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Is the kinetic equation for turbulent gas-particle flows ill posed?
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This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability
and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation.
Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)], have concluded that
this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a
consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion
is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation
and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive
diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal
axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these
positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine
other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of
the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the
GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal
of the benefits of both PDF approaches.
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I. INTRODUCTION

The probability density function (PDF) approach has proved
very useful in studying the behavior of stochastic systems.
Familiar examples of its usage occur in the study of Brownian
motion [1] and in the kinetic theory of gases [2]. In more
recent times it has been used extensively by Pope and others to
model turbulence [3] and turbulence-related phenomena, such
as combustion [4] and atmospheric dispersion [5]. This paper is
about its application to particle transport in turbulent gas flows,
where it has been developed and refined over a number of years
by numerous authors. During that time it has been successfully
applied to a whole range of turbulent dispersed flow problems
involving mixing and dispersion as well as particle collisions
and clustering in a particle pair formulation of the approach. It
has also formed a fundamental basis for dealing with complex
flows in formulating the continuum equations and constitutive
relations for the dispersed phase precisely analogous to the way
the Maxwell-Boltzmann equation has been used in the kinetic
theory. It has become an established technique for studying
dispersed flows so much so that the method and its numerous
applications are the subject of a recent book [6] and the subject
of a chapter in the recent Multiphase Flow Handbook [7].
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There are currently two PDF approaches that have been used
extensively to describe the transport, mixing, and collisions
of small particles in turbulent gas flows. The first approach
referred to as the kinetic approach is based on a kinetic equation
for the PDF p(x,v,t) of the particle position x and velocity v at
time t . This equation is based on a particle equation of motion
involving the flow velocity along a particle trajectory derived
from a Gaussian stochastic flow field. In the kinetic equation
the particles’ random motion arising from this stochastic field
is manifest as a diffusive flux, which is a linear combination
of gradient diffusion in both x and v. Transient spatiotemporal
structures in the turbulence give rise to an extra force due to
clustering and preferential sweeping of particles [8].

In the second PDF approach an equation for the PDF
p(x,v,u,t) is constructed, where u is the carrier flow ve-
locity sampled along particle paths. Thus, unlike the kinetic
approach, the flow velocity in this approach is retained in the
particle phase space and is described by a model evolution
equation. In particular, this PDF model is based on a general-
ized Langevin model (GLM) (see Pope [3]), where the velocity
of the underlying carrier flow measured along a particle
trajectory is described by a generalized Langevin equation.
As such the associated PDF equation is described by a Fokker-
Planck equation. This GLM PDF equation has sometimes been
inappropriately referred to as the dynamic PDF equation [9],
implying that it is a more general PDF approach from which
the kinetic equation can in general be derived. However, it is
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important to appreciate the kinetic equation is not a standard
Fokker-Planck equation, since it captures the non-Markovian
features of the underlying flow velocities.

The problem of closure and the associated realizability and
well-posedness of PDF equations are profoundly important in
the study of stochastic equations. So despite the successful ap-
plication of the kinetic equation to a whole range of problems,
recent claims in the literature of ill-posedness and realizability
of this equation are disturbing and a serious concern. The root
cause of this concern is the nonpositive definiteness of the
diffusion tensor associated with the phase space diffusion flux.
That in particular this tensor has both positive and negative
eigenvalues implying that along the principal axis of the diffu-
sion tensor with a negative eigenvalue, the particle dispersion
exhibits the properties of a backward diffusion equation lead-
ing to solutions with finite time singularities. In fact, Minier and
Profeta [9], following a detailed analysis of the relative merits
of the 2 PDF approaches, have concluded that the kinetic equa-
tion is ill posed and therefore an invalid description of disperse
two-phase flows (except in the limiting case for particles with
large Stokes numbers when the kinetic equation reduces to a
Fokker-Planck equation). This raises a number of issues and
inconsistencies that we wish to examine and resolve:

(1) The closure of the diffusive terms in the kinetic equation
is exact for a Gaussian process for the aerodynamic driving
forces in the particle equation of motion. Notwithstanding any
negative eigenvalues, such dispersion processes are demon-
strably forward rather than backward in time with statistical
moments that monotonically increase rather than decrease with
time. This behavior is reflected in the analytic solutions of
the kinetic equation for particle dispersion in shear flows in
which the mean shear is linear and the turbulence is statistically
homogeneous and stationary (see Hyland et al. [10], Swailes
and Darbyshire [11]). In these generic flows, there is exact
correspondence of the analytical solution with a random walk
simulation using a Lagrangian particle tracking approach,
solving the individual particle equations of motion in the
associated Gaussian random flow field. See, as an example,
the illustration in Fig. 1.

(2) In simple generic flows the GLM PDF equation is
entirely consistent with the kinetic equation, i.e., the kinetic
equation is recoverable from the GLM equations and has
exactly the same solution for the same mean flows and sta-
tistical correlations for the turbulent velocity u along particle
trajectories [12]. They are both compatible with a Gaussian
process. The claim of ill-posedness of the kinetic equation
would therefore seem to contradict the well-posedness associ-
ated with the Fokker-Planck equation of the GLM.

So the first objective of the analysis we present here is
to show that despite the non positive definiteness of the
phase space diffusion tensor, this does not imply backward
diffusion and the existence of finite time singularities, that
the kinetic equation is well posed and has realizable solutions
that are forward rather than backward in time consistent with
a Gaussian process. We shall show that this is intimately
related to the non Markovian nature of the kinetic equation,
that the time evolution of the phase dispersion tensor from its
initial state and the coupling between phase space variables are
crucial considerations. In the course of this analysis we will
recall the stages of the development of the kinetic equation

FIG. 1. Dispersion of an instantaneous point source of particles in
a simple turbulent shear flow. Comparison of the analytic solution of
the kinetic equation for the particle spatial concentration and a random
walk simulation based on Stokes drag with a Gaussian process for the
aerodynamic driving force. Panels (a) and (b) for the concentration
contours are taken from Ref. [11], where the analytic solution is also
given. Panel (c) is taken from Ref. [10], where analytic solutions are
also given. See also Refs. [7,12].

and the important role played by certain consistency and
invariance principles which taken together with the other
features determining well-posedness and realizability have not
been properly understood or appreciated in previous analyses.
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Previous work has purported to show that the GLM is
a more general approach than the kinetic approach. That in
particular the kinetic equation can be derived from the GLM,
and that the features of transport and mixing in more general
non uniform inhomogeneous turbulent flows implicit in the
solutions of the kinetic equation are intrinsic to the GLM. So
the second objective of this analysis is to examine the basis
for this assertion. In the process, we provide a more balanced
appraisal of the benefits of both PDF approaches and point
out the limitations of the GLM that have been ignored in
previous analyses. We regard these limitations to be areas for
improvement of the GLM rather than inherent deficiencies.
Like all modeling approaches, each of the two approaches
considered have their strengths and weaknesses. A categorical
dismissal of one in preference to another in previous work
would seem misplaced. From a practical point of view this
paper is more about how one approach can support the other
in solving dispersed flow problems.

II. ILL-POSED KINETIC PDF EQUATIONS?

In this section, we examine in detail the previous analysis
of Minier and Profeta (M&P) [9] that leads to the assertion of
ill-posedness of the kinetic equation. For ease of comparison
we use the same notation here and throughout the paper.
Thus, M&P consider particle phase-space trajectories Zp(t) =
(Xp(t),Up(t)) governed by

Ẋp = Up, U̇p = 1

τp

(U s − Up) + Fext. (1)

U s(t) representing a flow velocity at time t sampled along
the trajectory Xp(t), and Fext an external body force, e.g.,
gravity. In the kinetic modeling framework, U s is derived via
an underlying flow velocity field uf (x,t), which has both a
mean 〈uf 〉 and fluctuating (zero mean) component u′

f . That
is U s = uf (Xp(t),t). The pdf p(z,t) = 〈δ(z − Zp(t))〉 giving
the distribution of Zp then satisfies the ensemble-averaged
Liouville equation:

∂tp = − ∂x · vp − ∂v ·
(

Fext + 1

τp

(〈uf 〉 − v

)
p

− ∂v ·
〈

1

τp

u′
f δ(z − Zp)

〉
. (2)

A number of works have formulated expressions for the
diffusive flux in the final term of Eq. (2), e.g., [13,14]: Modeling
uf (x,t) as Gaussian, and treating the particle response time τp

as a constant, independent of the particle Reynolds number
(i.e., Stokes relaxation), leads to the general form

〈
1

τp

u′
f δ(z − Zp)

〉
= −(κp + ∂x · λp + ∂v · μp),

and Eq. (2) can then be written compactly in phase-space
notation as

∂tp = −∂z · ap + 1
2∂z · (∂z · Bp), (3)

where z = (x,v) refers to the particle position and velocity and

a =
(

v,Fext + 1

τp

(〈uf (x,t)〉 − v
) + κ

)
, (4)

B =
(

0 λ

λ� μ + μ�

)
, (5)

λ and μ are diffusion tensors that define gradient dispersion
separately in real space (x) and velocity space (v), respectively.
They are functions of time and depend on the particle response
to the carrier flow velocity fluctuations along its trajectory.
The specific forms for λ,μ, and κ , based on the LHDI closure
scheme [15], are

λij = τ−2
p

∫ t

0
〈gki(t − s)u′

k(x,v,t |s)u′
j (x,t)〉ds,

μij = τ−2
p

∫ t

0
〈ġki(t − s)u′

k(x,v,t |s)u′
j (x,t)〉ds, (6)

κj = τ−2
p

∫ t

0
〈gki(t − s)u′

k(x,v,t |s)∂xi
u′

j (x,t)〉ds,

where the particle response tensor g(t − s) has elements
gki(t − s) corresponding to the displacement at time t in the
i direction when τpu′

f is an impulsive force δ(t − s) applied
in the k direction. In general, g(t − s) depends upon the local
straining and rotation of the flow. We mention that the response
tensor based on the Furutsu-Novikov closure scheme [14] is
slightly different in definition (see Ref. [16] for a discussion
of the different closure schemes for the kinetic equation).
Following the analysis of M&P, we consider the case for
dispersion of an instantaneous point source in statistically
stationary homogeneous and isotropic turbulence with a zero
external force Fext = 0, in which case g(t) = τp(1 − e−t/τp ) I ,
and

λ = τ−1
p

∫ t

0
(1 − e−s/τp )R(s)ds I,

μ = τ−2
p

∫ t

0
e−s/τpR(s)ds I, (7)

κ = 0,

where R(s) is the autocorrelation 1
3 〈U ′

s(0) · U ′
s(s)〉 of the flow

velocity fluctuations U ′(s) measured along a particle trajectory.
Equations (3), (4), and (5) correspond to Eqs. (65), (66),
and (67) in Ref. [9]. M&P claim that Eq. (3) is ill posed in
the sense that solutions to this can (will) exhibit unphysical
behavior except in special or, to use their phrase, “lucky”
cases. Specifically, they assert that solutions p of Eq. (3)
will exhibit finite-time singularities except for very special
initial conditions, for example, with a Gaussian form. Their
justification for this claim is based on an analysis centered
round the observation that B is not positive-definite but
possesses both negative and positive eigenvalues. We show
here that their analysis is incorrect.

First, we note that Eq. (3) is not a model for the PDF of
Zp(t), but describes precisely how this PDF must evolve. There
is an exact correspondence between Eq. (3) and the underlying
equation of motion Eq. (1). This equivalence, i.e., the formal
derivation of Eq. (3) from Eq. (1), is subject only to the
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requirement that the field uf (x,t) is Gaussian. Then, notwith-
standing the nondefiniteness of B, Eq. (3) is an exact descrip-
tion of how p, as determined by Eq. (1), behaves. Contrary to
previous claims [9], no Gaussian (or other) constraint is neces-
sary on the initial distribution p0(z) of Zp(0). Thus, should
solutions to Eq. (3) exhibit finite-time, or even asymptotic
(t → ∞), singularities when p0 is non-Gaussian, then this
feature must be inherent in the system determined by Eq. (1).
Either this singular behavior is intrinsic to the system, or the
analysis upon which M&P base their conclusion is incorrect.

To demonstrate that the nondefiniteness of B, coupled with
arbitrary initial conditions, does not lead to singular solutions
of Eq. (3) we note that the solution to this equation can be
written

p(t ; z) =
∫

φ(t ; z,z′)p0(z′)d z′, (8)

where φ(t ; z,z′) is the fundamental solution satisfying
φ(0; z,z′) = δ(z − z′). Now consider the case when U ′

s(t) =
u′

f (Xp,t) = u f (Xp,t) − 〈u f 〉(Xp,t) is treated ab initio as a
Gaussian process. The structure of Eq. (3) remains unchanged,
except κ ≡ 0 and λ,μ are independent of Z (but, crucially,
they will still depend on t). B still has negative eigenvalues.
With 〈uf 〉 linear in x (and Fext constant) the form of φ is
well-documented, both in general terms and for a number of
specific linear flows [11,12,17]. This solution is Gaussian, and
it is straightforward to show that it corresponds exactly, as
it must, to the Gaussian form of Zp determined by Eq. (1).
Thus, any singular behavior of the general solution p, defined
by Eq. (8), can only be a consequence of degeneracy in the
Gaussian form of φ, and not the form of an arbitrary initial
distribution p0. Again, should such degeneracy exist then it
would be symptomatic of behavior determined by Eq. (1), and
not some artifact of the nondefiniteness of B.

There are several flaws in the analysis upon which M&P
base their claim of ill-posedness: To begin, they consider a form
of Eq. (3) in which B is taken as independent of time, arguing
that this corresponds to stationary isotropic turbulence. This is
not correct. B is intrinsically time dependent. This dependence
reflects the nonzero time correlations implicit in the turbulent
velocity field Uf , and the consequent non-Markovian nature
of Zp. Moreover, and crucially, B(0) = 0 unless the initial
values Up(0), U s(0) are correlated. A detailed analysis of this
is given in Ref. [17]. So, even when B → B∞ (constant) as
t → ∞, it is inappropriate to set B = B∞ in a formal analysis
of the time problem. Indeed, it is straightforward to show that
the fundamental solution φ breaks down for arbitrarily small t

when this inappropriate approximation is introduced.
Of course, the nondefiniteness of B is not altered by

taking this tensor to be t dependent. The eigensolution-based
transformation that M&P introduce can still be invoked.
Analogous to Eq. (71) in Ref. [9] we define trajectories Z̃p(t)
with components (Z̃p1,Z̃p2) in a transformed phase space
z̃ = (̃z1,̃z2) with

Z̃p(t) = P� · Zp(t), (9)

where P(t) is the transformation matrix determined by the (now
time dependent) normalized eigenvectors of B. Thus, P� · P =
I and P� · B · P = � = diag(ωi), with ωi the eigenvalues of
B. We note that, in applying this to the 2D case considered

by the M&P, it is sensible to label the two eigenvalues such
that ω1 < 0, ω2 > 0 since this gives P(0) = I. By neglecting
the time dependence in B M&P missed this point and chose
the opposite ordering (see Eq. (69) in Ref. [9]). Here we take
ω1 < 0.

In using the transform given by Eq. (9), it is important
to note that Eq. (1) governing Zp(t) is not to be interpreted
as a stochastic differential equation driven by a white-noise
process, and Eq. (3) is not a corresponding Fokker-Planck
equation. Clearly, this would be nonsense since B is not
positive-definite. It is more transparent (and correct) to note
that Eq. (9) implies that the PDF p̃(̃z,t) of Z̃p(t) is related to
the PDF p(z,t) of Zp(t) by p̃ |J | = p, where J = det[P ] is the
Jacobean of the transform z̃ = P � · z. Since P is orthogonal
we have J = 1. The PDF equation for p̃ is

∂t p̃ = −∂̃z · âp̃ + 1
2 ∂̃z · (∂̃z · �p̃), (10)

where â = P � · ã + R · z̃, ã(̃z,t) = a(z,t), R = Ṗ � · P . This
is analogous to Eq. (72) in Ref. [9], except these authors have
not included the time dependence in B and so set Ṗ = 0. We
note that R represents a rate of rotation matrix, trace(R) = 0.
In the 2D model considered, the authors integrate Eq. (10) over
z̃2 (corresponding to the transformed variable with the positive
eigenvalue ω2) to obtain (compare with Eq. (74) in Ref. [9])

∂t p̃r = −∂̃z1 â1p̃r − ∂2
z̃1

1
2 |ω1|p̃r , (11)

where p̃r is the PDF for Z̃p1 and â1p̃r = ∫
â1p̃ d z̃2. Based

on the negative diffusion coefficient in Eq. (11), M&P seek
to show that this equation and so also Eq. (3) is ill posed.
Their argument fails to take into account that the conditional
average â1 is a density weighted average, i.e., its value at z1 is
dependent upon the distribution of Zp2(t) at z1 which itself can
be a function z1. For instance, using a more explicit notation
we may write

â1 ≡ 〈̂a1(̃z1 ,̃Zp2(t))〉̃z1, (12)

where 〈·〉̃z1 denotes an ensemble average conditioned on
Z̃p1(t) = z̃1. What Eq. (12) illustrates is that only a subset of all
trajectories Z̃p2(t) contribute to â1, namely those that are also
associated with Z̃p1(t) = z̃1. The term â1 is therefore affected
by coupling between Z̃p1(t) and Z̃p2(t). Indeed, in the case
where Z̃p1(t) and Z̃p2(t) are statistically decoupled, we have

〈̂a1(̃z1 ,̃Zp2(t))〉̃z1 = 〈̂a1(̃z1 ,̃Zp2(t))〉, (13)

i.e., all realizations of Z̃p2(t) would contribute to â1. In this
case, â1(z1) is convective as M&P have assumed. However,
in general, Z̃p1(t) and Z̃p2(t) will be statistically coupled,
and as a consequence, â1 cannot be treated as an arbitrary
convective term. Indeed, as we shall show momentarily, the
term â1 is associated with both convective and diffusive fluxes,
and its diffusional contribution offsets that associated with the
negative eigenvalue.

By failing to appreciate this particular property of â1,
M&P [9] have overlooked a fundamental property of the
particle dispersion process. That is in the dynamical system
described by Eq. (1), the particle position and velocity are
not independent. This is reflected in the fixed-frame kinetic
Eq. (3) through the term ∂xvp, which couples the spatial and
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velocity distributions of the particles. In the same way, the
distributions of the variables Z̃p1,Z̃p2 are coupled in Eq. (11).
The implication of this coupling is that fluctuations in particle
velocity give rise to fluctuations in particle position, in addition
to the fluctuations in particle position that arise directly from
fluctuations in the fluid force τ−1

p U s . In the moving frame, it
is the fluctuations in Z̃p2 (with the positive eigenvalue, ω2),
via the positive covariance between between Z̃p1 and Z̃p2, that
overcomes the negative diffusion associated with Z̃p1 (in the
absence of the coupling). We note, for instance, that in Eq. (3),
the particle flux vp integrated over all particle velocities is
expressible as a net gradient diffusion flux, vpr for which
the long term (t → ∞) particle diffusion coefficient ε(∞) in
statistically stationary, homogeneous, isotropic turbulence is
given by

ε(∞) = τp{〈v2(∞)〉 + λ(∞)}, (14)

where 〈v2(∞)〉 is the variance of the particle velocity (which
for a Gaussian process is given by (τp/3)trace[μ(∞)]; see,
e.g., Eqs. (78) and (79) in Ref. [15]), and λ = (1/3)trace(λ).
This simple relationship clearly identifies the two sources of
dispersion independently, the first from fluctuations in the
particle velocity (the kinetic contribution) and the second
term λ(∞) arising from fluctuations in τ−1

p U s (the turbulent
aerodynamic force contribution). We refer to Ref. [13] for a
detailed analysis of how this relationship defines an equation of
state for the particle pressure and where 〈v2(∞)〉 and λ(∞) are
more correctly identified as the normal components of stress
tensors. We refer to Ref. [18] on how a proper treatment of the
integrated flux terms in the kinetic equation in inhomogeneous
turbulence gives rise to turbophoresis, an important mechanism
for particle deposition (in response to the unfounded criticism
in Refs. [9,19] that the kinetic equation is inappropriate for
modeling particle deposition).

To demonstrate these features in a quantitative way we
consider the simple 2D case examined by M&P in which
〈U〉 = 0, and Z̃p(0) = z̃0 fixed. Then â is linear in z̃, and â1p̃r

involves z̃2p̃r = ∫
z̃2p̃ d z̃2. This can be expressed in terms of

convective and gradient diffusive fluxes (see Ref. [14]),

z̃2p̃r = m̃2p̃r − θ̃21∂̃z1 p̃r , (15)

where m̃2, θ̃21 are components of 〈Z̃p〉 = m̃ = (m̃1,m̃2) and
〈(Z̃p − m̃)(Z̃p − m̃)〉 = �̃ = (θ̃ij ), satisfying

˙̃m = �̃ · m̃ + k̃, (16)

˙̃� = �̃ · �̃ + (�̃ · �̃)T + �, (17)

with m̃(0) = z̃0, �̃(0) = 0. Here �̃ = P T · A · P + R, k̃ =
P T · k with k = (0,Fext) and A11 = A21 = 0,A12 = 1, A22 =
−1/τ St

p . Equations (15), (16), and (17) allow Eq. (11) to be
written

∂t p̃r = −∂̃z1
˙̃m1p̃r + ∂2

z̃1

1
2

˙̃θ11p̃r . (18)

The net diffusional effect is therefore determined by the particle
diffusion coefficient D̃1(t) of the transformed variable z̃1

(associated with the negative eigenvalue ω1) and given by

D̃1(t) = 1
2

˙̃θ11 = (�̃ · �̃)11 − 1
2 |ω1|. (19)

FIG. 2. Plots of 1
2 |ω1|/(�̃ · �̃)11 Eq. (19) for the ratio of

negative/positive contributions to the particle diffusion coefficient D̃1

of the transformed variable Z̃p1(with a negative eigenvalue) in the
moving frame of reference, as a function of time t for a range of
values of the particle response time τp . Both t and τp are scaled on
TL, the Lagrangian integral timescale of the carrier flow measured
along a particle trajectory.

This shows how the “antidiffusion” associated with ω1 is offset
by the contribution emerging from the flux â1p̃r associated with
the coupling between Z̃p1 and Z̃p2 through their covariance θ̃12

in Eq. (19).
Figure 2 demonstrates that 0 � 1

2 |ω1|/(�̃ · �̃)11 � 1. The
plots, which show the time evolution of this ratio for a range of
values for τp (with Fext = 0), were obtained from closed form
solutions of Eq. (17). These solutions are constructed by noting
that �̃ = P T · � · P , where the covariances � = 〈ZpZp〉 in
the fixed frame are governed by a set of equations analogous
to Eq. (17), which can be integrated analytically. We refer
to Ref. [13], where analytic solutions are given for � in
terms of 〈U′

s(0)U′
s(t)〉 the autocorrelation of the carrier flow

velocity fluctuations sampled along particle trajectories. The
values of the negative to positive ratio plotted in Fig. 2 were
obtained using an exponential decay exp [−t/TL] for this
autocorrelation. For completeness we also show in Fig. 3 for
a similar range of values of τp, the evolution of the particle
diffusion coefficient D̃1(t) in the moving frame of reference
indicating not only that D̃1 � 0, but also that it reaches an
asymptotic limit that is the same for all τp. This is is also true
of the particle diffusion coefficient ε(∞) in the fixed frame of
reference, Eq. (14). In particular, in the normalized units used
to express the values for D̃1 in Fig. 3, ε(∞) = 1. This result is
universally true for a particle equation of motion involving
the linear drag form in Eq. (1) for statistically stationary
homogeneous isotropic turbulence (see Ref. [20], where it is
TL that depends on τp). An evaluation of the asymptotic form
of 〈ZpZp〉, which is linear in t in this limit, shows that

D̃1(∞) = 1/(4 − 2
√

2),
(20)

D̃2(∞) = 1/(4 + 2
√

2),

and is consistent with the forms for D̃1(t) in Fig. 3 obtained by
solving a coupled set of Eq. (17) for �̃. That the asymptotic
result in Eq. (20) agrees with the results in Fig. 3 provides
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FIG. 3. Evolution of the particle diffusion coefficient D̃1(t) eval-
uated using Eq. (19) in the moving frame of reference for a range of
values of τp (the particle response time normalized by the Lagrangian
integral time scale, TL). Time is real time t normalized on TL.

not only a check for the analytic solutions used in Fig. 3, but
also a proof that the positive contribution to D̃1(t) will always
outweigh the negative contribution in Eq. (19) (i.e., it applies to
all physically acceptable forms of the autocorrelation for U s ,
and not just the decaying exponential form of 〈U′

s(0)U′
s(t)〉 that

we have chosen to obtain our analytical results).
This must be so for two reasons. First, the route involving a

solution of the kinetic equation in the fixed frame of reference
and the linear relationship between the fixed and transformed
variables always ensure a realizable Gaussian distribution for
the transformed variables. Second, via this route the realiz-
ability does not itself explicitly involve or rely in any way on
whether one of the eigenvalues ωi < 0 and any explicit form
for 〈U′

s(0)U′
s(t)〉 we might choose, only that the transformation

matrix P formed from the normalized eigenvectors of the
diffusion matrix exists and is well behaved. However, the
second route via Eq. (17) only ensures a realizable Gaussian
process if the positive contribution to D̃1(t) exceeds the
negative contribution. But since the two methods of calculating
�̃ are in the end mathematically equivalent to one another,
then the positive contribution to D̃1(t) must always exceed the
negative contribution in Eq. (19).

We show the values of the moments 〈Z̃piZ̃pj 〉 in Fig. 4
appropriate for the Gaussian function solution of the kinetic
equation in the moving frame (see Eq. (87) in Ref. [13]). There
is, of course, no hint of a singularity in Fig. 4, all three moments
being smoothly varying, monotonically increasing in time, and
linear in time for t/T 
 1.

The results also illustrate the now obvious result that, at
large times, the two contributions to the diffusional transport
are of the same order in t . The claim in Ref. [9] that Eq. (11)
reduces to the form of a backward heat equation because
â1p̃r → 0 as t → ∞ is invalid. It fails to acknowledge that
ω1∂̃z1 p̃r → 0 at the same rate.

Although we have now demonstrated that the transformed
kinetic equation is not ill posed, we close this section with

FIG. 4. Moments 〈Z̃piZ̃pj 〉 in the moving frame of reference
based on the moments 〈Zp Zp〉 for τp/TL in the fixed frame of
reference as solutions of the fixed frame kinetic Eq. (3) or equivalently
by evaluating 〈Zp Zp〉 from solutions of the particle equation of
motion Eq. (1).

some comments on M&P’s use of the Feynman-Kac formula
(FKF) and the associated arguments in Ref. [9]. In Ref. [9],
M&P suggest that Eq. (11) has the structure of a (generalized)
backward Kolmogorov equation (BKE), that may be derived
from FKF. Noting this, M&P use the FKF to construct the
solution to Eq. (11), using the terminal condition p̃r (̃z1,T ) =
 (̃z1), to obtain (t ∈ [0,T ])

p̃r (̃z1,t) =
〈

exp

[ ∫ T

t

∂̃z1 â1(X (s),s) ds

]
(X (T ))

〉
X (t)=̃z1

,

(21)

where X (s) is a stochastic process defined through

dX (s) ≡ â1(X (s),s)ds +
√

|ω1(s)|dW (s), (22)

and W (s) is a Wiener process. M&P argue that the solution
Eq. (21) implies that only “special” initial (t = 0) conditions
are permitted when solving Eq. (11), since Eq. (21) specifies

p̃r (̃z1,0) =
〈

exp

[ ∫ T

0
∂̃z1 â1(X (s),s) ds

]
(X (T ))

〉
X (0)=̃z1

.

(23)

From this they conclude that since Eq. (21) only applies for
the “special initial condition” given by Eq. (23), then Eq. (11)
“is an unstable and ill-posed equation.” This conclusion is
clearly erroneous. Since the FKF employs a terminal condition
in solving the PDE, then provided the PDE is well posed as
a terminal-value problem, the solution of the PDE at t = 0
must of necessity be unique and “special.” For a well posed,
deterministic PDE, there exists only one solution at t = 0 that
generates the specified terminal condition at t = T ; otherwise,
solutions to the PDE are not unique!

If Eq. (11) were truly a BKE, then it could indeed be
considered ill posed since the BKE is in general ill posed
when solved as a time-forward problem (and Eq. (11) is
to be solved as a time-forward problem with a prescribed

023104-6



Is THE KINETIC EQUATION FOR TURBULENT GAS- … PHYSICAL REVIEW E 97, 023104 (2018)

initial condition). However, the important point is that although
Eq. (11) superficially appears to have the structure of a BKE,
it cannot be considered to be equivalent to a BKE for two
reasons. First, as we have already discussed, the term â1 is
not a general convection term, but has a specific form since it
is a functional of the solution of the Eq. (11). This is in part
a manifestation of the fact that unlike the BKE, Eq. (11) is,
in fact, derived from an underlying process that takes place
in a higher dimensional space (i.e., the phase-space). Second,
Eq. (11) is associated with a non-Markovian process, whereas
the BKE corresponds to a Markov process. The implication
of this is that Eq. (21) cannot, at least formally, cover the
entire solution space of the PDE in Eq. (11), since Eq. (11)
admits solutions that correspond to non-Markov trajectories
in the space z̃1, which Eq. (21) does not account for since it
constructs solutions via a conditional expectation over Markov
trajectories. Therefore, in the general case, the FKF cannot
be used to say anything categorical regarding the solutions to
Eq. (11).

III. KINETIC AND GLM EQUATIONS

It has been claimed in recent studies of PDF methods
[9,19] that the kinetic PDF is the marginal of the GLM PDF.
This claim is based on analysis that purports to show that
the dispersion tensors appearing in a kinetic PDF equation
derived from the GLM PDF equation are “strictly identical” to
the corresponding tensors emerging directly from the kinetic
modeling approach. If this is so the claim of ill-posedness of
the kinetic equation contradicts the well-posedness associated
with the Fokker-Planck equation of the GLM. Of course,
as we have just demonstrated, this claim of ill-posedness is
ill founded. Here we consider the validity of the analysis
presented in Ref. [9] to demonstrate how the kinetic equation
can be derived from the GLM PDF equation.

The analysis is based on the construction of a clo-
sure for 〈usP〉, where us(t ; x) = U s(t) − 〈U s(t)|(Xp(t) =
x)〉 and P(x,v,t) = δ(Xp(t) − x)δ(Up(t) − v)) = δ(Zp(t) −
z). We make the simple observation that the ensemble 〈·〉 to
be considered in this closure involves all realizations of the
system being considered. It is not, nor can it be interpreted as,
an average over only those realizations in which the trajectories
Zp satisfy the end-condition Zp(t) = z. Indeed, this is why
〈usP〉 = 〈us〉z p(z,t), where 〈·〉z denotes an average based on
the subensemble containing only those trajectories satisfying
this end-condition. Although self-evident, this point is missed
in the closure formulated in Ref. [9]. This closure is constructed
by introducing paths ω(s) = ω(s; z,t) such that (ω(t),ω̇(t)) =
z. These paths are used to partition particle trajectories; for
a given path ω(·; z,t), define �ω = {Zp : Xp(s) = ω(s; z,t)}.
In Ref. [9] a closure is then considered for the subensemble
〈usP〉�ω over those trajectories in �ω (see Eq. (39) in Ref. [9]),
and this closure is then integrated over all paths ω(·; z,t).
Thus, only trajectories satisfying the specified end-condition
Zp(t) = z have been taken into account. This is wrong.
Moreover, the form of the closure for 〈usP〉�ω questionable.
The Furutsu-Novikov formula is invoked; correct application
of this should result in a closure framed in terms of the two-time
correlation tensor C(s,s ′; z,t) = 〈uω(s)uω(s ′)〉uω

of the process
uω(s) = us(ω(s; z,t),s). However, in Ref. [9] this is conflated

with another correlation, namely

R(s,x; s ′,x′) = 〈us(s; x,t)us(s
′; x′,t ′)〉. (24)

Again, this is evidently wrong; C depends on a single phase-
space point, z, whereas R is defined in terms of two points x, x′
in configuration space. Not only this, the ensembles over which
these two correlation tensors are constructed are different.
Finally (and notwithstanding these apparent oversights), even
if the resulting forms of the dispersion tensors emerging
from the construction given in Ref. [9] were correct, it is
incorrect to claim that these tensors are identical to those
appearing in the PDF equation of the kinetic model. In the
kinetic PDF equation the dispersion tensors are defined in
terms of the basic two-point, two-time correlation tensor of the
underlying fluctuations in the carrier flow velocity field, that
is R(x,t ; x′,t ′) = 〈u′(x,t)u′(x′,t ′)〉. This makes no reference
to particle trajectories and, therefore, R cannot be deemed
identical to R defined by Eq. (24).

IV. LIMITATIONS OF THE GLM FOR DISPERSED
PARTICLE FLOWS

In the GLM PDF model, the phase-space of the system
is extended to include U s , the fluid velocity along the inertial
particle trajectory. In this case, the PDF considered is p(z,t) =
〈δ(z − Zp(t))〉, but now with Zp(t) = (Xp(t),Up(t),U s(t)),
and Zp(t) ∈ z. For this GLM PDF equation, it is then necessary
to specify the evolution equation for U s(t), and by definition

U̇ s(t) ≡
(

Duf

Dt
− (uf − Up) · ∂x uf

)
x=Xp(t)

, (25)

with Duf /Dt denoting the fluid acceleration field, and
(·)x=Xp(t) denoting that the field variables inside the parenthesis
are evaluated at the particle position.

In the PDF equation for Zp(t) = (Xp(t),Up(t),U s(t)), the
term 〈U̇ s(t)〉z appears and is unclosed. In the GLM approach,
this term is closed by modeling U̇ s(t) using a (generalized)
Langevin equation. Thus, unlike the kinetic equation where
assumptions about the statistics of the fluid velocities are made,
in the GLM approach, assumptions about the dynamical evo-
lution of U s(t) are made. Needless to say, from a fundamental
perspective, the use of a Langevin equation in place of Eq. (25)
is in principle a strong assumption, since the behavior of
Duf /Dt as governed by the Navier-Stokes equation is vastly
more complex than can be described by a simple Langevin
equation.

Nevertheless, that the GLM is a model and not a fun-
damental theory of particle dispersion in turbulent flows is
not an issue of critical concern. Like all models it has its
advantages as well as its limitations. The kinetic, as well as the
GLM PDF equation, invokes approximations in the description
of the turbulent flow transporting the particles that are not
rigorously justifiable. One important and obvious advantage
of the GLM PDF approach is that it includes, in addition to
the particle position and velocity variables, a variable for the
flow velocity sampled along a particle trajectory. So a solution
to the corresponding PDF equation in principle contains more
information about the dispersion process than the solution of
the kinetic equation. Most notably, Simonin and his coworkers
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have used this GLM PDF equation to formulate transport
equations for the density weighted mean flow velocity U s

and the particle-flow covariances and obtained remarkably
good agreement with experimental measurement in numerous
particle laden flows including jets and vertical channel flows
[7,21]. Van Dijk and Swailes [22] solved the GLM PDF
equation numerically in the case of particle transport and
deposition in a turbulent boundary layer showing the existence
of singularities in the near wall particle concentration. Reeks
[12] solved this PDF equation for particle dispersion in a simple
shear and obtained valuable insights into the influence of the
shear on the fluid velocity correlations as well as the dispersion
in the streamwise direction which showed a component of
contragradient diffusion.

Our aim here is to point out the limitations of the GLM for
dispersed gas-particle flows that have been ignored in previous
analyses, especially in Ref. [9], to give a more balanced
view of its strengths and weaknesses when compared to the
kinetic approach. We regard these limitations to be areas for
improvement of the model rather than inherent deficiencies.
The advantage of models of this sort is that features inherent
in more fundamental approaches like the kinetic approach can
be included in an ad hoc manner.

First, we note that Eq. (25) shows that the process U̇ s(t) is
fundamentally connected to the properties of the underlying
flow field and, as such, is influenced by the spatiotemporal
structure of that field. This is particularly important since it
is known, for example, that inertial particles interact with the
topology of fluid velocity fields in particular ways, with a pref-
erence to accumulate in the strain dominated regions of the flow
[8]. Equation (25) captures the way in which the process U̇ s(t)
is affected by the properties of the underlying flow. However,
in the GLM, U̇ s(t) is modeled using a Langevin equation, and,
in consequence, the influence of the spatiotemporal structure
of the underlying field on U̇ s(t) is lost. This means then that
the GLM cannot properly capture the role of flow structure on
inertial particle dynamics in turbulent flows, which is known to
be very important in determining the spatial distributions of the
particles. In contrast, the kinetic model does capture the role
of the spatiotemporal structure of the flow on particle motion.
For example, the dispersion tensors λ,μ, and κ capture such
effects through their dependence on the two-point, two-time
correlation tensor of the fluid velocity field.

A second, related issue, concerns the handling of the term
(uf − Up) · ∂x uf in the GLM. The role of this term in Eq. (25)
is that it captures how the particle inertia causes the timescale
of U s(t) to deviate from the Lagrangian timescale of the
fluid velocity. For example, in the limit τp → 0, one should
recover U̇ s = (Duf /Dt)x=Xp(t), while in the limit τp → ∞
(without body forces), one should recover U̇ s = (∂t uf )x=Xp(t).
In the former case, the timescale of U s is the fluid Lagrangian
timescale, whereas in the latter case the timescale of U s is the
fluid Eulerian timescale. With body forces, e.g., gravity, the
timescale of U s for inertial particles would also be affected by
the crossing trajectories effect [23].

Conventionally, in the GLM the term (uf − Up) · ∂x uf is
either neglected, so that the Langevin model relates to U̇ s =
(Duf /Dt)x=Xp(t), or else its effect is modeled by making
the timescale in the Langevin model a function of τp. Both
approaches are problematic: the first because it neglects the

effect of inertia on the timescale, which can be strong, and the
second because one then requires an additional model for the
timescale of U s as a function of τp. In contrast, in the kinetic
model, the role of inertia on U s is formally accounted for and
is an intrinsic part of the model. In particular, it is captured
through the dependence ofλ,μ, andκ on the correlation tensors
of the fluid velocity field evaluated along the inertial particle
trajectories.

These issues are related to the fact that the GLM for U s is
constructed in an ad hoc manner, in contrast to the case for
single-phase turbulence where the GLM for the fluid particle
velocity Uf is constructed with reference to the Navier-Stokes
equation [3]. In Ref. [24] it was shown how exact (unclosed)
transport equations for the statistical moments of U s may be
derived, and it was shown that the GLM model for U s does not
reproduce the closed terms in these transport equations. This
shows that even at the one-point level, the GLM for U s does
not have the status of the corresponding GLM for Uf used
in single-phase turbulence. However, the transport equations
derived in Ref. [24] could be used in future work to improve
the GLM for U s , placing it on a more firm foundation.

Another implication of the GLM’s use of a Langevin
equation to describe U s(t) is that it cannot accurately describe
the Lagrangian properties of the system in the short-time
“ballistic” limit. For example, the second-order Lagrangian
structure function 〈‖U s(t + s) − U s(t)‖2〉 should grow as s2

in the limit s → 0, whereas a Langevin equation dictates that
it grows as s in the limit s → 0. Interestingly, this very fact
has an important bearing on the claim in Ref. [9] of the exact
correspondence between the PDF of the kinetic equation and
the marginal of the GLM PDF. Even aside from other issues,
this claim cannot be correct since the kinetic model gives the
correct short-time behavior for 〈‖U s(t + s) − U s(t)‖2〉 since
it allows for the general case where the fluid velocity field is
differentiable in time.

In addition to these points, recent criticism of the kinetic
equation has failed to appreciate or show any awareness of
important consistency and invariance principles that were key
guidelines in the construction of the kinetic equation, and
highly relevant to the limitations and generality of GLM
PDF equations. The first of these is that the kinetic equation
should generate the correct equation of state, i.e., the relation
between the equilibrium pressure associated with the corre-
lated turbulent motion of the particles and their mass density
in homogeneous isotropic statistically stationary turbulence.
This can be obtained independently of the kinetic equation by
evaluating the Virial for the particle equation of motion (see
Sec. II in Ref. [13]). This relates the kinematic pressure P
to the particle diffusion coefficient ε via the particle response
time τp, namely P = ετ−1

p .
The second important consideration is that the kinetic

equation should satisfy random Galilean transformation (RGT)
invariance [15,25,26]. In the development of legitimate closure
schemes, invariance to RGT is crucial to account for the
transport of small scales of turbulence by the large scales and
the E(k) ∼ k−5/3 spectrum. Specifically, RGT means applying
to each realization of the carrier flow a translational velocity,
constant in space and time but varying randomly in value from
one realization to the next. In Kraichnan’s traditional usage
of RGT the distribution of velocities is taken to be Gaussian
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for convenience. Clearly, the internal dynamics should be
unaffected by this transformation, and this invariance should
be reflected in the equations that describe the average behavior
of the resulting system. In the case of the kinetic equation
the terms that describe the dispersion due to the aerodynamic
driving force and that due to the translational velocity should
be separate. When the timescale of U s is finite (nonzero),
RGT cannot be satisfied by a PDF equation with the traditional
Fokker-Planck structure. Indeed, RGT invariance implies that
the dispersion tensor B in Eq. (3) must have the form given
in Eq. (5) [13], which is not compatible with a Fokker-Planck
structure for the PDF equation (in which λ ≡ 0). See Ref. [13]
for the form of the dispersion tensor B satisfying RGT
invariance for a non-Gaussian process as a cumulant expansion
in particle fluid velocity correlations.

A failure to preserve RGT invariance means a failure to
reproduce the correct equation of state for the dispersed phase.
In the case of the GLM equations it is a failure associated
with the short term dispersion prediction of O(t) as opposed
to O(t2). Such a result cannot arbitrarily be changed since
the exponentially decaying autocorrelation is a property of the
white noise based GLM equation for all time.

This has some bearing on the equivalence of the two
approaches, since the kinetic approach does not have this
limitation and correctly predicts the short term diffusion. So,
whereas in the GLM the form of the particle-flow correlations
are calculated and an intrinsic part of the model, in the kinetic
equation these are prescribed or calculated using independent
knowledge of the statistics of the carrier flow field and a
relationship between Eulerian and Lagrangian correlations. As
pointed out in Ref. [12] in the case of dispersion in a simple
shear flow, if the statistics of the fluid velocity along a particle
trajectory are assumed derivable from a Gaussian process and
the fluid velocity correlations as a function of time are taken
to be the same in either case, then the two approaches are
identical, but only then. While in the kinetic equation one is
free in principle to choose whatever is physically acceptable
for the fluid particle correlation, the problem remains one of
calculating carrier flow velocity correlations along particle
trajectories, given the underlying Eulerian statistics of the
carrier flow velocity field.

The kinetic equation for nonlinear drag

In closing this section, we wish to address the numerous
claims made that the kinetic approach is limited in its applica-
tion to situations where the drag force is linear in the relative
velocity between particle and fluid. This is not correct. We
refer in particular to Sec. III in Ref. [15] on the particle motion
that specifically deals with the treatment of nonlinear drag and
how it is used to evaluate the convective and dispersive terms
in the kinetic equation. In particular, the mean and fluctuating
aerodynamic driving forces are expressed in terms of the
particle mean density weighted particle velocity v(x,t) and
incorporated into the particle momentum equations by suitably
integrating the kinetic equation over all particle velocities. We
refer also to Ref. [27], where using the kinetic equation for
nonlinear drag, an evaluation is made of the long-term diffusion
coefficient for high inertial particles in homogeneous isotropic
statistically stationary turbulence.

V. SUMMARY AND CONCLUSIONS

This paper is about well-posedness and realizability of the
kinetic equation and its relationship to the GLM equation
for modeling the transport of small particles in turbulent gas
flows. Previous analyses [9,19] claim that the kinetic equation
is ill posed and therefore invalid as a PDF description of
dispersed two-phase flows. Specifically, it is asserted that the
kinetic equation, as given in Eq. (3), has the properties of a
backward heat equation and as a consequence its solutions
will in the course of time exhibit finite-time singularities. The
justification for this claim is based on an analysis centered
around the observation that the phase space diffusion tensor B
in Eq. (3) is not positive-definite but possesses both negative
and positive eigenvalues. We have examined the validity of
assumptions that lead to this conclusion; in particular, the form
of the kinetic equation in a moving frame where the PDF
p̃(̃z1 ,̃z2,t) gives the distribution of transformed variables z̃1 ,̃z2

relative to the principal axes of B at time t [see Eq. (9)]. Based
on the negative diffusion coefficient in the transformed PDF
equation, Eq. (11), for the marginal distribution p̃r (̃z1,t), these
previous studies have sought to show that this equation [and
so also Eq. (3)] is ill posed. However, this analysis assumed
that the term â1 in Eq. (11) is wholly convective. In fact, it is a
density-weighted variable and, because z̃1 and z̃2 are coupled
in phase space, this means that â1 has a gradient diffusive
component with a positive diffusion coefficient which offsets
the component in Eq. (11) with a negative diffusion coefficient.
More particularly, we showed that the solution to the equation
considered is Gaussian, with covariances that are the solutions
of a set of coupled equations, Eqs. (16) and (17). Based on these
solutions, the resultant convection-gradient diffusion equation
for p̃r (̃z1,t) is given by Eq. (18) with a diffusion coefficient
D̃1(t) given by the sum of the positive and negative contri-
butions defined in Eq. (19). Using an exponential decaying
autocorrelation of the fluid velocity measured along a particle
trajectory, we obtained analytic solutions for the positive and
negative components of D̃1, which show that the positive
component always outweighs the negative component so that
D̃1 is always positive. The corresponding values of D̃1 are
shown in Fig. 3, which indicates that D̃1(t) approaches an
asymptotic value that is independent of the particle response
time τp, consistent with the derived asymptotic expressions
given in Eq. (20). Significantly, we were able to show that this
was a general result for all realizable forms for the flow velocity
autocorrelation along particle trajectories. As a consequence
the kinetic equation is not ill posed.

Finally, in the course of our examination of the analysis of
ill-posedness, we pointed out a number of issues with the use
of the Feynman-Kac formula (FKF). The application of the
FKF to Eq. (11) is problematic because Eq. (11) is not really a
backward Kolmogorov equation. Furthermore, the claim that
the FKF solution to Eq. (11) implies that the kinetic equation
is only solvable for special initial conditions is erroneous. The
FKF employs a terminal condition, and therefore there can
be only one possible “initial condition,” or else solutions to
Eq. (11) would not be unique.

Another important issue was the claim made in Ref. [9]
that the kinetic equation can be derived from the GLM
PDF equation, and that in fact the GLM is a more general
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approach than the kinetic approach. We showed that this is not
the case, that assumptions introduced in averaging processes
lead to inappropriate closure approximations that negate this
claim.

In the final part of our analysis we sought to give a
balanced appraisal of the benefits of both PDF approaches,
and in particular to point out limitations of the GLM for
gas-particle flows that have been ignored in most studies. We
regarded these limitations to be areas for improvement of the
GLM rather than inherent deficiencies. As we pointed out,
the value of models of this sort is that features inherent in

more fundamental approaches can be included in an ad hoc
manner. We noted that terms fundamental to the modeling
(the fluctuating convective strain rate contribution) contain
valuable information on the relationships between Lagrangian
and Eulerian timescales and the dependence on particle inertia.
We suggested how additional features like particle clustering
and drift in inhomogeneous turbulent flows, particularly in
turbulent boundary layers, might be included in the model
to make it more complete. This is one of the ways that the
kinetic approach can support the PDF dynamic model by giving
specific formulae for these additional features.
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