid walls, inner injection, I' = 0.05 and points B(a), C(b), and D(c) in Fig. 9. Point B is on the

supercritical branch and points C and D are on the subcritical branch.

The switch from subcritical to supercritical is induced by
the presence of the no-slip boundary conditions at the flat
sides. Figure 12 shows the distributions of electric charge and
the velocity field for three different cases. Plots (al) and (a2)
correspond to the free walls case, for T = 75. This problem
is similar to the whole cylinders geometry. The bifurcation
is subcritical [15], similar to the one showed in the plot (a) of
Fig. 9. For this value of T the system is on the nonlinear branch,
with the flow completely developed. We can see the central
void region with no electric charge, created by the competition
between the electric drift and the velocity of the flow. Plots (b1)
and (b2) show the charge distribution and the velocity field for
the rigid case for T = 98. This point is on the supercritical
branch (point A in Fig. 9). Here, the velocity of the liquid only
perturbs slightly the hydrostatic solution. We can see the two
big counter-rotating rolls in the velocity field created by the
no-slip boundary condition. These counter-rotating rolls are
not present in the free walls configuration. There are also two
very small counter-rotating rolls at the inner corners, although

O
Q%Q

60 -
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r

FIG. 11. Critical values of parameter 7. T, is the linear criteria,
T., is the value where the system jumps to the nonlinear branch, T is
the minimum value to have motion of the fluid. The solid line shows
the linear criteria computed with FEM. T, only exists for small values
of I'.

they are difficult to see. Plots (c1) and (c2) correspond to point
C in Fig. 9. Here we are on the finite amplitude branch and
the velocity of the fluids creates the void region in the center.
The counter-rotating rolls can also be seen, but they are smaller
than in plot (b2).

3. Outer injection

Figure 13 shows the bifurcation diagram for outer injection,
rigid walls and I" = 0.05. The bifurcation is subcritical for
all the values of I" that we have explored. The linear critical
threshold obtained from the computations is 7, = 589.4, to be
compared with the value obtained from the eigenvalue anal-

ysis (T."® = 589.3). This highlights the excellent agreement
between the two methods employed to determine the linear
stability criteria. For T > T, the system jumps directly to the
nonlinear branch. This branch is shorter than the equivalent
one in the inner injection case. For T > Ty, = 630 a new
instability appears. The two-roll pattern becomes unstable
and an oscillation between a two-roll pattern and a four-roll
pattern occurs. Figure 14 shows the charge density and the
stream functions for T = 345 (a) and T = 600 (b). The second
value corresponds to a state slightly above the critical value 7,
and the first one to one state slightly above the critical value
Ty ~ 344. These two plots are equivalent to the plots (b) and
(c) in Fig. 10. As we follow down the nonlinear branch the
void region shrinks, until the electric torque cannot sustain the
motion anymore.

4. Modal analysis

The main difference between the free and rigid walls case
is the presence of the counter-rotating rolls in the corners,
induced by the no-slip boundary conditions. This affects the
flow pattern and, consequently, the charge distribution. We
can try to understand the physical differences between these
two configurations by performing a modal analysis of the
flow. In Sec. III we computed numerically the eigenfunc-
tions corresponding to the rigid walls case. These eigen-
functions can be used as a base to approximate the velocity
field:

N
w'(x,y.t) =Y Ajtui(x,y). (17)

j=1
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FIG. 12. Electric charge density (1) and velocity field (2) for C = 10, I" = 0.05, M = 60: (a) free case with T = 75, (b) rigid walls with

T =98, (c) rigid walls with T = 105.

Here u”(x,y,t) is the velocity field of the fluid in the rigid
walls case, u;(x,y) are the eigenfunctions obtained with
the linear stability analysis, and A”(¢) are the amplitudes
of the modes. The number N is the number of modes retained
in the approximation.

We introduce this expansion in the Navier-Stokes equations
[first equation in Egs. (4)]. Then we multiply by the eigenfunc-
tion u/(x,y) and integrate over the domain. In this way we
obtain ordinary differential equations which govern the time
evolution of the modes amplitudes:

LA,

AT 2qr
i _TKijAj+M Ij. (18)

The matrices and vectors in this expression are
B:] = / uir(x,y) . ujr»(X,}’L
Q
Klr] = / uir(x,y) . Au;(x’)’)
Q
= —/ Vu/(x,y): Vuj(x,y),
Q

1@

‘/qu(X,y,t)Er(xy}’J)'u;(x,)’)- (19)

The integrals involving the pressure gradient vanish when
integrating by parts and applying the boundary conditions
fulfilled by the eigenfunctions. We apply a similar procedure on
the elements of K I’J The elements of Birj and K lr] are constants,
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FIG. 13. Bifurcation diagram for outer injection, rigid walls, I" =
0.05. The bifurcation is subcritical for all the explored values of T".
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FIG. 14. Charge density distribution and streamlines for outer injection, 7 = 345 (a) and 7 = 600 (b). The axis with the z label in the plots

corresponds to the value of the charge density.

but the elements of /} change with time. Multiplying Eq. (18)
by the inverse of B;; we obtain a set of equations for the
temporal derivative of the amplitudes of the modes:

dAr' M : T OAT Ll gr

d—t’ = TCUAJ- + M*(B},)" I, (20)
The first term in the right-hand side of Eq. (20) represents the
effect of viscosity. It will always have a negative contribution
to the evolution of the amplitude. The second term is related
to the power given to the modes by the electric field. A
similar expansion can be used for the free walls case using
the eigenfunctions for free-slip boundary conditions at the flat
sides. The velocity can be approached by

N
ul(ey.n =" Al .y @1)

j=1

Here, the f stands for the free walls case. Applying the same
steps we get

dAJf M?

. . N | 3
VL L S

J
The definitions of Bij}, K ié and [ jF are similar to those given
in Eq. (19), taking the fields from free walls instead of those
from rigid ones.

There is an important difference between the free and rigid
walls configuration. The elements of Bl/;. and B, are the dot
products of the modal functions for each configuration. Table I
shows the values of the dot products between the first mode and
the others for I' = 0.05 and for both free and rigid walls. The
modal functions are normalized so that, for each one of them,
fQ Iulf 12 = 1. In the free case the other modes are essentially
orthogonal to the first one, that is, the dot products are almost
zero. For rigid walls this is not the case, as three other modes
have a non negligible dot product with the first one, especially
the modes six and seven. As I' increases the modes for the
no-slip configuration becomes more orthogonal, as it is shown
in the table. This nonorthogonality will have consequences in
the time evolution of the system, as we will see later.

The computational results related to the modal analysis
presented in this section have been performed with COM-
SOL Multiphysics. The mesh had 9600 triangles and 2240
quadrangles. The interpolation functions were of order 1 for
velocity, pressure and charge density, and order 2 for the
electric potential. The mesh was especially refined near the
boundaries of the domain, where several boundary layers of
quadrangles were added. This is done to better account for
high gradients in this zone.

Figure 15 shows the time evolution of the amplitudes of
the first eight modes for three cases in the inner injection
configuration. The upper plot corresponds to the free walls
case and T = 70. Here, the bifurcation is subcritical. We can
observe the fast growth of the first mode within the time interval
(3,10), approximately. Due to the orthogonality of the eight
first modes, in this region the first mode grows undisturbed
by the others ones, until the velocity field takes control of
the charge distribution, originating the typical void region in
the subcritical branch. Plot (b) corresponds to rigid walls with
T = 95. Here we lay on the supercritical branch. The modes
are not orthogonal, so several modes get excited, competing
for the energy transferred by the electric field. None of the
modes gets clearly ahead of the others, and the final velocity
field is not strong enough to create the void region. The lower
plot corresponds to inner rigid walls with 7 = 105. Here, we
lay on the upper branch. The behavior of the amplitudes at
early times is similar to the one observed for T = 95. The
main difference is the evolution of the amplitude of the second
mode. This value of T is higher than the excitement threshold
for this second mode (7 = 104). As this mode is excited,
it becomes dominant, although eventually it fades among
the others modes, especially the modes 1 and 7, which are
dominant in the supercritical branch. So, even if the second
mode is not the dominant one in the final state, its appearance
changes radically the behavior of the dominant modes in the
supercritical branch, pushing the system to fall on the upper
branch. This is consistent with the value 7, = 104.5 in Fig. 9
corresponding to the jump from the supercritical to the upper
branch. This jump occurs for a value of T close to the excitation
threshold of the second mode.
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TABLE 1. Values of the dot products (1,) = [, u; - u; of the dominant mode with the other modes for rigid and free walls cases. As I’
increases, the rigid modes becomes more orthogonal.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
I — 005 Rigid 1 +4x1078  4+6x1078 —9x 1072  —8x107®  $3x107"" 48 x 107" 43 x 107!
Free 1 —2x1071% 46x 1077  43x1070 44 x 1070 42x107% 2 x107® +2 x 1079
=015 Rigid 1 +6 x 10712 +8 x 1071 +2 x 10792 —1x10°18 —1 x 1079 +2 x 10791 —3x 10712
’ Free 1 +2 x 1071 +2x10710 2% 1077 41 x1070 44 %1077 —2x107% +4 x 10710

The influence of the second mode is also consistent with the
similar behavior observed in the rectangular configuration with
rigid walls described in Wu et al. [16]. In that configuration,
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FIG. 15. Amplitudes of the time evolution of the first eight
modes for inner injection with I' = 0.05, C = 10, and M = 60. Plot
(a) corresponds to free walls and 7' = 70, plot (b) to rigid walls and
T = 95, and plot (¢) to rigid walls and T = 105. The vertical axis are
plotted in logarithmic scale.

the modes also cross each other as the aspect ratio of the
rectangular domain increases. For values of the aspect ratio
below the first crossing, the bifurcation is supercritical. As the
aspect ratio is increased, it becomes subcritical for a range of
values of the aspect ratio around the one corresponding to the
first crossing of modes. Then it becomes supercritical again
until the next crossing, where it turns subcritical and stays so
for further values of the aspect ratio. Near the crossings, the
second mode is excited, as it happens in the half-cylinder case,
and it throws the system away from the supercritical branch
into the finite amplitude one. Beyond the second crossing,
the influence of the lateral rigid walls on the flow patterns
of the modes becomes negligible, and the supercritical branch
disappears completely. In the half cylinders configuration we
do not observe the reappearance of the supercritical branch
after the first crossing. But there is a difference with the
rectangular case. Here, as the ratio between the radii increases,
the value of T, increases, while in the rectangular configuration
T, decreases as the aspect ratio increases. With higher value of
T., more energy is injected into the modes, and they grow
until the velocity field takes control of the electric charge
distribution, producing the region void of charge, a typical
characteristic of the subcritical bifurcation.

For the outer injection no supercritical branch has been
observed in the numerical simulations that we have carried out.
The same considerations about the orthogonality of the modes
apply in the outer injection configuration. But there is a mayor
difference, the value of T, is much higher here. Hence, the input
of electric energy is also much higher. Even if the dominant
mode faces the competition with other modes in the rigid walls
case, it can grow because the quantity of energy available
is much greater than in the inner injection configuration.
Figure 16 plots the time evolution of the amplitude of the
first eight modes for outer injection with I' = 0.5, C = 10,
and M = 60. Plot (a) corresponds to the free walls case with
T = 500, just above the linear threshold. Plot (b) corresponds
to the rigid walls configuration with 7 = 600, also just above
the critical threshold. The plot for the free-walls configuration
is quite similar to the same case with inner injection (upper
plot in Fig. 15). The second mode is dominant at earlier times,
but once the first mode starts growing, it does not stop until
it becomes the dominant one. For the rigid configuration, the
first mode is the dominant one in the growing region, but other
three modes get amplitudes not too far from the dominant
one. The difference with the inner injection case [plot (b) in
Fig. 15] is that the growth does not stop until the amplitudes
are high enough to sustain a void region in the bulk, producing
the subcritical bifurcation. This is due to the high value of
the parameter T, compared with the value on the supercritical
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FIG. 16. Amplitudes of the time evolution of the eight first modes for outer injection with I' = 0.05, C =10 and M = 60. Plot
(a) corresponds to free walls and 7 = 500 and plot (b) to rigid walls and T = 600. The vertical axis are plotted in logarithmic scale.

branch in the inner injection case, which is much lower. In the
outer injection we do not observe the disruption produced by
the second mode on the supercritical branch, as this one does
not exist. Let us also stress that in this case there is no dominant
mode. When the flow is fully developed, there are at least
three relevant modes of similar intensity. This explains why
the upper branch is shorter in the outer injection configuration.
The excited modes compete with each other and eventually
destabilize the branch.

V. CONCLUSIONS

In this paper we have discussed the linear stability and the
nature of the nonlinear bifurcation of the injection induced
electroconvection in a perfectly insulating liquid between two
half cylinders with no-slip conditions on all boundaries. This is
a variation of the classical EHD problems of electroconvection
between two concentric cylinders.

Due to the no-slip boundary conditions the usual modal
analysis of the linear stability is not applicable. Therefore, we
have chosen an alternative strategy, based on the finite element
method, already used in a similar problem with a rectangular
rigid container. First, we have considered as a validating test
case a problem with the same geometry and with symmetry
conditions on the flat sides. The linear stability analysis of
this problem is equivalent to the full cylinders case, and can
be solved with the standard modal analysis. The agreement
between the results obtained with the standard modal approach
and the finite element technique used here is excellent.

We have shown that the linear critical value is higher when
the no-slip conditions are imposed, as a consequence of the
viscous shear induced by the rigid walls, although this effect
decreases as the ratio I' = R; /R, between the cylinder radii
approaches 1. We also find that the structure of the paths traced
by themodesinthe I' — T diagram in the rigid case differs from
the structure for the free case. In the latter all the modes crosses
each other, while in the former a repulsion appears between the
modes with the same symmetry, forcing the first and second
modes to cross each other several times. This behavior occurs
in both inner and outer injection. The difference is that for outer

injection the value of the linear criterion is much higher than
in the inner injection case.

When the free-slip boundary conditions are imposed on the
flat side walls the nonlinear bifurcation is always subcritical.
In the final state the distribution of electric charge is controlled
by the velocity field, originating a region in the bulk void
of electric charge. When the no-slip boundary conditions are
imposed on the flat walls, the bifurcation becomes supercritical
in some configurations. In this case, in the final state the
velocity field is not strong enough to overcome the electric
field and no void region develops in the bulk.

The bifurcation becomes supercritical when the injection
occurs on the inner cylinder and the ratio between the outer
and inner cylinder radii is small. Here, there are three crit-
ical values of the stability parameter. If the electric field is
increased beyond the linear threshold, 7;;, the velocity field
is not strong enough to overcome the electric field. Hence,
the distribution of electric charge is the same than in the
hydrostatic regime perturbed by the velocity, and there is no
void region. In this case the bifurcation is supercritical. As
the electric field is further increased, when T = T., > T,
the system jumps to the finite amplitude branch, where the
velocity controls the charge distribution and a region void
of charge appears. If the electric field is now decreased the
velocity is sustained until a nonlinear threshold T, < T, is
reached. For T < T the velocity disappears and the charge
distribution is the hydrostatic one. For ratios I" 2 0.125 the
supercritical branch disappears and the system jumps directly
to the upper branch once the flow starts. When the injec-
tion occurs at the outer electrode the bifurcation is always
subcritical.

To understand the change in the nature of the bifurcation,
we have performed a modal analysis using the eigenfunctions
computed from the linear analysis as a modal basis. The modes
are orthogonal in the free-slip configuration, while this is not
the case in the no-slip configuration. For the inner injection case
and the free-slip configuration, with a subcritical bifurcation,
the dominant mode grows undisturbed until it controls the
charge distribution. In the rigid case, on the supercritical branch
(T, < T < T,), the nonorthogonality of the modes implies
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that several modes are able to extract energy from the electric
field at the same time. As a consequence, several modes of
similar intensity are relevant in the flow, disturbing each other
and none of them dominates. The final velocity field is not
strong enough and no void region is formed, preventing the
occurring of a subcritical bifurcation. If T is further increased,
the second mode eventually becomes excited. The presence of
this second mode disturbs the growth of the other modes. It
becomes dominant at a certain time and, while it is overcome
by the other modes at the final state, its presence changes the
distribution of electric charge and pushes the system to the
subcritical branch. As the ratio of radii increases, the modes
become more orthogonal, since more velocity rolls develop
and the influence of the counter-rotating rolls diminishes. As
a consequence, the bifurcation is subcritical, same as in the
free-slip case.

For the outer injection regime, the modal analysis shows
that the amplitudes of the modes grow very fast. Thus, even
if the modes are not orthogonal, the velocity field overcomes
the driving of the electric field and develops a region void of
charge, originating a subcritical bifurcation. The reason that

could explain the difference of behavior between the outer and
inner injection configurations has to be ascribed to the value
of the linear threshold T¢, which is much higher in the outer
injection configuration. Hence, more energy is made available
for all the modes to grow and no supercritical branch exists.
These mechanisms explain also the previously unexplained
appearance of the supercritical branch in the closed rectangular
configuration described in reference Pérez et al. [17].
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