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Detecting singular weak-dissipation limit for flutter onset in reversible systems
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A “flutter machine” is introduced for the investigation of a singular interface between the classical and reversible
Hopf bifurcations that is theoretically predicted to be generic in nonconservative reversible systems with vanishing
dissipation. In particular, such a singular interface exists for the Pflüger viscoelastic column moving in a resistive
medium, which is proven by means of the perturbation theory of multiple eigenvalues with the Jordan block.
The laboratory setup, consisting of a cantilevered viscoelastic rod loaded by a positional force with nonzero curl
produced by dry friction, demonstrates high sensitivity of the classical Hopf bifurcation onset to the ratio between
the weak air drag and Kelvin-Voigt damping in the Pflüger column. Thus, the Whitney umbrella singularity is
experimentally confirmed, responsible for discontinuities accompanying dissipation-induced instabilities in a
broad range of physical contexts.
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I. INTRODUCTION

In a dissipative system oscillatory flutter instability, an
example of a classical Hopf bifurcation, shifts a complex-
conjugate pair of eigenvalues to the right in the complex plane.
This instability mechanism is modified for a nondissipative
system possessing a reversible symmetry, defined with refer-
ence to the differential equation

dx
dt

= g(x), x ∈ Rn,

which is said to be R-reversible (R−1 = R) if it is invariant with
respect to the transformation (x,t) �→ (Rx, − t), implying that
the right-hand side must satisfy Rg(x) = −g(Rx).

If x = x0 is a reversible equilibrium such that Rx0 = x0, and
A = ∇g is the linearization matrix about x0, then A = −RAR,
and the characteristic polynomial,

det(A − λI) = det(−RAR − RλR) = (−1)n det(A + λI),

implies that ±λ, ± λ are eigenvalues of A [1–4]. Due to the
spectrum’s symmetry with respect to both the real and imagi-
nary axes of the complex plane, the reversible-Hopf bifurcation
requires the generation of a non-semi-simple double pair of
imaginary eigenvalues and its subsequent separation into a
complex quadruplet [1–4].

All equations of second order,

d2x
dt2

= f(x),
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are reversible [1,2], including the case when the positional
force f(x) has a nontrivial curl, ∇ × f(x) �= 0, which makes
the reversible system nonconservative.

Such nonconservative curl forces [5] appear in modern
optomechanical applications, including optical tweezers [6–
8]. In mechanics, they are known as circulatory forces for
producing nonzero work along a closed circuit. Circulatory
forces are common in the models of friction-induced vibrations
[9], rotordynamics [4], biomechanics [10], and fluid-structure
interactions [11,12], to name a few. A circulatory force acting
on an elastic structure and remaining directed along the tangent
line to the structure at the point of its application during
deformation is known as follower [13–15].

Since the dynamics of an elastic structure under a follower
load is described by reversible equations [1], flutter instability
may occur via the reversible-Hopf bifurcation mechanism
[1,4]. In these conditions, Ziegler [13] discovered that, when
viscosity is present, the location of the curve for the onset
of the classical Hopf bifurcation is displaced by an order-one
distance in the parameter space, with respect to the curve for the
onset of the reversible-Hopf bifurcation in the elastic structure.
This occurs even if the viscous damping in the structure is in-
finitesimally small [13]. Other velocity-dependent forces, such
as air drag (or even gyroscopic forces), can also destabilize
an elastic structure under a follower load [1,16–19]. However,
acting together, the velocity-dependent forces, e.g., the air drag
and the material (Kelvin-Voigt) viscous damping, can inhibit
the destabilizing effect of each other at a particular ratio of their
magnitudes due to the singular interface between the classical
Hopf and reversible-Hopf bifurcations [13,17,19,20].

For instance, the system

ẍ(t) + (δD + �G)ẋ(t) + (K + νN)x(t) = 0, x ∈ R2, (1)
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where δ,�, ν are scalar coefficients and matrices D > 0, K > 0
are real and symmetric, while matrices G and N are skew-
symmetric as follows:

G = N =
(

0 −1
1 0

)
,

is nonconservative and reversible for δ = � = 0.
The reversible-Hopf bifurcation in the system Eq. (1) with

δ = � = 0 occurs at

νf =
√

ω4
f − det K, ω2

f = trK
2

,

where “tr” denotes the trace operator, which yields flutter
instability when ν > νf . However, when δ > 0, � > 0 the
classical-Hopf bifurcation occurs at a different value of ν [18]:

νH (�,δ) ≈ νf − 2νf

(trD)2

[
�

δ
− tr

(
KD − ω2

f D
)

2νf

]2

.

The expression for νH (�,δ) defines a surface in the (δ,�,ν)
space that has a Whitney’s umbrella singular point at (0,0,νf )
[21,22]. Near that singular point, the neutral stability surface
is a ruled surface, with a self-intersection degenerating at
the singularity, so that a unique value of the ratio �/δ is
produced, for which the onsets of the classical and reversible
Hopf bifurcations tend to coincide [19–21].

For a dissipative nearly reversible system, the singular
dependence of the classical Hopf bifurcation onset on the pa-
rameters of velocity-dependent forces has a general character
[20], which follows from the codimensions 3 (for dissipative
systems) and 1 (for reversible vector fields) of non-semi-simple
double imaginary eigenvalues [18–20,23,24].

Since the singularity is related to a double imaginary
eigenvalue arising from a Jordan block [23], it can be found in
other dissipative systems that are close to undamped systems
with the “reversible” symmetry of spectrum [19].

Indeed, the system Eq. (1) with δ = 0, � = 0, and ν =
0 is a conservative Hamiltonian system, which is statically
unstable for K < 0. Adding gyroscopic forces with � > 0
keeps this system Hamiltonian and yields its stabilization if
� > �f = √−κ1 + √−κ2, where κ1,2 < 0 are eigenvalues
of K. Owing to the “reversible” symmetry of its spectrum
[1,25,26], the Hamiltonian system displays flutter instability
via the collision of imaginary eigenvalues at � = �f and their
subsequent splitting into a complex quadruplet as soon as �

decreases below �f . This is the so-called linear Hamilton-
Hopf bifurcation [18,22,27].

If δ > 0, ν > 0 the gyroscopic stability is destroyed at the
threshold of the classical-Hopf bifurcation [18,27],

�H ≈ �f + 2�f

(ωf trD)2

{
ν

δ
− tr

[
KD + (�2

f − ω2
f

)
D
]

2�f

}2

,

where ω2
f = √

κ1κ2 and D > 0. The dependency of the new
gyroscopic stabilization threshold just on the ratio ν/δ implies
that the limit of �H as both ν and δ → 0 is higher than
�f for all ratios except a unique one. Similar to the case of
nonconservative reversible systems, this happens because the
classical Hopf and the Hamilton-Hopf bifurcations meet in
the Whitney umbrella singularity that exists on the stability

FIG. 1. The Pflüger column [53] clamped at x = 0 with a point
mass M at x = l. The column is loaded at x = l with a constant
compressing circulatory force P inclined to the tangent to the elastic
line of the column, so that v′(l)χ̄ = const. (equal to 0.092 in all the
experiments).

boundary of a nearly Hamiltonian dissipative system and
corresponds to the onset of the Hamilton-Hopf bifurcation
[18,19,22,24,26–28].

The singular weak-dissipation limit for the flutter onset
in nearly Hamiltonian systems in the presence of two dif-
ferent damping mechanisms has been discovered first in the
problem of secular instability of equilibria of rotating and
self-gravitating masses of fluid, when dissipation due to both
fluid viscosity [29–31] and emission of gravitational waves
[32,33] is taken into account [34,35]. Later on this phenomenon
manifested itself as the “Holopäinen instability mechanism”
for a baroclinic flow [36,37] and as an enhancement of
modulation instability with dissipation [38]. Analysis of this
effect based on the method of normal forms and perturbation
of multiple eigenvalues has been developed, among others by
Refs. [1,4,18–20,23–27,39–45].

Although the destabilizing effect of damping for equilibria
of Hamiltonian and reversible systems has been discussed for
decades, no experimental evidence is known for the singular
limit of the classical Hopf bifurcation in a nearly Hamiltonian,
or a nearly reversible system, when the dissipation tends to
zero. The main difficulty for such experiments is the accurate
identification and control of at least two different damping
mechanisms. For reversible elastic structures an additional
challenge lies in the realization of circulatory follower loads,
acting for a sufficiently long time. Previous attempts are
reported to create a follower load through the thrust produced
either by water flowing through a nozzle [46], or by a solid
rocket motor mounted at the end of an elastic rod in a cantilever
configuration [47–50]. In the former realization hydrodynam-
ical effects enter into play and in the latter the duration of
the experiments is limited to a few seconds. In contrast, the
frictional follower force acting on a wheel mounted at the free
end of the double-link Ziegler pendulum allowed Bigoni and
Noselli to significantly relax the limitation on time [51].

In the present article, an experimental realization is reported
for the Pflüger column [52–55], a viscoelastic cantilevered
rod carrying a point mass at the free end and loaded with
a follower force (Fig. 1) obtained via friction, similarly to
[51]. Two dissipation mechanisms—the air resistance and the
internal Kelvin-Voigt damping—are identified and controlled
by changing the geometrical characteristics of the sample
rods. The measured critical flutter loads demonstrate a high
sensitivity to the ratio between the two damping coefficients,
being almost insensitive to each of the damping coefficients
that both are very close to zero, in agreement with both
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(a) (b)

FIG. 2. (a) Stability boundary for (green dash-dot curve) internally and (blue dashed curve) externally damped discretized model of the
Pflüger column with N = 2 modes and χ = 1, when one of the damping coefficients is zero and another one tends to zero. The red solid curve
shows the stability boundary of the nondamped discretized model of the Pflüger column according to Eq. (13). (b) The eigenvalue movement
when p increases from 0 (circle) to 70 (diamond) for N = 2, χ = 1, α = 0.1, and (red solid curves) γ = 0, η = 0, (blue dashed curves) γ = 4.5,
η = 0, and (green dash-dotted curves) γ = 0, η = 0.015.

numerical modeling of Ref. [17] and perturbation theory
developed for the Pflüger column in the present work.

II. PFLÜGER’S COLUMN AND ITS GALERKIN
DISCRETIZATION

Consider a rod of length l, mass density per unit length m

and end mass M , its deflection v, function of the x coordinate,
obeys the Bernoulli law that the rotation of the cross-section φ

is given by φ(x) = −v′(x), where a prime denotes derivative
with respect tox. A moment-curvature viscoelastic constitutive
relation of the Kelvin-Voigt type is assumed in the form

M(x,t) = −EJv′′(x,t) − E∗J v̇′′(x,t),

where a superimposed dot denotes the time derivative, E and
E∗ are, respectively, the elastic and the viscous moduli of the
rod, which has a cross section with moment of inertia J . The
rod is clamped at one end and is loaded through the force P

that is inclined with respect to the tangent to the rod at its free
end such that v′(l)χ̄ = const., Fig. 1.

Assuming that a distributed external damping K caused
by the air drag is acting on the rod, and introducing the
dimensionless quantities

ξ = x

l
,τ = t

l2

√
EJ

m
,p = P l2

EJ
,α = tan−1

(
M

ml

)
,

η = E∗l2

√
mEJ

J

l4
,γ = Kl2

√
mEJ

,β = γ

η
,χ = 1 − χ̄ , (2)

the linearized partial differential equation of motion governing
the dynamics of the rod can be written as

v′′′′(ξ,τ ) + ηv̇′′′′(ξ,τ ) + pv′′(ξ,τ ) + γ v̇(ξ,τ ) + v̈(ξ,τ ) = 0,

(3)

where now a prime and a dot denote partial differentiation
with respect to ξ and τ , respectively. Separating time in
Eq. (3) with v(ξ,τ ) = ṽ(ξ ) exp(ωτ ) yields a non-self-adjoint

boundary eigenvalue problem [17],

(1 + ηω)ṽ′′′′ + pṽ′′ + (γω + ω2)ṽ = 0,

(1 + ηω)ṽ′′′(1) − (χ − 1)ṽ′(1)p − ω2 tan(α)ṽ(1) = 0,

ṽ(0) = ṽ′(0) = 0, ṽ′′(1) = 0. (4)

Assuming that ṽ(ξ ) has the form

ṽ(ξ ) = A1 sinh(λ1ξ ) + A2 cosh(λ1ξ )

+A3 sin(λ2ξ ) + A4 cos(λ2ξ ), (5)

with Ai (i = 1, . . . ,4) arbitrary constants and

λ2
1,2 =

√
p2 − 4(1 + ηω)(γω + ω2) ∓ p

2(1 + ηω)
(6)

and substituting Eq. (5) into Eq. (4) yields an algebraic system
of equations, which admits nontrivial solutions if [17]

0 = λ1λ2(1 + ηω)
(
λ4

1 + λ4
2

)+ λ1λ2p(χ − 1)
(
λ2

2 − λ2
1

)
+ λ1λ2

[
2(1+ηω)λ2

1λ
2
2−p(χ−1)

(
λ2

2−λ2
1

)]
cosh λ1 cos λ2

−ω2 tan α
(
λ2

1+λ2
2

)
[λ2 sinh λ1 cos λ2−λ1 cosh λ1 sin λ2]

+ λ2
1λ

2
2

[
2p(χ − 1)+(1 + ηω)

(
λ2

2−λ2
1

)]
sinh λ1 sin λ2.

(7)

Results from experiments are compared with the eigenval-
ues, eigenfunctions, and critical parameters of the boundary
eigenvalue problem Eq. (4), which are directly found by
numerical solution of the transcendental characteristic Eq. (7).

For theoretical purposes, the N -dimensional Galerkin dis-
cretization of the continuous problem Eq. (4) is also consid-
ered:

(ω2[I+4M1 tan α]+ω[γ I+ηDi]+[K1−pK2+χpN])a = 0,

(8)

where a is an N -vector and I is the N × N identity matrix. The
entries of the N × N mass matrix M1 are M1,ij = (−1)i+j , the
matrix of internal damping Di is Di = diag(ω2

1,ω
2
2, . . . ,ω

2
N ),

and the stiffness matrix K1 is K1 = diag(ω2
1,ω

2
2, . . . ,ω

2
N ). The
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values of the frequencies ω1, . . . ,ωN as well as the entries
of the symmetric stiffness matrix K2 and the nonsymmetric
matrix of circulatory forces N are given in the Appendix A.

III. THEORY OF DISSIPATION-INDUCED
FLUTTER INSTABILITY

For a Galerkin-discretized model of the Pflüger column
Eq. (8) a perturbation theory is developed of the singular
weak-dissipation limit for the onset of flutter.

A. The N = 2 modes approximation and its stability analysis

The eigenvalue problem Eq. (8) has the form

[M(α)ω2 + D(γ,η)ω + A(p,χ )]a = 0, (9)

where M = MT , D = DT , D(0,0) = 0, and A �= AT , with the
superscript T denoting transposition.

Recall that the adjugate X∗ of a N × N matrix X is defined
as X∗ = X−1 det X and, in particular,

∂ det X
∂p

= tr

(
X∗ ∂X

∂p

)
. (10)

Since tr(X∗Y) = tr(Y∗X) for N = 2, the characteristic poly-
nomial of Eq. (9) in the case of N = 2 can be written by means
of the Leverrier algorithm in a compact form:

q(ω,α,χ,p,γ,η) = det Mω4 + tr(D∗M)ω3 + [tr(A∗M)

+ det D]ω2 + tr(A∗D)ω + det A. (11)

Assuming that for η = 0, γ = 0, α = α0, χ = χ0, and p = p0

the undamped system with N = 2 degrees of freedom be on the
flutter boundary, on this boundary its eigenvalues are imaginary
and form a double complex-conjugate pair ω = ±iσ0 of a
Jordan block. In these conditions, the real critical frequency σ0

at the onset of flutter follows from the characteristic polynomial
in the closed form

σ 2
0 = tr(A∗

0M0)

2 det M0
=
√

det A0

det M0
,

M0 = M(α0), A0 = A(p0,χ0), (12)

and the flutter boundary is described by the equation

[tr(A∗
0M0)]2 = 4 det A0 det M0. (13)

Since M0 = I + 4M1 tan α0 and A0 = K1 − p0K2 + χ0p0N
is a linear function of p0, Eq. (13) is quadratic with respect
to p0, which can thus be easily solved. The red solid curve
in Fig. 2(a) shows the flutter boundary, Eq. (13), of the
undamped discretized model, Eq. (8), of the Pflüger column
with N = 2 modes for χ0 = 1 in the (α0,p0) plane. The
red solid curves in Fig. 2(b) demonstrate the movement of
the eigenvalues of the undamped system at given χ = χ0 =
1 and α = α0 = 0.1 when the load parameter 0 � p � 70.
The equilibrium is stable for 0 � p < p0 where the critical
flutter load is p0 ≈ 17.83368, corresponding to a double
pair of imaginary eigenvalues with the imaginary part σ0 ≈
9.366049 [see Eq. (12)]. The value p = p0 corresponds to
the linear reversible-Hopf bifurcation, yielding the splitting
of the double eigenvalues into a complex quadruplet causing
flutter instability.

B. Reversible-Hopf bifurcation in the undamped model

A perturbation formula is now derived for the splitting of a
double eigenvalue ω = iσ0, when γ = γ0 and α = α0 are fixed
and p is left to vary. Introducing a small parameter 0 � ε � 1
and assuming in the polynomial q0(ω,p) = q(ω,α0,χ0,p,γ =
0,η = 0) that p(ε) = p0 + ε

dp

dε
+ . . . (where the derivative is

taken at ε = 0) yields

q0[ω,p(ε)] =
2N∑
r=0

[ω(ε) − iσ0]r

r!

[
∂rq0

∂ωr
+ ε

∂rq1

∂ωr
+ o(ε)

]
,

∂rq1

∂ωr
= ∂r+1q0

∂ωr∂p

dp

dε
, (14)

where the partial derivatives are evaluated at p = p0 and ω =
iσ0.

Assuming for the perturbed double non-semi-simple eigen-
value the Newton-Puiseux series

ω(ε) = iσ0 + ε1/2σ1 + εσ2 + . . . , (15)

substituting Eqs. (14) and (15) into the equation q0(ω,p) and
collecting the terms of the same powers of ε leads to

q0(iσ0,p0) = 0, σ1
∂q0

∂ω

∣∣∣∣
ω=iσ0,p=p0

= 0, (16)

and (
q1 + 1

2
σ 2

1
∂2q0

∂ω2
+ σ2

∂q0

∂ω

)∣∣∣∣
ω=iσ0,p=p0

= 0. (17)

Conditions Eqs. (16) are satisfied for the double eigenvalue
ω = iσ0, so that an account of this into Eq. (17) yields

σ 2
1 = −q1

(
1

2

∂2q0

∂ω2

)−1

= −
(

1

2

∂2q0

∂ω2

)−1
∂q0

∂p

dp

dε
.

Hence, the splitting of the double non-semi-simple eigenvalue
due to the variation of p is governed by the formula

ω(p) = iσ0 ± i

√(
1

2

∂2q0

∂ω2

)−1
∂q0

∂p
(p − p0)

+ o(|p − p0|1/2).

With the help of Eq. (10), Eq. (12), and the relations

q0(ω,p) = ω4 det M + ω2tr(M∗A) + det A,

∂q0

∂p

∣∣∣∣
ω=iσ0,p=p0

= −tr
[(

A∗
0 − σ 2

0 M∗
0

)
(K2 − χ0N)

]
,

1

2

∂2q0

∂ω2

∣∣∣∣
ω=iσ0,p=p0

= −2tr(A∗
0M0), (18)

the following result is finally obtained:

ω(p) = iσ0 ± i

√
tr
[(

A∗
0 − σ 2

0 M∗
0

)
(K2 − χ0N)

]
2tr(A∗

0M0)
(p − p0)

+ o(|p − p0|1/2). (19)

For instance, for α0 = 0.1, χ0 = 1, p0 ≈ 17.83368, and σ0 ≈
9.366049, the expression Eq. (19) becomes

ω(p) ≈ iσ0 ± i
√

−3.962532(p − p0), (20)
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(a) (b) (c)

FIG. 3. (a) For N = 2, χ0 = 1, and α0 = 0.1 the linear approximation Eq. (23) to the classical-Hopf bifurcation onset in the (η,γ ) plane
for (black dotted line) p = p0 − 0.1, (blue dashed line) p = p0 − 0.04, (green dot-dashed line) p = p0 − 0.02, and (red solid line) p = p0.
The stability region for every p is inside the narrow angle-shaped regions in the first quadrant; flutter instability in the complement. (b) The
critical flutter load in the limit of vanishing dissipation as a function of the damping ratio β = γ /η according to the (blue dashed curve) exact
expression Eq. (23) and (red solid curve) its quadratic approximation Eq. (24). The maximum of the limit coincides with the critical flutter load
p0 ≈ 17.83368 of the undamped system at β = β0 ≈ 1478.074 that is determined from Eq. (25). (c) The stabilizing ratio β0 as a function of
α0 according to Eq. (25) with vertical asymptotes at α0 = 0 (Beck’s column) and α0 ≈ 0.342716.

confirming the splitting of the double iσ0 into two complex
eigenvalues with opposite real parts (flutter) at p > p0.

C. Dissipative perturbation of simple imaginary eigenvalues

At p < p0 the eigenvalues of the undamped system ω =
ω(p) remain simple and imaginary. To investigate how they are
affected by dissipation, it is assumed that η(ε) = dη

dε
ε + o(ε),

and γ (ε) = dγ

dε
ε + o(ε) in the polynomial Eq. (11), where α =

α0, γ = γ0, and 0 � p < p0 are also fixed. Then, ω = ω(p) +
dω
dε

ε + o(ε), with

dω

dε
= −

(
∂q

∂ω

)−1(
∂q

∂η

dη

dε
+ ∂q

∂γ

dγ

dε

)
.

The following approximation is therefore obtained

ω = ω(p) −
(

∂q

∂ω

)−1(
∂q

∂η
η + ∂q

∂γ
γ

)
+ o(γ,η),

where the partial derivatives are evaluated at p < p0 and ω =
ω(p). An account of the derivatives

∂q

∂ω
= 2σ−2

0 ωtr
[
M∗

0

(
ω2A0 + σ 2

0 A
)]

,

∂q

∂η
= ωtr[D∗

i (A + ω2M0)],
∂q

∂γ
= ωtr(A + ω2M0), (21)

leads to

ω = ω(p) − ηtr[D∗
i (A + ω2M0)] + γ tr(A + ω2M0)

2tr
[
M∗

0

(
ω2A0 + σ 2

0 A
)] σ 2

0

+ o(γ,η). (22)

D. Linear approximation to the stability boundary and the
exact zero-dissipation limit of the critical flutter load

The correction, linear in η and γ , to the simple imaginary
eigenvalue in Eq. (22) due to damping is real and therefore it
determines whether the dissipative perturbation is stabilizing
or destabilizing. Equating this linear term to zero and taking

into account that A = K1 − p(K2 − χ0N) and Di = K1 =
diag(ω2

1,ω
2
2) yields the following approximation to the flutter

boundary, which represents the onset of the classical Hopf
bifurcation:

η
(
2ω2

1ω
2
2 + tr{D∗

i [M0ω
2(p) − p(K2 − χ0N)]})

= −γ
{
ω2

1 + ω2
2 + tr[M0ω

2(p) − p(K2 − χ0N)]
}
, (23)

where M0 = I + 4M1 tan α0 and ω(p) is a root of the poly-
nomial q0(ω,p) in Eq. (18) at p < p0. In the (η,γ ) plane Eq.
(23) defines a straight line, Fig. 3(a). In fact, at every p < p0

there exist two lines [see Eq. (23)] corresponding to two
different eigenvalues ω(p) that participate in the reversible-
Hopf bifurcation at p = p0. However, as p tends to p0,
the angle between the two lines decreases and completely
vanishes in the limit p → p0, Fig. 3(a). This suggests that the
approximation Eq. (23) defines a ruled surface in the (η,γ,p)
space. As a consequence, every fixed damping ratio β = γ /η

corresponds to a ruler at some p < p0. Therefore, the condition
for which the damping tends to zero at fixed damping ratio will
occur along this ruler for the corresponding constant value
of p < p0 and will result in the limiting value of the critical
flutter load that is lower than the critical load at the onset of
the reversible-Hopf bifurcation, p0, see Fig. 3(b). Note that
Eq. (23) gives the exact dependency of the limit of the critical
flutter load at vanishing dissipation as a function of the damping
ratio, β, if the exact solution ω(p) of the polynomial q0(ω,p)
is used, see Refs. [18,19,27,39,42].

E. Quadratic approximation in β to the exact zero-dissipation
limit of the critical flutter load

In the vicinity of p = p0, the two roots participating in
the reversible-Hopf bifurcation are approximated by Eq. (19).
Using this expression in Eq. (23), the limit of zero dissipation
can be found for the critical flutter load as a function of the
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(a) (b)

(d)(c)

FIG. 4. For N = 2, χ0 = 1, stability boundary of the discretized model for the Pflüger column in the plane of internal, η, and external, γ ,
damping for (a) α0 = 0 with β0 → +∞, (b) α0 = 0.1 with β0 ≈ 1478.074, (c) α0 ≈ 0.3427 with β0 → +∞, (d) α0 = 0.5 with β0 ≈ −1856.099.
The red solid lines correspond to the undamped critical load p = p0(α0), which depends on α0, the blue dashed lines to p = p0(α0) + 0.02,
and the green dash-dotted lines to p = p0(α0) − 0.02.

damping ratio, p(β), in the form of a series

p(β) = p0 − 2tr(A∗
0M0)

tr
[(

A∗
0 − σ 2

0 M∗
0

)
(K2 − χ0N)

]
×
{

tr
(
A0 − σ 2

0 M0
)

2σ0tr[M∗
0(β0I + Di)]

}2

× (β − β0)2 + o[(β − β0)2], (24)

where

β0 = − tr
[
D∗

i

(
A0 − σ 2

0 M0
)]

tr
(
A0 − σ 2

0 M0
) . (25)

From the quadratic approximation Eq. (24) it is evident that
p(β) � p0 for all β except for the specific case of β = β0, at
which it exactly coincides with the critical flutter load of the
undamped system: p(β0) = p0. For instance, for α0 = 0.1 and
χ0 = 1, the approximation Eq. (24) is

p(β) ≈ 17.83368 − 2.807584 × 10−8(β − 1478.074)2,

(26)

as shown in Fig. 3(b) with a red solid curve.

F. The Whitney umbrella singularity

Truncating the series Eq. (24) and substituting β = γ /η

into the result, yields an expression for the ruled surface in the
(η,γ,p) space:

p(γ,η) = p0 − 2tr(A∗
0M0)

tr
[(

A∗
0 − σ 2

0 M∗
0

)
(K2 − χ0N)

]
×
{

tr
(
A0 − σ 2

0 M0
)

2σ0tr[M∗
0(β0I + Di)]

}2
(γ − β0η)2

η2
. (27)

This expression is in the form Z = X2/Y 2, which is the
well-known normal form for the Whitney umbrella surface
[12–15]. The surface Eq. (27) has a singular point at p = p0,
corresponding to the onset of the reversible-Hopf bifurcation,
and a self-intersection at p < p0.

In Fig. 4 the cross-sections are plotted in the (η,γ ) plane for
different values of p of the exact stability boundary calculated
with the use of the Routh-Hurwitz criterion applied directly to
the polynomial Eq. (11). Physically relevant is the first quadrant
of the (η,γ ) plane.

For every α0 ∈ [0,π/2] the cross-sections look qualitatively
similar. For p > p0 the stability domain is bounded by a
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smooth curve departing from the origin, Fig. 4. For p = p0(α0)
the stability boundary has a cuspidal point at the origin with
the single tangent line to the boundary specified by the ratio
β0 given by Eq. (25); the stability region is inside the cusp. For
p < p0(α0) the stability boundary has a point of intersection
at the origin in the (η,γ ) plane; the stability region is inside
the narrow angle-shaped domain, which becomes wider as p

decreases and for p = 0 spreads over the first quadrant of the
plane for every possible mass distribution.

A comparison between Figs. 3(a) and 4(b) shows that
Eq. (23) gives a correct linear approximation to the stability
domain provided by the Routh-Hurwith criterion in the (η,γ )
plane and, therefore, to the singular interface between the
classical-Hopf and reversible-Hopf bifurcations in the (η,γ,p)
space.

G. Stabilizing damping ratio β0 for different
mass distributions α0

Figure 4 demonstrates that the contour plot patterns of the
stability boundary in the (η,γ ) plane remain qualitatively the
same for different values of α0 but differ in the orientation of
the cusp, which is determined by the stabilizing damping ratio
β0. Evaluating Eq. (25) at the points of the stability boundary of
the undamped system provides the plot of the function β0(α0)
reported in Fig. 3(c). One can see that two intervals of α0 exist
with opposite signs of β0. The intervals are bounded by the
values α0 = 0 and α0 ≈ 0.342716, at which the graph β0(α0)
displays a vertical asymptote, Fig. 3(c). Positive values of β0

correspond to sufficiently small α0 � 0.342716, cf. Fig. 4(b);
negative values of β0 are characteristic for 0.342716 � α0 �
π/2.

The above critical values of α0 are determined by the zeros
of the denominator of Eq. (25). Indeed, taking into account that

trM0 = 2 + 8 tan α0, detM0 = 1 + 8 tan α0,

tr(A∗
0M0) = trA0 + 4tr(M∗

1A0) tan α0, (28)

the denominator can be obtained in the form

tr
(
A0 − σ 2

0 M0
) = trA0 − tr(A∗

0M0)

2 det M0
trM0 = 4 tan α0

1 + 8 tan α0

× tr{[I − (1 + 4 tan α0)M∗
1]A0}. (29)

Evidently, one of the roots is α0 = 0, corresponding to the case
of the Beck column (which is the Pflüger column without the
end mass). In this case, the cusp in the (η,γ ) plane is oriented
vertically; see Fig. 4(a). This confirms the well-known fact
that for the Beck column the internal Kelvin-Voigt damping
(η) is destabilizing, and the external air drag damping (γ ) is
stabilizing [14,17,41]. As soon as α0 departs from zero, the
external damping becomes a destabilizing factor due to the
change in the orientation of the cusp in Fig. 4. Nevertheless, at
a specific mass distribution α0 ≈ 0.342716, which is given by
the root of the equation

tr{[I − (1 + 4 tan α0)M∗
1]A0} = 0,

the cusp restores its vertical orientation, as is visible in
Fig. 4(c). For this specific mass ratio the external damping
is stabilizing again.

The revealed behavior of the stabilizing damping ratio as a
function of the mass distribution is reflected in Fig. 2(a), which

FIG. 5. Each curve, computed with the use of the Eq. (23), shows
the critical flutter load in the limit of vanishing dissipation as a function
of the damping ratio β for the discretized model with N = 2 and
χ = 1 and corresponds to a different mass ratio α (reported in the
legend). Note that at large mass ratios 0.7 � α � π/2 the curves form
a dense family.

shows the red solid curve of the onset of the reversible-Hopf
bifurcation in the undamped system together with the onset
of the classical-Hopf bifurcation in the limit of vanishing (the
green dash-dotted curve) internal damping and (the blue dashed
curve) external damping. The latter curve has two common
points with the stability boundary of the undamped system
exactly at α0 = 0 and α0 ≈ 0.342716.

Remarkably, β0 and its sign determine which mode will
be destabilized by either of the two damping mechanisms or
by their combination. For instance, in the case of β0 > 0 the
cusp of the stability boundary in the (η,γ ) plane is directed to
the first quadrant, Fig. 4(b). Therefore, a dominating external
damping will destabilize the mode with the higher frequency,
whereas a dominating internal damping will destabilize the
mode with the lower frequency; see Fig. 2(b). In the case
of β0 < 0 the cusp is oriented toward the second quadrant,
Fig. 4(d), so that for every choice of internal and external
damping with η > 0 and γ > 0, the mode with the lower
frequency will be the destabilizing one.

Finally, using Eq. (23), the critical flutter load in the limit
of vanishing dissipation is plotted in Fig. 5 as a function of
the damping ratio β, for different mass ratios α ∈ [0,π/2]. It
is worth noting that in the range 0.7 � α � π/2 the curves
form a dense family. According to Fig. 3(c), for 0.342716 �
α0 � π/2 the stabilizing damping ratio β0 is negative and tends
to infinity as α0 → +0.342716 . . ., which corresponds to the
vertically oriented cusp in Fig. 4(c).

H. Agreement with the solution of the boundary
eigenvalue problem (4)

When N is increased, the eigenvalues, eigenvectors, and
stability boundary based on the finite-dimensional approxi-
mation Eq. (8) converge to those solutions of the eigenvalue
problem Eq. (4). However, already the N = 2 approximation
is in an excellent qualitative agreement and in a very reason-
able quantitative agreement with the solution of Eq. (4). For
completeness, Appendix B reports the perturbation formulas
for the singular flutter boundary, which are valid for arbitrary
dimension N of the discretized model.
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FIG. 6. The sketch of the “flutter machine” producing the fric-
tional partial follower load P at the free end of the cantilevered
viscoelastic Pflüger column.

IV. EXPERIMENTAL DETECTION
OF THE SINGULAR FLUTTER LIMIT

A. Experimental realization of the Pflüger column

Inspired by the Ziegler setup [51], a new mechanical device
(Fig. 6) has been designed and realized to induce a follower
force at the end of a Pflüger column. The force (whose
magnitude is continuously acquired with a miniaturized load
cell) is produced by friction generated through sliding of
a freely rotating wheel against a conveyor belt and can be
calibrated as proportional (through the Coulomb friction rule)
to a vertical load (provided via frictionless contact with a glass
plate, loaded through a pulley system) pressing the wheel
against the conveyor belt (which was running at a constant
speed of 0.1 m/s in all experiments) [56].

B. Identification of internal and external damping

During vibration of a rod two types of dissipations arise:
an external (due to the air drag) and an internal (due to the
viscosity of the constitutive material of the rod) damping.
Often external and internal damping are condensed in a single

coefficient, but it was shown [16,17] that for problems of
flutter a careful distinction has to be maintained between
the different sources of damping, as both strongly influence
results. Therefore, experiments were performed to identify the
two damping parameters introduced in the model, namely, a
viscous modulus E∗ (modelling the internal damping) and an
air drag coefficient K (corresponding to a distributed external
damping). To this purpose, the viscoelastic rod used for the
flutter experiments was mounted on a shaker in a cantilever
configuration and the acceleration of its free end measured
when the basis was imposed a sinusoidal displacement of a
frequency corresponding to the first two modes of resonance.
Results from these experiments were used with a modified
logarithmic decrement approach detailed in Appendix C,
to obtain the following values of the internal and external
damping coefficients: E∗ = 2.139796 × 106 kg m−1s−1 and
K = 1.75239 × 10−5 kg m−1s−1.

C. Detection of the singular limit for the flutter onset

Our experiments are compared with the numerical solution
of the boundary eigenvalue problem Eq. (4). The roots of
the characteristic Eq. (7) are the eigenvalues ω governing the
vibrations of the Pflüger column. The first two eigenvalues
with their conjugates are plotted in Fig. 7 versus the load p,
with all the other parameters kept fixed. In the absence of both
the Kelvin-Voigt damping (η) and the air drag (γ ), the Pflüger
column is a reversible system and loses stability by flutter via
collision of imaginary eigenvalues in a linear reversible-Hopf
bifurcation, Fig. 7(a). In the presence of the two dissipation
mechanisms, the merging of modes is imperfect, thus yielding
flutter through the classical Hopf bifurcation at a value of p

significantly lower than in the case when the dissipation source
is absent, Fig. 7(b). The theory of the previous section predicts
that when the damping coefficients tend to zero while their
ratio is kept constant, a limiting value of the flutter onset is
reached, which generically differs from the flutter onset of
the undamped column, thus justifying the numerical results of
Ref. [17].

The critical flutter load for the Pflüger column was exper-
imentally investigated covering a wide range of values of the
mass ratioα, Table I. Note that, sinceE∗ andK are constant, the
geometry of the tested rods parameterizes the dimensionless
damping coefficients η and γ according to Eqs. (2), so that

(a) (b)

FIG. 7. Pulsation (red solid curves) and growth rates (blue dashed curves) for the Pflüger column versus the dimensionless load p (a)
without damping and (b) in the presence of a Kelvin-Voigt damping for the material (η) and air drag (γ ), demonstrating the drop in the onset
of flutter. The plots were obtained with the parameters representative of sample 5 in Table I.
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TABLE I. Characterization of the different samples tested. Rods
for all the 11 samples have identical height, h = 24 mm.

b l J M α 103η 103γ β

Rod [mm] [mm] [mm4] [kg] [-] [-] [-] [-]

1 1.90 250 13.72 0.105 1.426 1.059 24.71 23.33
2 1.90 250 13.72 0.075 1.369 1.059 24.71 23.33
3 1.90 250 13.72 0.060 1.320 1.059 24.71 23.33
4 1.90 300 13.72 0.060 1.280 0.746 36.06 48.33
5 1.92 350 14.16 0.060 1.236 0.557 48.37 86.84
6 1.95 400 14.83 0.060 1.196 0.439 62.13 141.5
7 2.98 550 52.93 0.089 1.063 0.348 50.76 145.9
8 2.98 550 52.93 0.075 0.982 0.348 50.76 145.9
9 3.07 800 57.87 0.089 0.903 0.177 102.5 579.3
10 3.07 800 57.87 0.075 0.813 0.177 102.5 579.3
11 3.07 800 57.87 0.060 0.702 0.177 102.5 579.3

different values of γ and η are obtained for rods of different
length (l) and thickness (b).

The results of the measurements, together with the numer-
ical calculations [17,53], are shown in Fig. 8 for 11 samples
(see Table I) in the plane p versus α. Theoretical critical curves,
pertaining to samples of different lengths and thicknesses, are
plotted and highlighted for the relevant intervals of α. These
boundaries are well-separated from the flutter boundary of the
undamped system, represented by the upper dashed curve. In
cases when either η = 0 (the dot-dashed curves) or γ = 0
(the lower dashed curves) the difference between the flutter
boundaries corresponding to samples of various geometry is
hardly visible, as it should be, in agreement with the theory,
when the damping coefficients are very small [13,17,19,20,53].
In contrast, when both damping mechanisms are taken into
account, the critical curves dramatically differ for samples of
different length and thickness. This is because the ratio β =
γ /η = (K/E∗)(l4/J ) between the two damping coefficients
increases almost 25 times from the first sample to the eleventh

FIG. 8. Critical flutter load p versus mass ratio α. Theoretical
predictions based on Eq. (7) are plotted (the upper dashed curve) when
damping is absent, when only external (γ , dot-dashed lines) or internal
(η, lower dashed lines) damping is present, and (solid lines) when both
damping mechanisms are present. Experimental results are marked by
diamonds with error bars. The tested samples are numerated and their
characteristics reported in Table I.

FIG. 9. Solid curves mark the critical flutter load versus damping
ratio β = γ /η at different values of mass ratio α and corresponding
fixed values of η; see Table I. The experimental data are shown by
spots with error bars. Dashed lines indicate the critical flutter load of
the undamped Pflüger column for the same values of α.

(see Table I), although the damping coefficients γ and η vary
weakly with the sample geometry.

Assuming γ = βη in Eq. (7) and fixing η to be one of the
values reported in Table I, the flutter boundary is plotted in
Fig. 9 in the p versus β representation. Since for every length
and thickness the critical flutter load depends weakly on α, see
Fig. 8, the flutter boundaries in Fig. 9(a), are situated very close
to each other (cf. Fig. 5). If the results of the measurements are
superimposed, the experimental points perfectly fit this family
of boundaries, within the error bands. Both the theoretical
curves and the experimental points lie below the critical values
of the undamped system for all values of α. Nevertheless, the
critical flutter load of the weakly damped Pflüger column is
very sensitive to the damping ratio and increases as β increases
with the tendency to touch the lowest of the ideal flutter
boundaries at β > 1000, where the critical loads of the damped
and undamped system tend to coincide (within the error bands),
Fig. 9.

D. The flutter modes

The analysis of the experiments is complemented by the
determination of the flutter modes, which can be pursued
by calculating the eigenvectors associated to the eigenvalues
determined by Eq. (7). The knowledge of the flutter modes is
in fact useful to identify the shape of the vibrating rod during
experiments. The analysis of the eigenvectors is reported
in Fig. 10, relative to the first (lower frequency) vibration
branch for sample 5 of Table I, with dimensionless dampings
η = 0.557 × 10−3 and γ = 48.368 × 10−3. All modes 1–3
in the figures refer to stable vibrations, while the onset of
flutter corresponds to the mode numbered 4 and the onset of
divergence to the mode numbered 9.

It is evident from Fig. 10(1) that the shape of the vi-
bration mode corresponds (as it should be) at null p to the
free vibrations of a cantilever rod with a concentrated mass
on its tip, vibrating at first resonance frequency. When the
load p increases beyond the threshold of the classical-Hopf
bifurcation and approaches the higher value of the load cor-
responding to the threshold of the reversible-Hopf bifurcation
in the undamped case, the vibrations become more and more
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FIG. 10. Real (blue dashed curve) and imaginary (red solid curve) part of the eigenfrequencies associated to the first (lower frequency)
flutter branch. Each number corresponds to a value of the tangential load p for which the relevant eigenvector is computed and reported on the
right in separate boxes. The vibrations numbered 1 to 3 are stable. Flutter instability first occurs at the load for which the mode numbered 4 is
reported.

similar to the second vibration mode of the free cantilever
rod. This is not surprising in view of the fact that in the
undamped case the eigenvectors of the first and the second
mode merge at the flutter threshold because of the formation
of a double imaginary eigenvalue with the Jordan block. In all
the performed experiments the modes sketched in Fig. 10 have
been observed.

V. CONCLUSION

The theoretically predicted singular limiting behavior for
the onset of the classical Hopf bifurcation has been detected
and can now be considered as experimentally confirmed for a
nearly reversible system in the limit of vanishing dissipation.

This effect has been both theoretically and experimentally
analyzed on a classical paradigmatic model of a nearly re-
versible system, namely, the Pflüger viscoelastic column mov-
ing in a resistive medium under the action of a tangential fol-
lower force. For the theoretical treatment the continuous non-
self-adjoint boundary eigenvalue problem has been Galerkin-
discretized and reduced to a finite-dimensional matrix eigen-
value problem. With the use of perturbation theory of multiple
eigenvalues, explicit expressions for the critical flutter load
with and without dissipation have been derived thus proving
the Whitney umbrella singularity at the interface between the
classical Hopf bifurcation of the dissipative Pflüger system
and the reversible-Hopf bifurcation of its undamped version.
The conducted experiments with the laboratory realization
of the Pflüger column confirmed the high sensitivity of the
flutter onset to the damping ratio and accurately fitted both the
theoretically and numerically predicted laws.

The designed, manufactured, and tested “flutter machine”
opens a way to dedicated experiments on dissipation-induced
instabilities with multiple damping mechanisms in a controlled
laboratory environment.
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APPENDIX A: DISCRETIZATION

1. Adjoint boundary eigenvalue problems

The boundary eigenvalue problem for the Pflüger column
with partial follower load is given by Eq. (4). The problem
is self-adjoint only for χ = 0 and non-self-adjoint otherwise.
Indeed, integration by parts of the differential Eq. (4) together
with the boundary conditions lead to the following adjoint
boundary eigenvalue problem:

(1 + ηω̄)w̃′′′′ + pw̃′′ + (γ ω̄ + ω̄2)w̃ = 0,

w̃(0) = w̃′(0) = 0, w̃′′(1)(1 + ηω̄) + χpw̃(1) = 0,

(1 + ηω̄)w̃′′′(1) + pw̃′(1) − w̃(1)ω2 tan α = 0. (A1)

The problem Eq. (A1) coincides with Eq. (4) only for χ = 0.
Otherwise, the boundary conditions of the two problems differ.

2. Variational principle

Let us consider now the functional

I (ṽ,w̃) =
∫ 1

0
[(1 + ηω)ṽ′′′′w̃ + pṽ′′w̃ + (γω + ω2)ṽw̃]dξ.

(A2)

Integrating by parts the first two terms in Eq. (A2) and account-
ing for the boundary conditions for the problems Eqs. (4) and
(A1) leads to∫ 1

0
(ṽ′′′)′w̃dξ =

∫ 1

0
ṽ′′w̃′′dξ + ṽ′′′(1)w̃(1),

∫ 1

0
(ṽ′)′w̃dξ = −

∫ 1

0
ṽ′w̃′dξ + ṽ′(1)w̃(1). (A3)

On the other hand, the last of the boundary conditions Eq. (4)
provides

(1 + ηω)ṽ′′′(1) + pṽ′(1) = χpṽ′(1) + ṽ(1)ω2 tan α.

Hence,

I =
∫ 1

0
[(1 + ηω)ṽ′′w̃′′ − pṽ′w̃′ + (γω + ω2)ṽw̃]dξ

+ ṽ(1)w̃(1)ω2 tan α + χpṽ′(1)w̃(1). (A4)
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Stationarity of this functional with respect to arbitrary smooth
variations δṽ, δw̃, which satisfy kinematic boundary condi-
tions, is equivalent to the boundary value problems Eqs. (4)
and (A1).

3. Discretization and reduced finite-dimensional model

Let us consider solutions to the self-adjoint problems
Eqs. (4) and (A1), with χ = 0, p = 0, η = 0, γ = 0, and α = 0

ṽj = w̃j =
∣∣∣∣∣ sin

√
ωj

1 + (−1)j cos
√

ωj

∣∣∣∣∣
{

sin(ξ
√

ωj ) − sinh(ξ
√

ωj ) − sin(
√

ωj ) + sinh(
√

ωj )

cos(
√

ωj ) + cosh(
√

ωj )
[cos(ξ

√
ωj ) − cosh(ξ

√
ωj )]

}
,

(A5)

where ωj is a root of the characteristic equation

cos(
√

ω) cosh(
√

ω) + 1 = 0,

which provides, for instance,

ω1 = 3.516015269,
√

ω1 = 1.875104069,

ω2 = 22.03449156,
√

ω2 = 4.694091132,

. . .

ωn = π2

4
(2n − 1)2,

√
ωn = π

2
(2n − 1). (A6)

The functions Eqs. (A5) are orthogonal and normalized as
follows:∫ 1

0
ṽi(ξ )ṽj (ξ )dξ = 0, i �= j ;

∫ 1

0
ṽi(ξ )ṽi(ξ )dξ = 1.

Therefore, the eigenmodes ṽ and w̃ can be represented in the
form of the expansions

ṽ ≈
N∑

j=1

aj ṽj (ξ ), w̃ ≈
N∑

j=1

bj w̃j (ξ ), (A7)

where w̃j = ṽj .
Substituting the expansions Eqs. (A7) into the functional

Eq. (A4) yields the discretized version of the functional
Eq. (A4):

IN = ω2
N∑

i=1

N∑
j=1

aibj

(∫ 1

0
ṽi ṽj dξ + ṽi(1)ṽj (1) tan α

)

+ω

N∑
i=1

N∑
j=1

aibj

∫ 1

0
[ηṽ′′

i ṽ
′′
j + γ ṽi ṽj ]dξ

+
N∑

i=1

N∑
j=1

aibj

(∫ 1

0
[ṽ′′

i ṽ
′′
j −pṽ′

i ṽ
′
j ]dξ + χpṽ′

i(1)ṽj (1)

)
.

(A8)

The gradient of the discretized functional, IN , calculated
with respect to the vector of coefficients b = (b1,b2, . . . ,bN ),
and equated to zero, provides the discretized eigenvalue prob-
lem for the Pflüger column

[Mω2 + (γ De + ηDi)ω + K1 − pK2 + χpN]a = 0, (A9)

where a = (a1,a2, . . . ,aN ) and the elements of the matrices
are

Mij =
∫ 1

0
ṽi ṽj dξ + ṽi(1)ṽj (1) tan α

= δij + 4(−1)i+j tan α,

De,ij =
∫ 1

0
ṽi ṽj dξ = δij , Di,ij =

∫ 1

0
ṽ′′

i ṽ
′′
j dξ = δijω

2
j ,

K1,ij =
∫ 1

0
ṽ′′

i ṽ
′′
j dξ = δijω

2
j , K2,ij =

∫ 1

0
ṽ′

i ṽ
′
j dξ,

Nij = ṽ′
i(1)ṽj (1) = 4(−1)j+1√ωi sin

√
ωi

1 + (−1)i cos
√

ωi

, (A10)

with δij denoting the Kronecker symbol. The entries of the
matrix K2 in the explicit form are

i �= j : K2,ij = A

[ √
ωj sin(

√
ωi)

cos(
√

ωi)(−1)i + 1

−
√

ωi sin(
√

ωj )

cos(
√

ωj )(−1)j + 1

]
,

i = j : K2,jj = ωj [(−1)j − cos
√

ωj ] − 2
√

ωj sin
√

ωj

cos
√

ωj + (−1)j
,

(A11)

where A = 4
√

ωiωj

(−1)iωi−(−1)j ωj
. All the matrices are real. In addi-

tion, the matrices of mass, M, external damping, De, internal
damping, Di , and stiffness, K1 and K2, are symmetric. The ma-
trix of nonconservative positional forces with nonzero curl, N,
is real and nonsymmetric. Note that det M = 1 + 4N tan α >

0.

APPENDIX B: PERTURBATION FORMULAS
FOR ARBITRARY N

The eigenvalue problem Eq. (9) can be formulated as the
eigenvalue problem

L(ω,k)a = 0

for the matrix polynomial

L(ω,k) := A(p,χ ) + D(γ,η)ω + M(α)ω2,

where k = (p,χ,γ,η,α) is a vector of parameters. The adjoint
matrix polynomial L† = AT + Dω + Mω2 is introduced, so
that (La,b) = (a,L†b), where the inner product is defined
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as (a,b) = b
T

a. With this definition, the adjoint eigenvalue
problem can be rewritten as

L†(ω,k)b = 0.

Let us assume that, for the values of the parameters χ = χ0,
α = α0, γ = 0, η = 0, and p = p0, an algebraically double
imaginary eigenvalue ω0 = iσ0 exists with the Jordan block,
which satisfies the following equations:

A0a0 − σ 2
0 M0a0 = 0,

A0a1 − σ 2
0 M0a1 = −2iσ0M0a0, (B1)

where a0 is an eigenvector and a1 is an associated vector at
ω0. Then, an eigenfunction b0 and an associated function b1

at the complex-conjugate eigenvalue ω0 = −iσ0 are governed
by the adjoint equations

AT
0 b0 − σ 2

0 M0b0 = 0,

AT
0 b1 − σ 2

0 M0b1 = 2iσ0M0b0. (B2)

Note the orthogonality between the eigenvectors, that is

(M0a0,b0) = 0. (B3)

When the parameter p is perturbed in the vicinity of p0

as p = p0 + �p, an approach similar to that used for N = 2
yields

ω(p) = iσ0 ±
√

�p
i(A′

pa0,b0)

2σ0(M0a1,b0)
+ o(

√
|�p|),

a(p) = a0 ± a1

√
�p

i(A′
pa0,b0)

2σ0(M0a1,b0)
+ o(

√
|�p|),

b(p) = b0 ± b1

√
�p

i(A′
pa0,b0)

2σ0(M0a1,b0)
+ o(

√
|�p|), (B4)

where A′
p = ∂A

∂p
|
p=p0

. Therefore, the eigenvalues and eigen-

vectors of the undamped reversible system can be approxi-
mated in the vicinity of p = p0, i.e., in the vicinity of the flutter
boundary corresponding to the reversible-Hopf bifurcation.

Assume that at p < p0 the eigenvalues of the undamped
reversible system are imaginary, ω(p) = iσ (p), with an eigen-
vector a(p) and the eigenvector of the adjoint problem b(p).
Then, at p > p0 the eigenvalues Eqs. (B4) are complex-
conjugate (denoting instability). A dissipative perturbation
with the matrix D(η,γ ) where D(0,0) = 0 changes the eigen-
value ω(p) = iσ (p) as follows:

ω(p,η,γ ) = ω(p) − (D′
ηa(p),b(p))η + (D′

γ a(p),b(p))γ

2(M0a(p),b(p))

+ o(|η|,|γ |). (B5)

The following condition for the imaginary eigenvalue is as-
sumed to hold

(D′
ηa(p),b(p))η + (D′

γ a(p),b(p))γ = 0, (B6)

so that the eigenvalue remains imaginary after a dissipative
perturbation. This means that the neutral stability surface
is not abandoned after the dissipative perturbation. Using
the perturbation Eqs. (B4) for a(p) and b(p) in Eq. (B6),
introducing the damping ratio β = γ /η, and defining

β0 = − (D′
ηa0,b0)

(D′
γ a0,b0)

= − (Dia0,b0)

(a0,b0)
, (B7)

the following quadratic approximation in β can be found to the
critical flutter load in the limit of vanishing dissipation

p = p0 + 2σ0(M0a1,b0)

i(A′
pa0,b0)

{
(D′

γ a0,b0)

[(D′
γ a0,b1) + (D′

γ a1,b0)]β0 + [(D′
ηa0,b1) + (D′

ηa1,b0)]

}2

(β − β0)2. (B8)

From the orthogonality of eigenvectors Eq. (B3) and the
expression for the mass matrix M0 = I + 4M1 tan α0 it follows
immediately that the denominator in Eq. (B7) vanishes at
α0 = 0, thus confirming that in the case of the Beck column
the external air drag damping is stabilizing. Now this result
has been established for the discretized model of the Pflüger
column of arbitrary dimension N .

In the case of N = 2, χ0 = 1, α0 = 0.1, p0 ≈ 17.83368,
σ0 ≈ 9.366049, the following eigenvectors are obtained:

a0 ≈
(

0.720378
1

)
, a1 ≈ −i

(
0.225316
0.478780

)
,

b0 ≈
(−1.828847

1

)
, b1 ≈ i

(−0.3423417
0.505899

)
. (B9)

With these vectors the formula Eq. (B4) exactly reproduces
Eq. (20). Equation (B7) provides β0 ≈ 1478.074 in full accor-
dance with Eq. (25) in the case of N = 2. Finally, Eq. (B8)
exactly reproduces Eq. (26).

For N > 2 the procedure is the same: one only needs to
find the vectors a0, a1, b0, b1 solving Eqs. (B1) and (B2) with

the corresponding N × N matrices, which entries are given by
Eqs. (A10) and (A11).

APPENDIX C: MODIFIED LOGARITHMIC
DECREMENT APPROACH

1. Equations of motion

A viscoelastic rod is considered, made up of a material that
follows the Kelvin-Voigt model,

σz = Eεz + E∗ε̇z, (C1)

where σz and εz are the longitudinal stress and strain, respec-
tively, and E and E∗ are the elastic and the viscous moduli. In
an Euler rod the strain is defined as

εz = dφ

dz
y = φ′y, (C2)

where φ′ is the curvature and y the coordinate orthogonal
to the rod’s axis x, so that the bending moment can be
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computed as

M =
∫

A

σzydA = Eφ′
∫

A

y2dA + E∗φ̇′
∫

A

y2dA

= EJφ′ + E∗J φ̇′, (C3)

and rewritten in terms of displacement v(x,t) as

M = −EJv′′ − E∗J v̇′′. (C4)

The equation governing the dynamics of a straight rod is

M′′ = −p + mv̈, (C5)

where m is the mass density per unit length of the rod and p

is the transversal load per unit length, which can be identified
with the sum of an applied load f (t) and a force proportional
(through a coefficient K) to the velocity v̇, to model external
damping. A substitution of Eq. (C4) into Eq. (C5) yields

EJvIV + E∗J v̇IV + Kv̇ + mv̈ = f (t). (C6)

A sinusoidal excitation at the clamped end of a rod in a
cantilever configuration can be modeled with a specific form
of external load, namely

f (t) = mU0ω̄
2 sin ω̄t, (C7)

where U0 is the amplitude of the displacement imposed at the
clamp, which varies sinusoidally in time with pulsation ω̄.

2. Free vibration of a cantilever rod

The solution of Eq. (C6) with an imposed sinusoidal
displacement in terms of v(x,t) can be found exploiting the

separation of variables,

v(x,t) =
∞∑

n=1

Yn(x) · yn(t), (C8)

where the function Yi(x) and yi(t) are mode functions, respec-
tively, in space x and in time t . The force f (t) acting on the rod
plays a role only in the definition of the yi(t) modes. Assuming
a function of time y(t) = exp(−iωt) yields the characteristic
equation

∞∑
n=1

(
1 − i

ωnE
∗

E

)
Y IV

n −
(

mω2
n

EJ
+ i

ωnK

EJ

)
Yn = 0,

→
∞∑

n=1

Y IV
n − �4

nYn = 0, (C9)

where �4
n is a real quantity (dimensionally equal to [length]−4),

�4
n = mω2

n + iωnK

EJ − iωnE∗J
. (C10)

The solution to Eq. (C9) is a sum of periodic and hyperbolic
functions

Y (x) =
∞∑

n=1

Yn(x) =
∞∑

n=1

C1,n sin �nx + C2,n cos �nx

+
∞∑

n=1

C3,n sinh �nx + C4,n cosh �nx, (C11)

where the constants Ci,n depend on the boundary conditions.
For a cantilever rod, the boundary conditions are

Y (0) = Y ′(0) = Y ′′(l) = Y ′′′(l) = 0. (C12)

A substitution of the boundary conditions in Eq. (C11) yields
in a matrix form

⎡
⎢⎣

0 1 0 1
�n 0 �n 0

−�2
n sin �nl −�2

n cos �nl �2
n sinh �nl �2

n cosh �nl

−�3
n cos �nl �3

n sin �nl �3
n cosh �nl �3

n sinh �nl

⎤
⎥⎦
⎛
⎜⎝

C1,n

C2,n

C3,n

C4,n

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠. (C13)

The first two equations yield

C4,n = −C2,n, C3,n = −C1,n,

so that Eq. (C13) reduces to

(sin �nl + sinh �nl)C1,n + (cos �nl + cosh �nl)C2,n = 0,
(C14)

(cos �nl + cosh �nl)C1,n − (sin �nl − sinh �nl)C2,n = 0.

Imposing the determinant of the matrix of the system Eq. (C14) to vanish provides

cos �nl cosh �nl = −1. (C15)

Equation (C15) defines the �n values as

�1l = 1.875 . . . , �2l = 4.694 . . . , �3l = 7.855 . . . , . . . , �nl = π

2
(2n − 1).

Now, the solution for the functions Yn(x) can be expressed in terms of one arbitrary constant C1,n, so that

C2,n = − sin �nl + sinh �nl

cos �nl + cosh �nl
C1,n = cos �nl + cosh �nl

sin �nl − sinh �nl
C1,n,

023003-13



DAVIDE BIGONI et al. PHYSICAL REVIEW E 97, 023003 (2018)

which leads to the general solution for the free vibrations of a cantilever rod expressed as an infinite sum of the following mode
functions:

Yn(x) = C1,n

[
sin �nx − sinh �nx − sin �nl + sinh �nl

cos �nl + cosh �nl
(cos �nx − cosh �nx)

]

= C1,n

[
sin �nx − sinh �nx + cos �nl + cosh �nl

sin �nl − sinh �nl
(cos �nx − cosh �nx)

]
. (C16)

3. Properties of the function Yn(x)

The free vibration shape equations Yn(x) satisfy the orthog-
onality relations∫ l

0
Yn(x)Yk(x)dx = 0 for k �= n. (C17)

Morover, Eq. (C9) allows us to write

Y IV
n (x) = �4

nYn(x). (C18)

It is expedient now to define the quantity

�n =
∫ l

0
Y 2

n (x)dx, (C19)

so that Eq. (C18) yields

�n�
4
n =

∫ l

0
Y IV

n (x)Yn(x)dx. (C20)

4. Expression of y(t) for a cantilever rod
with a base motion excitation

The differential equations governing the sinusoidal motion
of the clamped rod subject to the force f (t), Eq. (C7), are

∞∑
n=1

Y IV
n (x)yn(t) + E∗

E
Y IV

n (x)ẏn(t) + K

EJ
Yn(x)ẏn(t)

+ m

EJ
Yn(x)ÿn(t) = f (t)

EJ
. (C21)

To exploit the orthogonality property of the shape functions
Yn(x), each term of the previous equation is multiplied by Yk(x)
and integrated over the length of the rod l, which provides the
expression

�n�
4
nyn(t) + �n

(
K

EJ
+ E∗

E
�4

n

)
ẏn(t)

+�n

m

EJ
ÿn(t) = Fn

f (t)

EJ
, (C22)

where Fn = ∫ l

0 Yn(x)dx. Equation (C22) recalls the equation
of motion, which governs a single-degree-of-freedom system
with a mass mn, a damper with constant cn, and a spring with
stiffness kn,

mnÿn(t) + cnẏn(t) + knyn(t) = pn sin ω̄t, (C23)

where

mn = �n

m

EJ
, cn = �n

(
K

EJ
+ E∗

E
�4

n

)
,

kn = �n�
4
n, pn = Fn

ρU0ω̄
2

EJ
. (C24)

Another form of Eq. (C23) is

ÿn(t) + 2αnζnẏn(t) + α2
nyn(t) = an sin ω̄t, (C25)

where

α2
n = kn

mn

= EJ

m
�4

n, 2αnζn = cn

mn

= K

m
+ E∗J

m
�4

n,

an = pn

mn

= Fn

�n

U0ω̄
2. (C26)

The solution of the differential Eq. (C25) is expressed as the
sum of the solution of the associated homogeneous equation
and of a particular integral. The latter can be found in the form

yn,part (t) = An sin ω̄t + Bn cos ω̄t, (C27)

where the coefficients An and Bn satisfy Eq. (C25) and assume
the form

An = an

[
1 −

(
ω̄

αn

)2
]
Nn, Bn = −2anζn

(
ω̄

αn

)
Nn,

(C28)

in which Nn is the so-called “dynamic amplification factor”:

Nn(αn,ζn) = 1[
1 −

(
ω̄
αn

)2
]2

+
[
2ζn

ω̄
αn

]2
. (C29)

The solution of the homogeneous equation is

yn,hom(t) = exp(−ζnαnt)(Cn sin αn,d t + Dn cos αn,d t),

(C30)

where αn,d = αn

√
1 − ζ 2

n are the damped pulsations of the
system.

The coefficients Cn and Dn can be found by imposing the
initial conditions

yn,tot(0) = X0, ẏn,tot(0) = V0, (C31)

in the complete solution of

yn,tot(t) = yn,hom(t) + yn,part(t), (C32)

which leads to the expressions

Cn = 1

αn,d

[
X0αnζn + V0 + anω̄Nn

(
ω̄2

α2
n

+ 2ζ 2
n − 1

)]
,

Dn = X0 + 2anζn

ω̄

αn

Nn. (C33)

5. Relation between ζn, E∗, K

The relation between the damping ratio ζn, the internal (E∗),
and the external (K) damping is described by Eq. (C26)2, which
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can be rewritten as

ζn = 1

2�2
n

(
K

J
+ E∗�4

n

)√
J

mE
. (C34)

The problem of the identification of the two damping
coefficients thus reduces to the quantification of the damping
ratio ζn relative to two different modes. The logarithmic decay

over k cycles can be written as

ζn = δk

2πkαn/αn,d

≈ δk

2πk
, (C35)

where δk = log (y1/yk+1).
The dimensionless internal and external damping coeffi-

cients can be finally expressed through the relations

γ = Kl2

√
mEJ

, η = E∗l2

√
mEJ

J

l4
. (C36)
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